

D 21.1

MILS Architecture

Project number: 318353

Project acronym: EURO-MILS

Project title:

EURO-MILS: Secure European

Virtualisation for Trustworthy Applications

in Critical Domains

Start date of the project: 1st October, 2012

Duration: 36 months

Programme: FP7/2007-2013

Deliverable type: Report

Deliverable reference number: ICT-318353 / D21.1 / 1.0

Activity and Work package

contributing to the deliverable:
Activity 2 / WP 21

Due date: September 2013 – M12

Actual submission date: 30th September, 2013

Responsible organisation: SYSGO

Editor: SYSGO (Holger Blasum)

Dissemination level: Public

Revision: 1.0

Abstract:

We give a generic description of MILS

systems, our MILS architecture template

and discuss MILS main components.

Keywords:
MILS architecture, software architecture,

information flow, resource management

D21.1 – MILS architecture

EURO-MILS D21.1 I

Editor

Holger Blasum (SYSGO AG)

Contributors (ordered according to beneficiary number)

Sergey Tverdyshev, Holger Blasum (SYSGO AG),

Bruno Langenstein (DFKI / Deutsches Forschungszentrum für künstliche Intelligenz),

Jonas Maebe, Bjorn De Sutter (Universiteit Gent),

Bertrand Leconte, Benoît Triquet (AIRBUS),

Kevin Müller, Michael Paulitsch (EADS Deutschland GmbH),

Axel Söding-Freiherr von Blomberg (OpenSynergy GmbH),

Axel Tillequin (EADS France SAS)

Acknowledgment

The research leading to these results has received funding from the European

Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement

number 318353.

D21.1 – MILS Architecture

EURO-MILS D21.1 II

Executive Summary

We introduce a generic description of MILS systems (Chapter 2), and the MILS architecture

template (Chapter 3). Chapter 4 discusses MILS main components. The practical aim of this

document is two-fold: (1) to get a common understanding of MILS terms and definitions, and

(2) to provide a framework to derive the information flow, access control and resource

allocation of the demonstrators from individual MILS components.

D21.1 – MILS Architecture

EURO-MILS D21.1 III

Contents

Chapter 1 Introduction .. 1

Chapter 2 MILS concepts and state of the art ... 2

2.1 Modular high-assurance safety in avionics .. 2

2.2 Modular high-assurance computer security ... 3

2.3 Certification aspects ... 7

2.4 Architectural decomposition and modelling .. 7

Chapter 3 MILS representation adopted by EURO-MILS .. 9

3.1 MILS architecture template .. 9

3.2 MILS terminology .. 14

3.3 Example of a MILS system .. 20

Chapter 4 MILS main components ... 22

4.1 Software components ... 22

4.2 Hardware components .. 34

4.3 System configuration of components ... 38

Chapter 5 Conclusion ... 41

5.1 Overview of component policies and reuse ... 41

5.2 Secure design principles ... 43

5.3 Results .. 44

5.4 Acknowledgment ... 45

Glossary ... 46

List of Abbreviations .. 50

Bibliography ... 52

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 1 of 59

Chapter 1 Introduction

EURO-MILS claims that “the project's cornerstone is MILS (Multiple Independent Levels of

Security), a high-assurance security architecture that supports the coexistence of untrusted

and trusted components, based on verifiable separation mechanisms and controlled

information flow” [Cordis12]. While MILS is well established in practice, and products

claiming MILS compliance do exist since the mid 2000s, it so far has not been standardized or

given a formal definition, in particular “there is no standard that defines which functionalities

reside in a MILS-compliant system and how a MILS kernel should be designed.” [DPF09, p.

4].

In the absence of such a standard, to reflect meaningfully MILS, a common understanding of

some terms related to “architecture” is helpful. We introduce a generic description of MILS

systems (Chapter 2), and the MILS architecture template (Chapter 3). Chapter 4 discusses

MILS main components.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 2 of 59

Chapter 2 MILS concepts and state of the art

In publications on MILS such as [AFHOT06] reference is made to high-assurance safety (in

particular avionics) and high-assurance security. We briefly recapitulate both backgrounds,

based on well available material, without claiming to completely cover each development

until the present. We also introduce certification and architectural decomposition and

modelling aspects of MILS.

2.1 Modular high-assurance safety in avionics

Safety assurance levels: [ARP4754] introduces a notion of safety assurance levels: if the

failure of an application would have an impact that causes severe damage (e.g. loss of

aircraft), the application is of a high assurance level. Otherwise, if the failure of an application

would have an impact that causes a minor nuisance (e.g. loss of passenger entertainment

system), the application is of a low assurance level. Applications at a high safety assurance

level have stronger process requirements (planning, development, verification) than

applications at a low safety assurance.

IMA: Integrated Modular Avionics (IMA) is an architectural concept for modular avionics

software systems that has been inspired from previous architectural concepts for physically

modular hardware systems that consisted of LRUs (Line Replacement Units). IMA replaces

multiple instances of separate and dissimilar LRUs with fewer common processing modules,

and provides shared power supplies, housing and communication links. IMA decomposes an

IMA system into (1) an IMA platform consisting of hardware and core software doing

resource management and process scheduling, and (2) IMA applications, which are software

components interacting with the IMA platform.

IMA systems are designed to host several applications with appropriate isolation on a set of

shared hardware and software resources. In IMA, applications execute in an environment

generally called a set of partitions. A partition is a unit of separation regarding resource (i.e.,

CPU, memory, etc.) allocation in space and time domains. The IMA architecture dictates the

underlying operating system (OS) to be developed for hard real-time, safety critical avionics

applications. One of the functional requirements applied to such an OS is to host multiple

independent aircraft applications while the computing platform shall not introduce significant

common failure modes between those applications; evidences of the mechanisms providing

isolation between those applications shall be demonstrated. One upside is that this enables

incremental qualification, under which one application can be upgraded without requiring the

others to undergo new certification.

IMA-related standards include a common interface for applications [ARINC653], and

guidance for the development and certification of systems [DO-297].

[ARINC653] requires an operating system to manage partitions and a rich set of interfaces to

manage their inter-partition communication, periodic assignment of CPU time to a partition,

applications (“processes”) within a partition, memory allocation, and a health monitor

responsible for reporting hardware, operating system software and application failures.

[ARINC653] provides implementable interfaces for the above-mentioned functionalities (e.g.,

parameters and return values including error codes are defined).

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 3 of 59

Processes for the system development, certification planning, requirements determination,

safety assessment, implementation verification and process assurance have been developed

for complex integrated systems in avionics in general [ARP4754]. Similarly, [DO-297]

describes the IMA-specific aspects of design assurance for all parties involved in

development, integration, verification and validation of IMA systems. As considerations of

the IMA platform, [DO-297, p. 11] lists availability (functional performance and resource

management, health monitoring), integrity (including protection features, fault detection and

partitioning), safety (appropriate architecture and design assurance), fault management and

composability. [DO-297, p. 14] defines the aim of “robust partitioning” to provide an

equivalent level of functional isolation and independence as a federated system

implementation. A partitioning analysis demonstrates that “no application or sub-function in a

partition could affect the behaviour of a sub-function or application in another partition in an

adverse manner”. [DO-297] splits validation, verification, configuration management and

certification processes into tasks done at the application level, the platform level, and the

system level.

IMA design is made to provide high-assurance safety systems for avionic industry. However,

IMA requirements and development do not include security aspects, only random hardware

faults and involuntary design errors are considered without taking into account failures due to

malicious actions.

2.2 Modular high-assurance computer security

Security assurance levels: In computer security, the Common Criteria for Information

Technology Security (CC, [CC12]) standard states that owners of assets (something valuable,

e.g. a component in an aircraft or important data) place value on the assets. The risk of a

threat to an asset “depends on the likelihood of the threat being realised and the impact on the

assets when that threat is realised” [CC12, Part 1, p. 39]. Similar to the concept of safety

assurance levels, an application which, under attack, impairs assets of high value (e.g.,

confidentiality of top secret data, integrity of a critical system) needs to provide a high

security assurance and an application which, under attack, impairs assets only of low value

needs to provide a low security assurance. Security assurance levels for individual

components are especially used for standards that typically analyze distributed systems such

as [ARINC811] for avionics and [ISA62443] for industrial automation.

Evaluation assurance levels: However, there is an additional difference in computer security

versus safety: safety assurance usually considers probabilities of faults (e.g., ARP 4761, ISO-

26262), and in systems, combined and dependent probabilities (e.g. “fault tree analysis”). In

computer security, security risks are more “all or nothing”: for example, once an attacker

knows that access to an asset is possible by exploiting two weaknesses successively, he/she

will perform those actions in the required order. In particular this also holds if a larger system

is incorrectly specified, and exploits against the larger system can be derived simply by

analysis of the specification. In [CC12, Part 1, p. 41] the sufficiency of the countermeasures

against a threat is thus shown by analysis in a document (the “Security Target”), and the

correctness of a product is shown by evaluation in a graded evaluation process. If a product

has undergone an extensive evaluation process, it gets assigned a high evaluation assurance

level (EAL). If a product only has undergone a more limited evaluation process, it gets

assigned a low evaluation assurance level.

Security policy and security policy levels: To build systems on consistent specifications, a

security policy is imposed upon a system. A security policy often assigns security policy

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 4 of 59

levels to elements of a system. A widely applied security policy for confidentiality was Bell-

LaPadula that assigned to each component a label indicating a security level such as “public”,

“classified”, “secret”, “top secret”, where “public” is less than “classified”, “classified” less

than “secret” and “secret” less than “top secret”. On such a policy, each pair of components

can be compared (a set with such features is also called a “total order”). It allows

implementing schemes such as Bell-LaPadula, which (in simple terms) says that no-one is

allowed to “read up” (read information of a higher security level than his/her classification) or

to “write down” (write information to a lower security level than his/her classification). Bell-

LaPadula was also chosen as the reference model for the Orange Book [Dod83]. Similarly,

the Biba integrity policy can be seen as inverting the labels (“no write up”, “no read down”).

Multi-level secure systems (MLS): An MLS system maintains multiple security policy levels

at the same time, often by assigning security labels to its components and resources. Systems

implementing the afore-mentioned Bell-LaPadula or Biba models have been called MLS

systems [And08]. A broader definition of the term MLS will be discussed under “MLS versus

MILS nowadays” below.

Operating systems: Much early work in high-assurance modular computer security has been

on secure operating systems [MP97]. The earliest uses of computers involved programs

directly operating on hardware, addressing individual memory cells directly and exclusively

using the entire hardware. However, maintainability concerns lead to the development of a

more modular usage, by installing an operating system on the hardware. An operating system

is a software system that (1) simplifies access to underlying hardware by providing

appropriate abstractions to applications, (2) provides resource management (e.g. memory) and

in particular is able to allocate CPU(s) to applications (scheduling). Operating systems also

can provide networking or file system infrastructure to computers.

Security kernels: Many secure operating systems have used security kernels [MP97]. Security

kernels have a small implementation, and thus can be more easily reviewed than a complex

operating system. Security kernels target integrity, availability, and (usually a lesser concern

in safety) confidentiality of applications and data and impose a security policy on the system.

Security kernels, for example Honeywell‟s Scomp [Fr83], supporting a security policy with

multiple security policy levels had usually been subsumed under “multi-level secure” (MLS)

systems.

In a security kernel, applications that are running at a certain security policy level fixed for

each application are called “single-level secure” (SLS). If multiple instance of one SLS

implementation are deployed in a system while each of those instances processes a different

security level it will lead to “multiple single-level secure” (MSLS) components. Applications

may implement security policies on completely different features than security kernels, so

policies provided by applications versus policies provided by the separation kernel cannot

always be directly compared. However, an implicit requirement on security kernels is that

their security assurance level is at least as high as or higher than the highest security

assurance level found in any application.

Classification of applications in a security kernel: Unless otherwise specified, the

applications are SLS. Applications spanning multiple security policies are also MLS, such as

a downgrader. For a collection of classifications, see Table 1. The underlying idea of such

classification is that, from an information flow policy and resource sharing viewpoint only

MSLS and MLS components need to be verified [AFHOT06].

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 5 of 59

SLS: Single-Level

Secure Components

[Alv98, AFHOT06,

ZAV06]

A Single Level Secure Component is a component that every time

processes data of one security level.

MSLS: Multiple

Single-Level Secure

Component

[AFHOT06, ZAV06]

A Multiple Single-Level Secure Component is a special kind of SLS

component that processes data of multiple security levels, but

always maintains separations between classes of data by exclusively

processing only one security level during its runtime instance. For

example this separation can be implemented by allowing access to a

different security level only when the component has rebooted with

different parameters. Also deploying multiple instances of one SLS

component processing different single security levels turn this SLS

component into an MSLS component.

Note: in [Alv98] this was restricted to temporal separation, “at a

single time-point, only handles information from one component”.

If such a single-level process is to be implemented as untrusted

process [Alv98], it can be supplemented by an appropriate labelling

and filtering of messages. Moreover, in [Alv98] SLS and MSLS are

subsumed under “secure single-level process”.

MLS: Multi-Level

Secure Component

[Alv98, AFHOT06,

ZAV06]

A Multi-Level Secure Component is a component that handles

information of with different security levels concurrently during

one runtime instance. An example of an MLS component is a

separation kernel [MPT+12] or a downgrader [ZAV06].

Table 1: Levels of components

Multiple independent levels of security (MILS): Encoding rich functionality into a central

component raises the question of how to design a security kernel that is itself secure.

Therefore, the functionality of security kernels has been broken up into a more structured

design. To differentiate such systems from “MLS” systems, the term “MILS” (multiple

independent levels of security) has been introduced. It describes systems where different

partitions hosting applications are either independent from each other or connected by

communication channels without an explicit hierarchical ordering policy that would require

attaching global security policy levels to each partition.

The MILS architecture approach was popularized by John Rushby in 1981 ([Rus81], “Design

and Verification of Secure Systems”; at that time, Rushby did not use the term MILS), which

started a formalisation of MILS concepts. In his approach, the system is designed as a

distributed one and is based on a special kind of operating system using a separation kernel

(SK). He proposed that the security should be achieved partly through physical separation,

partly through the use of components and partly through trusted functionalities performed

within some components. The purpose of the separation kernel is to allow such a “distributed”

system to run within a single processor. This is achieved by offering a very strong separation

between the different partitions except for very carefully controlled information flow between

them.

The basic idea of MILS is to make the security-critical part of the system (i.e., SK) small

enough and with specific functionality so it can be certified at high assurance levels.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 6 of 59

Traditional operating system services like device drivers, file system, etc. are pulled out of the

separation kernel and run in non-privileged mode; the only part of the MILS system running

in privileged mode is the SK. Safety and security policies must be enforced at each level: by

the separation kernel and by any other component needed by the applications hosted in the

partitions, but also by the applications themselves. A key MILS objective is to enable the

evaluation and certification of a complex system to be modularized into a number of

independent, small evaluations.

MILS separation kernel security assurance characteristics: In practice, MILS principles

largely match the requirements imposed by users and producers of IMA systems who, in

addition to their IMA safety requirements, had an additional need for security requirements.

In the MILS literature, explicit concerns for security assurance have been formulated as

“NEAT” [BBH+05, KW08, UV05], as follows:

 Non-bypassable: Policy enforcement functions cannot be circumvented.

 Evaluatable: Policy enforcement functions are small enough and simple enough that

proof of correctness is practical and affordable.

 Always Invoked: Policy enforcement functions are invoked each and every time.

 Tamperproof: Policy enforcement functions and the data that configures them cannot

be modified without authorization.

Similar definitions exist elsewhere, e.g. “evaluatable”, “always invoked”, “tamperproof” for

reference monitors in [And72, p. 22].

Objectives and threats in MILS systems: In computer security, a threat is characterized by

some adverse action achieved by an attacker who attacks system assets. The objectives of

computer security are to counter threats in order to mitigate the risk of a threat scenario.

Assets for MILS system and its components can be formulated in a straightforward way:

 for each component itself,

o with the objectives of the preservation of its confidentiality, integrity, and

(possibly) availability,

 for each resource the component uses,

o with the objectives of the preservation of its confidentiality, integrity, and

(possibly) availability.

Threats can be named against the preservation of each the security attributes:

 for confidentiality, the threat is disclosure,

 for integrity, the threat is modification,

 for availability, the threat is depletion.

MLS versus MILS nowadays: Earlier in this section (“Multi-level secure systems (MLS)”) a

strict hierarchically ordered security policy based on security policy levels had been discussed

in the context of MLS. One insight gained by the MILS approach was that several

components on the same platform have safety and security requirements that are just

“different” in a wider sense. This insight had led to (1) applying the term MLS also in that

wider sense [DCS+04, LRP+11], and (2) to use MILS to describe an architectural

decomposition approach of an MLS system into components [Alv98, AFHOT06, ZAF08].

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 7 of 59

For the rest of this document we use the term MLS for systems based in the wider sense (1)

and MILS for the architectural decomposition approach (2).

2.3 Certification aspects

For IMA, DO-297 describes how to perform incremental certification [DO-297, WP08]. A

case study on compositional certification of a system built on a separation kernel using

Common Criteria approach is given in [MPS+12].

The Open Group plans to develop a catalogue of components under the “Mils
(TM)

” (this

spelling) trademark that are backed by an Open Group Mils protection profile. [RD07, Del10]

list protection profiles for MILS components such as console system, a network system and a

file system, and suggest to specify the allocation of trust of specific MILS components to a

MILS Integration Protection Profile (MIPP); however, these PPs are in draft form and are not

public.

[SKPP] was a protection profile for separation kernels running on hardware. Successful

certification was achieved for the Green Hills Integrity system running on PowerPC 750CXe

PCI extension card [Gre08]. However, [SKPP] has been retracted (“sunsetted”) by NSA in

September 2011. The published rationale for the sunsetting includes the considerations (1)

that the NSA “will focus on specific government systems using separation kernels rather than

general OS evaluation” [Wis11], and points [Hou11] to that (2) in the project “one box one

wire” (OB1) “the underlying commodity workstation (as part of a separation platform) does

not appear to be appropriate for SKPP certification due to its complexity” and that “the

problem with commodity desktop platforms comes down to the fact that too many developers

and vendors are interdependent” [SNAC10]. In balance, in the same document, it is pointed

out that “commodity workstations may present a completely acceptable risk profile given

available options” and the “findings in this document do not condemn OB1 or the use of

separation kernels in commodity workstations”, [SNAC10, also discussed in NG12]. Note:

concerning (1), this policy change does not apply to Europe, concerning (2), our certification

approach for the separation kernel component does not include the hardware. That is, we

assume that either the hardware has been certified by the CC, or it is trusted to be reliable for

other reasons, e.g. by evidence from the hardware vendor that the hardware is suitable for the

security-critical purpose intended.

For partitioning communications systems (PCS), a protection profile draft exists [Uch05]

(available on demand from the author) which extends the PIFP (partitioned information flow

policy) from [SKPP] to distributed environments. The High Assurance Security Kernel

protection profile [HASK] also addresses distributed communication systems in the style of a

PCS.

2.4 Architectural decomposition and modelling

Since a long time research on security software architecture has emphasized principles that

also can be found in MILS systems. For example, discussing mechanisms and techniques that

define who may use or modify the information stored in a computer, Saltzer and Schroeder

have pointed out that the design shall be kept “as simple and small as possible” [SS75, p.

1282], that “every access to every object” shall be checked and that the design shall be open

(not secret). As they are widely known, we will revisit the [SS75] design principles and the

extent to which they are fulfilled later (in Section 5.2).

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 8 of 59

In the context of general research on software architecture, the MILS approach with its strong

emphasis on how a system is composed would subsumed under a structural model which is

characterized by components, connectors and additional constraints [BCK03, SG95, ZAF06,

ZAF08]. A MILS channel is a “connector” and the additional constraint on the system (“other

stuff” in [SG95]) is non-interference. For component-connector type systems, [CBB+03,

Section 4.7] proposes documentation in the form of either Architecture Description

Languages or UML. If UML is used, [CBB+03, Section 4.7] discusses how to represent

components and connectors in UML and note that connectors can be either expressed as

dependencies between a component, and the ports/interfaces realized by the component or as

components themselves (p. 162). [ZAF06, ZAF08] discuss decomposition patterns for

components such as “product pattern”, “cascade pattern”, “feedback pattern” and several

instances of “aggregation patterns”.

The secure refinement of a downgrader with regards to information flow properties is

demonstrated by a paper-and-pencil argument in [CVdM09].

MILS architectures have been expressed in Architecture Analysis and Design Language

(AADL), verified by the REAL tool [GH08], and then been used for code generation by

[DPK10]. MILS components have been expressed in the LOTOS language by [Alv98]. In

[BBH+05], boundary flow modelling and secure UML are listed as possible support to the

system integrator. The software engineering tool Specware for the breakup of a system has

been used by [MWTG00]. [Cof11] discusses identification of architecture design patterns on

an IMA system.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 9 of 59

Chapter 3 MILS representation adopted by EURO-

MILS

This chapter presents the EURO-MILS project view of a MILS architecture template using a

top-down approach (Section 3.1), followed by a bottom-up approach giving definitions of

terms considered useful to describe the MILS architecture template (Section 3.2). We

conclude this chapter with an example (Section 3.3).

3.1 MILS architecture template

Figure 1 presents a high-level view of a MILS architecture template. This is the template we

adopt in the EURO-MILS project. The term “MILS architecture template” names a template

encompassing many possible MILS systems, whereas the term “MILS architecture” (without

“template”) refers to the architecture of the implementation of a concrete MILS system.

From the outside (i.e., external world, which could be a larger system comprising the MILS

system), the MILS system is seen as a system that handles information from multiple

components with different security and safety levels concurrently, in other words, an MLS

system. The MILS system‟s internal architecture is not visible from the point of view of the

infrastructure around the MILS system (it is like a black box). Thus, a MILS system can be

used as a base to build a system that has different safety/security requirements for different

components, called an MLS system.

In the rest of the section, we are discussing in more details each part shown in Figure 1.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 10 of 59

Figure 1: MILS architecture template (components in dashed lines are optional).

3.1.1 MILS system

We define a MILS system as a system where its MILS architecture is visible to the person

composing the MILS system from its components, i.e., the system integrator.

A MILS system consists of components interacting with each other. We define three main

components in a MILS system:

 MILS core (Section 3.1.2)

 MILS platform (Section 3.1.3)

 Partition (Section 3.1.4)

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 11 of 59

3.1.2 MILS core

Figure 2: MILS architecture template: MILS core

The only goal of the MILS core is to provide separated partitions with controlled information

flow between them. Thus, the MILS core provides the primary security functionality of a

MILS system. The MILS core (Figure 2) consists of components that implement and enforce

the separation both in space and time: separation-supporting hardware and the separation

kernel. Depending on use-case implementation, the MILS core may also include hardware

critical devices and software for these hardware devices.

 Separation-supporting hardware.

This hardware consists of implementation (gates in silicon) and

configuration/initialization.

The hardware shall support separation, e.g. CPU with different privilege modes, MMU,

memory bus, IOMMU. Hardware consists of interconnected components. A hardware

component‟s interactions with other hardware components can be restrained by a guard.

For example

o Let‟s consider a CPU, memory, and MMU. Assume the CPU is working in a user

mode. In this mode, the CPU can only access memory if the access has been

permitted by the MMU. Thus, the MMU is the guard for the CPU.

o Let‟s consider a device, memory, and IOMMU. Assume the device accesses

memory as a DMA. In this case, DMA access will happen only if the IOMMU

permits it. Thus, the IOMMU is the guard for this device.

Configuration/initialization is software that performs hardware-specific initialization and

configuration of hardware, e.g. firmware and/or bootloader and/or stand-alone software.

 Separation kernel.

The separation kernel guarantees separation and controlled information flow by enforcing

the security policy.

Examples of enforced security polices are

o resource allocation policy (e.g. allocation of CPU time and memory to partitions),

o access control policy (e.g. access rights to objects under control of separation

kernels),

o information flow policy (e.g. communication rights of partitions).

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 12 of 59

Separation kernel functionality relies on the hardware supporting functionality.

A separation kernel may further configure hardware with the respect to a given security

policy. For example, it configures guards, creates page tables and sets MMUs.

 Critical hardware parts/devices.

These devices can bypass the enforcement mechanisms of the separation kernel. For

example, DMA capable devices without guards (i.e. without IOMMU) can bypass the

separation kernel. To have such critical devices is optional. However, if such device is

present, its associated software acting as a guard for it must be also present in the

architecture.

 Software for critical hardware parts/devices.

This software is the guard for a critical device. It provides an API to partitions to work

with the device. Therefore, this software implements and enforces part of the separation.

We assume that if the software correctly works with the device, the device will not bypass

the separation kernel security policies.

3.1.3 MILS platform

Figure 3: MILS architecture template: MILS platform

The MILS platform (Figure 3) consists of the MILS core and optional software and/or

hardware components that provide secondary security functionalities and do not contribute to

the enforcing of separation. These are security services that can be used based on the use-case

needs.

These optional components are part of the platform because they

 contribute to the system security, however, they do not enforce separation between

partitions,

 can be used by several partitions,

 may be realized by different implementations for a given optional security service (use-

case dependent),

 might need a tighter integration with separation kernel or hardware.

Examples of such optional components are:

o security audit (Section 3.1.5),

o crypto functionality shared between partitions,

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 13 of 59

o software implementing virtualization of devices (e.g., multiplexing of accesses for

the network interface, shared graphics or shared audio).

3.1.4 Partition

A partition is a unit of the separation created by the MILS core. A partition will get resources

as specified in a security policy and enforced by the MILS core. A partition is a container that

hosts executable and/or non-executable data. An executable in the partition can use allocated

resources, communicate with the MILS core, and communicate with other partitions under

control of the MILS core if such communication is explicitly allowed by the security policy.

Partitions also may include hardware that is not separation-relevant. For example, an FPGA

doing cryptography can be under full control of a single partition.

3.1.5 Security audit

Security audit, if it exists, is part of the MILS platform. Security audit is the trustworthy

gathering of audit records. The audit records can be generated by the MILS core components

or applications hosted by partitions.

A security audit component processes incoming data by adding trustworthy security related

information such as time stamps and source of audit record. It can be local and managed by

the audit component but also exported to an external media, this aspect being use-case

implementation dependent.

3.1.6 Middleware

Figure 4: MILS architecture template with middleware: components in dashed lines are optional.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 14 of 59

The term middleware is generally not well defined and its meaning always depends on the

context.

We define middleware as a set of services that are used by several partitions. Middleware

does not contribute to the separation enforced by the MILS platform and is itself under control

of the MILS platform, thus it is a unit (a partition) under control of the separation kernel. The

system integrator of a MILS platform for a MILS system can decide to have middleware or

not. Middleware can be a partition providing some functionality for several other partitions or

be a part of a partition (e.g. libraries, run-time environments guest operating systems). For

instance, the habitat of middleware is also restricted to be within a partition in [Win13, p. 3,

Figure 2].

By introducing the concept of the middleware, we acknowledge that it can be useful to

express that some partitions can be part of a bigger function (see Figure 4), and thus, need

common infrastructure, which is not related to the MILS core or the MILS platform. In the

generic MILS architecture template, we agreed to not use the term middleware to avoid any

misunderstanding because it depends on the use-case where a MILS system is employed.

3.2 MILS terminology

3.2.1 Component

A component is a term to describe the decomposition of a (in general, any) system into

meaningful self-contained parts. For example, a (yet to be defined) MILS system consists of

components. In general, components may be implemented by (1) hardware, (2) software, or

(3) a combination of hardware and software [CBB+03, DO-297]. A component provides a

given functionality that can be configured according to a given use-case.

3.2.2 Resource

A resource is anything (processor such as a CPU or a processing core, memory, software,

data, network, etc.) internally used or exported by a component. A resource may be physical

(a hardware device) or logical (a piece of information). A resource may be shared by multiple

components or be dedicated to a specific component.

Exported resources are those resources to which an explicit reference is possible via a

component interface, e.g., the programming or configuration interface. Internal resources are

those resources used exclusively by the component, and which have no explicit reference via

a component interface.

For example, internal resources of an operating system usually comprise physical memory

space, I/O memory space, the set of processors the applications can run on, allocated

processor time for each processor (at least, when the operating system is a real-time operating

system), and interrupts. A resource commonly exported by an operating system is a “file”.

The operating system enforces an access control policy on the file. Internally, it uses memory

to export the file. Another exported resource exported by an operating system is time slices,

and the operating system enforces a scheduling policy (a resource management policy).

Internally, the operating system uses CPU time that itself has access to.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 15 of 59

3.2.3 Communication object

A communication object is an exported resource provided by a component. It can be shared

between components. Communication objects are used by components to communicate

between them.

3.2.4 Security policy

A security policy is a set of rules to be enforced by a component. Examples of security

policies are:

- Resource allocation policy (Section 3.2.5)

- Access control policy (Section 3.2.6)

- Information flow policy (Section 3.2.7)

In our context, all three policies describe rules for granting or denying some “treatment” of

exported resources, with “treatment” of a resource standing for to be able to eventually

“read”, “write”, or “execute” the exported resource. The distinction between the resource

allocation policy and the access control policy is which interface the rules for access are

applied on.

The term information flow policy has more than one usage, the most simple one is to use it as

an umbrella term for “access control policy” and “resource allocation policy” combined. For

most components, in the scope of this document, we adopt this simple interpretation, making

these three security policies closely related. We decided not to merge the three policies in

order to allow a precise characterization of components where needed later. Moreover, a more

“complicated” usage of the term “information flow policy” will be encountered when the

separation kernel is described (Section 3.2.13).

An operation might be governed by several policies: we consider both operations of “opening

a file” and “reading/writing” to be involving access control to the file, however, the operation,

depending on the implementation, could also be governed by a “resource allocation policy”

such as the exclusive ownership of memory for the file descriptor to the component opening

it. Similarly, the virtualization of a network component could comprise “access control” to

Single Root I/O virtual functions and “resource allocation” if some of the virtual functions,

after proper reinitialization, are assigned to different components during different periods of a

time cycle (say 20 milliseconds each 100 milliseconds).

Note: We have observed that making the distinction between resource allocation policy and

access control policy mixes concerns of interface (functional requirements) into policy

requirements. However, the interface available to an attacker defines the possible malicious

operations of the attacker. Thus, making the distinction allows to differentiate attacks based

on resource depletion (attacking the resource allocation policy defined below) and attacks

against confidentiality/integrity of the resources (attacks against the access control policy

defined below).

A security policy can be dependent on system state, yet be bounded. For example, writing to a

file may depend on that, statically, access to the file is allowed, and that, dynamically, a file

descriptor is available after “opening” the file. Sometimes, in a usage that, after discussion,

we do not follow in this document, the term “resource allocation” is used for initial

establishment of a dynamic state, e.g. “opening a file” would be considered “resource

allocation”, whereas “reading/writing” the file would be governed by access control. For this

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 16 of 59

document, as outlined above, we consider both operations of “opening a file” and

“reading/writing” to be involving access control to the file.

When describing the protection of assets in the system, one can assume that every action that

is eventually possible by configuration will be used by an attacker, even if some initialization

of the state is needed. Thus, the static configuration describes a bound for the behaviour that

is dynamically possible. Section 4.3 further discusses system configuration.

3.2.5 Resource allocation policy

A component‟s resource allocation policy acts on the component‟s interface used to manage

exported resources. This interface is characterized by that a request for a resource is made

without knowing in advance how the resource is “named” or “addressed”. The request is

made for a quantity of the resource, and then the component decides whether to grant or deny

the request to export that resource in the desired quantity. The resource allocation policy

defines which of the component‟s resources are kept internal to the component and which are

exported to which other components. When a resource is exported to more than one other

component, the resource is shared. A resource allocation policy can be in the “space” domain,

when resources can be used simultaneously but are kept in different spatial (e.g. memory)

locations or in the “time” domain, where resources are used sequentially, but kept in different

time slices. An example for resource allocation in the “time” domain is the allocation of a

CPU to a component for a limited period of time.

3.2.6 Access control policy

A component‟s access control policy acts on the component‟s interface used to manage

exported resources. In this respect it is identical to the aforementioned resource allocation

policy (Section 3.2.5). However, the interface is characterized by that a request to the resource

includes an explicit reference to the resource (e.g. the resource‟s name or a numerical

identifier). Identically to the aforementioned resource allocation policy (Section 3.2.5), the

access control policy defines which of the component‟s resources are kept internal to the

component and which are exported to which other components. When a resource is exported

to more than one other component, the resource is shared. The access control policy is in the

“space” domain.

Note: as observed in Section 3.2.4, the resource allocation policy (Section 3.2.5) and the

access control policy (this section) differ in the interface offered on the exported resources

and they differ in the threats (exhaustion versus violation of integrity/confidentiality). For

resource sharing, the threats a shared resource is exposed to are different: a resource shared

under a resource allocation policy, e.g. a memory allocator that can be used by different

components, can be exhausted (“denial of service”), but a resource shared by an access

control policy, e.g. a piece of memory at a fixed address that is marked as accessible to

several components, cannot.

3.2.7 Information flow policy

The term information flow policy has more than one usage,

(1) the most simple one is to use it as an umbrella term for “access control policy” and

“resource allocation policy” combined or

(2) to express policies where pieces of information (messages) are written to one or

several communication objects(s) by a sender and subsequently these messages are

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 17 of 59

read from the communication object(s) by a receiver. Such policies may include rules

based

(2a) on the sender/receiver of the messages and/or

(2b) on the content of these messages.

Note: for most components, interpretation (1) is used. (2a) will be used in the context of a

separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of security

gateway (discussed as an example in Section 3.3). An information flow policy in the sense of

(2a) is either explicit, based on identities of components between which information flow is

allowed, or implicit, as unambiguously defined by the resource allocation policy and access

control policy.

3.2.8 Configuration

The configuration of a component contains the component‟s identity, and it defines any

security policy (access control policy, resource allocation policy, information flow policy)

enforced by the component. An information flow policy configuration also may be implicitly

configured by resource allocation policy configuration and access control policy

configuration.

3.2.9 Application

An application is one or more executable(s).

3.2.10 Domain

A domain (or “security domain”) is a unit of separation created and maintained by any MILS

component, for example by an application (Section 3.2.9), a function (Section 3.2.12), or the

MILS core (Section 3.2.14), which is enforcing a security policy on exported resources.

In particular, a domain is a “space” domain, if exported resources can be used simultaneously

but are kept in different spatial (e.g. memory) locations. A domain is a “time” domain, if

exported resources are used sequentially, but kept in different time slices.

3.2.11 Partition

A partition is a component that serves to encapsulate application(s) and/or data. Thus, the

content of a partition is application(s) and possibly other data. A partition is a unit of

separation with respect to

 resource allocation in the space and time domains,

 an access control policy and an information flow policy in the space domain.

In a MILS system, partitions are created and maintained by the MILS core (see definitions

below) based on security policies defined for a given use-case.

Note: this bottom-up definition of a partition has a different emphasis than the previous top-

down characterization given in Section 3.1.4, but does not contradict it.

A partition is a domain, but a domain is not necessarily a partition.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 18 of 59

3.2.12 Function

A function is a logical group of partitions for achieving common objectives. The implied

partitions may be connected using information flows.

3.2.13 Separation kernel

A separation kernel is a component that enforces a resource allocation policy and an access

control policy on its exported resources (partition, resources allocated to a partition,

communication objects). Communication objects allow for controlled information flow

between partitions. A separation kernel may have an explicit or an implicit information flow

policy on its partitions (see definition of information flow policy for details).

The separation kernel uses separation-supporting hardware to provide the separation between

partitions in a MILS core.

Examples:

 A resource allocation policy might assign a certain amount of time, for example 20

milliseconds periodically every 100 milliseconds, of the resource CPU access to a

certain partition, for example partition number 5.

 An access control policy might assign communication object C as writable to

partition A and readable to partition B, defining an implicit information flow policy

from A to B.

 An explicit information flow policy for a separation kernel could consist of the

specification that only partition P via whatever interface may send information to

partition Q.

3.2.14 MILS core

By MILS core we refer to the minimal set of components needed for separation of partitions

on a MILS platform. The only goal of the MILS core is to provide separated partitions with

controlled information flow between them. Thus, the MILS core provides the primary security

functionality of a MILS system. The MILS core (Figure 2) consists of components that

implement and enforce the separation both in space and time.

3.2.15 MILS platform

A MILS platform consists of the MILS core and optional software and/or hardware

components that provide secondary security functionalities and do not contribute to the

enforcing of separation.

3.2.16 MILS system

A MILS system is a concrete deployment of a MILS platform with a defined set of partitions.

3.2.17 MLS system

An MLS system is a system with different security requirements for different components. It

can be implemented by a MILS system.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 19 of 59

3.2.18 Terminology rationale

The term component is a standard term for the description of software architectures (see also

Section 2.4). On what can be a component we note that some presentations of MILS systems

such as [UV05] come with a fixed number of layers. Others argue that, in principle,

components themselves can contain MILS systems, allowing recursive compositions [Del12a,

p. 56].

Resource: In software interface documentation, when specifying a component, we can

describe what resources the component provides and what resources the component uses

[CBB+03, p. 229]. In [SKPP, p. 21] resources that are provided by the component are called

“external resources” whereas resources that are required by the component are called “internal

resources”. From a resource usage perspective, resources can either be hardware or resources

provided by other components as in [Tan07, p. 432] where “a resource can be a hardware

device (e.g. tape drive) or a piece of information (e.g. a locked record in a database)” or “Any

element of a data processing system needed to perform required operations; for example:

storage devices, input/output units, one or more processing units, data files, and programs.”

[ANS01]. The use of “resource” for describing hardware is also established in virtualization

[PG74]. We have not found a stand-alone definition of the term “resource” in the MILS

literature, but for separation kernels the hardware notion it appears close to [AFHOT06, p. 3]

where the term is not explicitly defined. In the context of a description of a separation kernel,

the term “shared resources” is expanded to “microprocessors, system registers etc.” whereas

the “piece of information” aspect appears to be addressed in [Rus08a, p. 10].

In [Rus08a], our resource allocation policy, access control policy, and information flow

policy are equated to a “resource sharing” + (information flow) “policy”. Also [SKPP] does

not have any notion of an access control policy. We prefer to keep the three terms, because it

simplifies mapping to [CC12], where the resource allocation policy can be mapped to the

functional requirement class FRU_RSA, the access control policy can be mapped to

FDP_ACF, and the information flow policy can be mapped to FDP_IFF. That resource

sharing implies information flows and that conversely resource sharing analysis supports

information flow analysis is widely accepted [Kem83, AFOB+12]. Resource allocation

policies versus access control list-based policies, e.g. the need to maintain resource exhaustion

quantifiers to enforce resource allocation quotas, are discussed in [Ste91, p. 228].

Our definition of application is based on [ANS01]. It avoids any notion of user, as

mentioning the term “user” at an early stage of the introduction could create the

misunderstanding that users are limited to human beings using the system interactively.

The use of the term domain for environments where a security policy is imposed by a

component can be found, for example, in [Lam71]. The same paper also shows (p. 428)

examples for hardware-imposed domains (supervisor and software states) and software (user

environments in an operating system).

Our definition of partition is close to [AFHOT06, p. 2] where a partition is defined as “a

collection of data objects, code and system resources”. [SKPP, p. 20] points out that the term

is motivated from its use in mathematics, where a partition of a set A is used to describe the

split of a set into disjoint subsets, so that each element of A belongs to exactly one of the

subsets.

Our definition of function (logical group of partitions for achieving common objectives) is

what in [DO-297] is called an application.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 20 of 59

MILS platform + partitions content = MILS system: this is emulated after IMA, where an

IMA platform + partitions give an IMA system.

MLS system: We identify a MLS system with a system having different security requirements

for different components. In safety, the term “mixed criticality” is often used for this. As

discussed in Section 2.2, historically, there exists also a more restrictive usage, where a MLS

system has a transitive security policy [BDR+08]. In line with many others (e.g. [DCS+04,

LRP+11]), we do not adopt that more strict definition.

3.3 Example of a MILS system

In this section the terminology of Section 3.2 is applied to a concrete MILS system described

in [MPT+12]. The paper explains a gateway architecture implemented using the MILS

principles for the purpose of controlling the content of the information flow between the

hosted applications. Those applications process data of different security classification

logically grouped into a green domain and a brown domain. As foundation, the gateway uses

a separation kernel, which provides the functionality of partitioning and controlled non-

bypassable information flow. Thus, the separation kernel applies a Resource Allocation Policy

and maintains an Access Control Policy and a basic Information Flow Policy, defining the

partitions that are allowed to communicate among each other. However, this Information

Flow Policy of the separation kernel is not able to ensure additional constraints on content of

the data that is transferred using the communication objects. The gateway enhances this

Information Flow Policy by this capability using the available foundations.

Figure 5: Gateway architecture of a MILS system [MPT+12, Figure 3].

 Applying a black-box view from the outside onto the system in Figure 5, the system

appears as a MLS system, since it processes data belonging to the green domain and

data belonging to the brown domain concurrently.

 Having a closer look into the architecture of the system, the system is a MILS system,

since it uses a MILS platform (the Separation Kernel-based Operating System) and

partitions identified by the blue dotted lines in Figure 5.

 The MILS platform comprises the Separation Kernel-based Operating System (the

MILS core) plus the Auditing Module mentioned in [MPT+12, Section II.D].

 The MILS core is the Separation Kernel-based Operation System [MPT+12, Section

II.D] plus some unspecified hardware (that is not further described in [MPT+12]) but

used and managed by this separation kernel.

 As Separation Kernel the example uses PikeOS [MPT+12, Section II.D]. This

separation kernel enforces the Resource Allocation Policy and Access Control Policy

to form partitions (the blue dotted boxes) based on the available resources, such as

memory, CPU cores and the program binaries. The separation kernel exports some of

those resources for building communication objects. By controlling the accesses of the

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 21 of 59

partitions to those exported resources the separation kernel creates and applies a basic

Information Flow Policy. Examples for exported resources are: ARINC 653 ports or

file providers [MPT+12, Section IV.C].

 Partitions are provided by the separation kernel. The gateway relies on this crucial

element for implementing its function.

 Within the partitions the example executes several Applications, which is the content

of the six blue dotted boxes in Figure 5. The paper specifies applications running

within the “Gateway Outbound Partition” and within the “Gateway Inbound

Partition”. Other applications are the Brown Applications and Green Applications.

 As components the modules of [MPT+12, Section IV.II], such as the modules with

specific functionality for filtering packets (named “Viewer Module”), reading/writing

filtered packets across partitions (“Border-crossing Module”) or making decisions on

packet routing (“Routing Module”) can be identified. The paper does not explicitly

identify hardware; however it is assumed that the system contains at least a CPU,

which again is a (hardware) component.

 The purpose of the gateway is to enhance the basic Information Flow Policy of the

Separation Kernel by the ability of controlling the content of the information flow

(unidirectionally) [MPT+12, Section IV.I] and [MPT+12, Section V]. For achieving

this logical function, the gateway uses the collaboration of two partitions: the Gateway

Outbound Partition and the Gateway Inbound Partition. Other functions are given by

the applications located inside the two security domains, which “can comprise one or

more partitions” [MPT+12, Section IV]. Functions are depicted as a black solid boxes

in Figure 5.

 The system contains configurations of different applications:

o The configuration of the gateway for defining the enhanced Information Flow

Policy.

o The configuration of the separation kernel for defining the Resource Allocation

Policy and the Access Control Policy for the gateway components [MPT+12,

Section IV.II]. [MPT+12, Section IV.III] forces the system integration to

provide “enough buffer space” for the exported communication objects.

[MPT+12, Section IV.IV] discusses the scheduling configuration of the

system. Non-bypassability of the gateway‟s enhanced Information Flow Policy

is ensured by the separation kernel.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 22 of 59

Chapter 4 MILS main components

The following characterization of components does not include all MILS components, but

rather discusses the security properties of MILS components that are common to MILS

platforms and occur frequently. We begin with software components (Section 4.1), followed

by hardware components (Section 4.2) and discuss the configuration of MILS systems

(Section 4.3).

4.1 Software components

4.1.1 Separation kernel

A concise characterization of a “separation kernel” already has been given in Section 3.2.13.

In this section, we look at the “separation kernel” as a MILS software component.

4.1.1.1 Services

4.1.1.1.1 Pictorial view

Figure 6: Generic picture of a separation kernel with several partitions.

The pictorial view is the most commonly found way to describe the services of a separation

kernel. Figure 6 shows that each partition is under control of the separation kernel, in the

sense that the separation kernel enforces the system configuration upon all their

communication and resource requests in a non-bypassable way, while it is not inspecting or

protecting what happens within the partition itself. For example, if a partition is authorized to

communicate over a network and to use the HTTP protocol, the SK will not protect the

application against infection by a virus introduced into the HTTP payload.

4.1.1.1.2 Classical approach

In some of the early work such as [BBH+05, UV05, AFHOT06] a strong emphasis on the

implementation of information flow and its absence has been taken.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 23 of 59

“The only tasks assigned to a MILS separation kernel are the partitioning of processes and

failure containment. Consequently, we can represent the safety and security requirements for

a separation kernel by four simple foundational policies:

• Data Isolation: Information in a partition is accessible only by code running in that

partition. Private data remains private.

• Control of Information Flow: Information flow among partitions is from an authenticated

source to authenticated recipients. The source of information is authenticated to the recipient.

Information goes only where intended.

• Resource Sanitization: Usage of the microprocessor and other hardware, such as

networking hardware, cannot be used as covert channels to leak information.

• Fault Isolation: A failure in one partition is prohibited from cascading to any other

partition. Failure detection, containment, and recovery are performed locally” [UV05].

Similar formulations are found in an early draft of an SKPP predecessor (defining “data

isolation”, “control of information flow”, “resource sanitization”) [WOM02].

4.1.1.1.3 Policy-based description

For convenience, we repeat our definition from Section 3.2.13.

“A separation kernel is a component that enforces a resource allocation policy and an access

control policy on its exported resources (partition, resources allocated to a partition,

communication objects). Communication objects allow for controlled information flow

between partitions. A separation kernel may have an explicit or an implicit information flow

policy on its partitions (see definition of information flow policy for details).

The separation kernel uses separation-supporting hardware to provide the separation

between partitions in a MILS core.”

We think this description with an emphasis on policies fits better in a systematic exposition. A

description based on policies has also been adopted in the “MILS constitution” [Rus08a],

another attempt to systematically explain MILS.

This characterization is isomorphic to the characterization of Section 4.1.1.1.2: “resource

sanitization” and “damage limitation policies” are implied by the requirement of complete

information flow control. “Data isolation” is the default of the access control policy, resource

allocation policy and information flow policy on internal resources, whereas “control of

information flow” addresses the access control policy, resource allocation policy and

information flow policy on external resources.

4.1.1.1.4 Description of functionality grouped according to where separation is made

(space/time)

In the following paragraphs, we present the approach taken in [TBF13] then we comment it

versus previous sections (i.e., classical approach and policy-based description).

Separation in space: Applications can be hosted in different partitions. Partitions get

assigned memory resources (i.e. space). In this way, the separation kernel enforces its

configuration: that is, access control on partition content, per-partition provision of physical

memory space and I/O memory space. By confining applications into partitions, the

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 24 of 59

separation kernel enforces that these applications can affect neither applications in other

partitions nor the separation kernel itself.

Separation in time: Applications can be hosted in different partitions. Partitions get assigned

CPU time (i.e. time windows). In this way, the separation kernel enforces its configuration:

that is the allocation of a predefined amount of the CPUs’ time to partitions. Several

partitions can share the same time window. On a partition switch CPUs will be reused. The

separation kernel enforces that no residual information is in CPU registers or memory caches

according to the configuration. The separation kernel assigns a priority to every subject to

allow priority based scheduling within one time window.

Provision and management of communication objects: Applications hosted in different

partitions can get assigned a set of communication objects under control of the separation

kernel. A communication object is an object exposed to one or multiple partitions with access

rights as defined in the configuration data, thus allowing communication between partitions.

Separation kernel self-protection and accuracy of security functionality: Separation kernel

self-protection and accuracy of functionality supports reaching and keeping a safe and secure

state of the MILS system. The separation kernel statically assigns automatic invocations of

error handling functions to recover from or respond to error conditions.

Again, this characterization is isomorphic to the characterization of Section 4.1.1.1.2 and

Section 4.1.1.1.3. Like the one of Section 4.1.1.1.2, it is optimized to be stand-alone and

concrete. It splits up the data isolation of Section 4.1.1.1.2 of into “separation in time” and

“separation in space”. The “resource sanitization” of Section 4.1.1.1.2 is subsumed under

“separation in time”. “Control of information flow” is represented by “provision and

management of communication objects”. “Fault isolation” is subsumed under “separation in

space” and “self-protection”.

Also in the SKPP, while claimed as security functional requirements, “fault containment” and

“resource sanitization” are not listed explicitly in the introductory high-level characterization

of “core functional requirements” [SKPP, p. 25].

4.1.1.1.5 Virtualization services on top of separation kernels

Virtualization is not a necessary part of separation kernels. However, because many

separation kernel deployments provide support for virtualization services, the concept is

described here. We discuss these concepts in form of tables (Table 2 and Table 3),

juxtaposing a generic description of virtualization and the analogous or differing complement

in a separation kernel.

A virtual machine (VM) consists of software that imitates a physical hardware machine. The

virtual machine will for example give the illusion of a physical CPU and physical memory to

an operating system that is running in it. An operating system running in a virtualization

environment is called “guest”. In the MILS context, a virtualized operating system is a

special case of an application (the term “application” was defined in Section 3.2.9).

A virtual machine monitor (VMM), also called a “host” (for type 2 VMMs) or “hypervisor”

(for type 1 VMMs, see Table 2 for type 1 and 2 explanation), is the software managing virtual

machines.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 25 of 59

Requirements:

Table 2 lists virtualization requirements in general and their fulfilment or non-fulfilment by a

MILS separation kernel.

Virtualization Requirement in General Virtualization Requirement Compliance

in a MILS Separation Kernel

An operating system running on a VMM is

characterized by:

(1) the resource control property, that the

VMM is in complete control of system

resources, [PG74]

Concerning (1), the resource control

property: In MILS systems, the resource

control property is implemented by the

separation kernel via its security policies.

An operating system running on a VMM is

characterized by:

(2) the sufficiency property, that a VMM

provides an environment for the operating

system which is sufficient for running it.

Concerning (2), the sufficiency property: The

sufficiency property means that the API

provided by a MILS system to its

applications does not have to provide the

same API as in virtualization of a machine,

e.g. for a MILS system it is sufficient to

provide communication channels instead of,

for example, a network interface, but it need

not necessarily provide a full replica of

another machine. In a VMM, the API is the

full CPU instruction set. When under a

VMM, a VM attempts to execute an

instruction that only runs in supervisor mode

of CPU, VMM intercepts this attempt and

VMM tries to emulate the instruction as

faithfully as possible. In a separation kernel,

when an application in a partition executes

an instruction that only runs in supervisor

mode, the SK traps it, and usually its

execution is rejected. Instead, the separation

kernel offers explicit additional interfaces to

allow partitions to do certain things (e.g.

create new thread within a partition, use a

new address space within a partition, access a

shared resource etc.). The main difference

would be that VMM tries to create virtual

environment but SK does not.

An operating system running on a VMM is

characterized by:

(3) the isolation property, that is applications

running in different VMs do not interfere

with each other

Concerning (3), the isolation property: this is

provided by the fact that the separation

kernel enforces temporal and spatial

separation properties on applications.

An operating systems running on a VMM is Concerning (4), the efficiency property:

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 26 of 59

Virtualization Requirement in General Virtualization Requirement Compliance

in a MILS Separation Kernel

characterized by:

(4) the efficiency property that programs run

on VMM with only minor decreases in speed

[PG74]

While, in practice, the efficiency property is

probably fulfilled by most MILS systems, the

emphasis is less on good average application

performance but rather on guaranteed real-

time worst case execution time bounds.

(5) While virtualization has traditionally

been focusing on the isolation of virtual

machines hosted by the same hardware

platform, controlled resource sharing, such as

for example a common storage, can also be a

desired feature [Kar05].

Concerning (5) controlled resource sharing:

it is well supported by communication

objects.

Table 2: Virtualization requirements: in general and their compliance with MILS SK

(Note: instead of the sufficiency property and isolation property [PG74] gives the stronger

equivalence property, that a VMM provides an environment for programs which is

essentially identical with the original machine, except for timing effects. Our definition is

broader to allow for paravirtualization, see below.)

Implementation:

Table 3 lists virtualization implementation characteristics in general and their applicability or

non-applicability in a MILS separation kernel.

Virtualization Implementation

Characteristics (of an Operating System)

in General

Virtualization Implementation

Characteristics (of a MILS application) in

a MILS Separation Kernel

(1) Since [Gol73], it is customary to

distinguish between Type 1 VMMs that run

on bare-metal hardware (e.g. Microsoft‟s

Hyper-V, IBM‟s System z Processor

Resource/System Manager (PR/SM), bare-

metal version of VMWare) and Type 2

VMMs that run on top of another operating

system (e.g. VirtualBox, user-space version

of VMWare). An extensive list of VMMs

and their classification can be found at

[Wik13].

Concerning (1), the VMM type: MILS

platforms are always of Type 1. Contrary to

virtualization techniques where

safety/security requirements do not matter, in

MILS systems, there is an additional

emphasis on deployability in domains with

safety/security requirements, e.g. that a

MILS system, is “NEAT”, which is not

necessary for VMMs in general. For

example, if safety/security requirements are

not a primary concern, VMMs are not only

provided by stand-alone systems but also

running on COTS operating systems (e.g. a

VirtualBox running a Windows on a Linux

or vice-versa).

(2) A virtual machine can be run as an

emulator, intercepting all instructions from

Concerning (2), running a virtual machine as

emulation: while the exception, this can be

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 27 of 59

Virtualization Implementation

Characteristics (of an Operating System)

in General

Virtualization Implementation

Characteristics (of a MILS application) in

a MILS Separation Kernel

the operating system running on it, this

comes at a high performance price [PG74].

done by a separation kernel, e.g. to run a

legacy system designed for slower hardware,

so that the performance cost is acceptable.

(3) Alternative to (2), a virtual machine can

be run in a way that it runs an operating

system directly on a CPU and the VMM only

intercepts the operating system when needed,

that is when invoked either by a trap coming

from the application or from elsewhere (e.g.

a system timer interrupt).

Concerning (3), running a virtual machine

directly on hardware: also MILS applications

can be run by a separation kernel directly on

a CPU, and the separation kernel intercepts

the MILS application only when certain traps

arrive (e.g. a system timer interrupt).

(4) Alternative to (2) and (3), hardware

virtualization support (also known as full-

virtualisation) introduced by AMD and Intel

in the mid-2000s ensures that all instructions

that need to be intercepted can be trapped

and it increases efficiency, by providing

support for per-VM page tables.

Concerning (4), hardware support: a

separation kernel can make good use of

hardware support for virtualization when the

running application is an operating system,

simplifying page table management.

(5) Paravirtualization is a technique allowing

to adapt the VM operating system and, if

needed, the applications running on such VM

to avoid instructions that are either inefficient

or, on some architectures cannot be trapped

(see “Note on imperfect virtualization

support on hardware” below). Recall that, as

applications can comprise virtualized

operating systems, invocations of

instructions to be run in supervisor mode is

frequent. Paravirtualization replaces these

supervisor mode instructions.

Paravirtualization allows applications to run

more efficiently or allows running

applications that otherwise would not be

running at all.

Concerning (5), paravirtualization: the

technique of paravirtualization also can be

applied to applications running within a

partition of a separation kernel, e.g. a

paravirtualized Linux operating system, that,

in the MILS context, is just an application.

The paravirtualization technique may enable

applications otherwise not runnable on the

separation kernel to run on the separation

kernel, or make them more performant. From

a security point of view, paravirtualization

does not add any value to the security

properties of a MILS system but it introduces

a threat vector of attacks, which needs to be

taken into account when a MILS system is

configured.

Table 3: Virtualization implementation: in general and compliance with MILS SK

Note on imperfect virtualization support on hardware: Most modern CPUs enable to

restrict the privileges of untrusted applications (“supervisor” versus “user” mode). This

feature to restrict user applications to “user” mode is fundamental to general-purpose

operating system design [Tan07, p. 1]. Integrity is a design goal of general-purpose operating

systems and their CPUs, but the complete control of information flow channels is not

necessarily a design goal neither for general-purpose operating systems nor CPUs they run

on.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 28 of 59

For example, [AA06, AFOB+12 (p. 153), RI00] and others have noted that, on some

ia32/ia64 architectures, such as the Pentium, some instructions expose privileged state (such

as reading out the global descriptor tables). Information flow can be mitigated if data, e.g. in

global descriptor tables, is kept static. A second type of problem occurs when user

applications are simply denied operations, but the CPU does not trigger any trap for the VMM

to handle [AFOB+12, p. 149] also discusses similar caveats for another processor, the Cell

Broadband Engine Architecture (CBEA) processor developed by Sony, Toshiba, and IBM

that consists of a POWER architecture core and coprocessors elements for e.g. 3D multimedia

acceleration.

4.1.1.2 Architecture

A separation kernel uses the interfaces of the hardware components it has been assigned in the

MILS system in order to provide the services described in Section 4.1.1.1, enforcing its

security policies according to configuration.

4.1.1.3 Assumptions on the environment

Hardware components are used by the separation kernel function as specified and provide

policy enforcement as specified.

4.1.2 Generic device abstraction component

A generic device abstraction component is a MILS component having the purpose of

abstracting the access mechanism of a special purpose hardware device to a defined set of

connected partitions. In the simplest realization, this component mediates accesses from one

partition to one hardware device only. The connected partition uses as interface to the

component a standardized interface. More difficult realizations of this component allow

connecting more than one partition to the component. This form requires a software-based

virtualization strategy of the hardware component‟s functionality, which is supposed to be

shared and impossible to be virtualized in hardware (e.g. by SR-IOV devices). In other words,

all functionality that is not virtualizable by hardware shall be virtualized by software to

provide the sharing functionality. As an example, communication based on an ethernet

protocol optimized for avionics reliability requirements, Avionics Full Duplex Switched

Ethernet (AFDX) requires sometimes to spread payload to multiple partitions. This is a

functionality usually not supported by common (self-virtualizing) network hardware, since

those devices can route data to one partition, only. Thus, the multiplication and distribution of

payload needs to be done in software.

4.1.2.1 Services

Functionally correct implementation of the abstraction mechanism to the hardware devices.

Functionally correct implementation of the separation mechanism (resource allocation policy

and/or access control policy) if more than one device is using this instance of the component.

4.1.2.2 Architecture

Other partitions interact with this component using the abstraction mechanism, it is the

service provided by the component. For example, you have the POSIX standard interface (e.g.

“read”, “write”) on the one the side and real hardware register accesses on the other side. By

this, the Generic Device Abstraction Component abstracts the accesses. This component

interacts with other component, i.e. hardware devices via their interfaces.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 29 of 59

4.1.2.3 Assumptions on the environment

A separation kernel is available. The hardware device‟s interface to the component managing

and abstracting it is not accessed directly by another component.

4.1.3 Console system component

Historically a console is a workstation at which a human operator can control a computer and

interact with one program in a text-oriented (line or page) or graphical fashion. When

interaction was simple and diagnostics means were primitive, a program would issue

messages to the console, and the operator would grab the attention of the program from time

to time. At the point in time the operator inputs commands, the program will usually answer

by resuming its flow of messages. Progress in computing made it desirable to be able to

address multiple programs at once, giving rise to a separation of the concept of a message

console and that of the console or terminal used by an operator, and to the concept of

multiplexing multiple virtual consoles over one physical one (or even within multiple layers

of virtual consoles, in a tunnelling fashion).

The message console concept will be addressed by the audit system component (see Section

4.1.6). Here we focus on the console as a channel for interaction between an operator and

programs. Note that on systems where users in the computer sense are not tied to human

beings, a console is often absent, or hidden and used mainly for diagnostics and maintenance.

Therefore, a console system component connects applications to human interface devices, and

thus is an instance of the Generic Device Abstraction Component.

If a console presents one program at a time, or several programs that belong to one security

domain, then there will be no ambiguity for the human operator regarding the security

classification. It is up to the human operator to ensure that he is controlling the right partition.

If a console presents an operator with multiple security domains at the same time, then there

has to be a non-bypassable mechanism such that the operator can always tell which domain

he/she is interacting with.

It typically has one of the following forms:

- Physical, including specific displays, input devices [RD07, Del10]. In [Del12a], in

addition to a specific monitor and console, a USB interface is also considered.

Nordbotten and Gjertsen built a system where a console manager and a display

manager are each encapsulated into a partition [NG12].

- Virtual, providing one console channel to one program or to a group of programs

belonging to a single security domain, but running itself within some form of transport

that can multiplex multiple such virtual consoles. Such transport can route to a local

physical console or to something else, say, over a network connection offering

adequate security properties.

4.1.3.1 Services

Input, output (e.g. display) streams

Multiplexing of streams

A physical console, in addition to a display device and human-machine input devices, can

provide physical connection ports for external devices. Unlike external ports that would be

associated with the computer itself, these external ports are meant to be associated with the

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 30 of 59

current operator. HMI devices such as displays, controllers, audio devices, usually are of this

nature and are simply managed by making them available to the program or programs of the

current operator. If the console can be switched between operators, then a policy must be

devised for switching these devices as well, or not.

Some devices can be connected to a console, that are themselves concerned with multi-

domain security. An example would be a mass-storage device through the file system

component. Policies that make sense include:

- Mapping the device to the computer rather than the console, e.g. in the case of a mass-

storage device, honouring file permissions and ownerships inside the regular file

system component.

- Mapping the entire block device to the programs of the current operator and letting

them access arbitrary locations in the device, which now cannot be trusted by other

programs.

4.1.3.2 Architecture

Data and control streams are separated [Del12a, p. 48], and passed from its clients to

hardware for input and output. If not all channels are dedicated, then resources are scheduled

for reuse (“multiplexing”). The architecture avoids information flow when a resource is

reallocated.

A console capable of serving multiple security domains at the same time can disambiguate

which one or ones are presented to the user by:

- Reserving a trusted portion of the display for telling what is displayed on the rest of

the display and allowing the selection thereof. This must be “always invoked” in a

very literal sense, meaning that a full-screen application cannot be supported, or an

auxiliary display must be added.

- Providing a “secure access key” that cannot be overridden by applications, that lets the

user invoke a trusted status/selection panel that is overlaid on applications‟ displays.

One must be very careful that operators are trained to ignore what they see if they are

not positive that they invoked the trusted status/selection panel, as a malicious

application could impersonate that panel, effectively realizing a Trojan horse, since

applications have access to the display area where the trusted panel is shown. This also

requires a guaranteed response time for showing the trusted status/selection panel after

pressing the secure access key, otherwise there would still be a temporary opening for

a Trojan horse.

4.1.3.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the console

component.

4.1.4 Network system component

A network system component is a MILS component having the tasks (1) of abstracting the

used network infrastructure and topology connecting the MILS system with other platform-

external systems and (2) of abstracting or hiding the physical location of a partition‟s

communication partners. Usually the network system component also (3) abstracts the access

mechanism to the network device and, thus, is a special purpose instantiation of the Generic

Device Abstraction Component. Note that a network system component can be very complex

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 31 of 59

and may by implemented by multiple partitions running encapsulated sub-functions for

handling this complexity. For example, partition A could contain TCP/IP stack A’, partition B

could contain TCP/IP stack B’ and partition C could make the decision to route packets either

through A or B.

For fulfilling task (1), the abstraction of the used network infrastructure and topology, the

component has to implement the used network infrastructure protocols. The border between

application-level protocols and infrastructure protocols is usually fluent, depending on the

required means of communication. However, as example one could draw the border between

layer 4 and layer 5 of the OSI model, i.e. that the network system component implements the

protocol stack up to UDP, TCP, … and leaves the implementation of higher layers up to the

connected partition. The network system component is mentioned in [UV05], with e.g.

implementing CORBA, DDS, HTTP, SOAP. The task of the network system component on

the ingress data traffic is to analyse the routing information and to route the ingress data to the

associated connected partition correctly. This may or may not include reassembling of the

data stream, depending if the connected partitions require lower protocol stack levels for their

purposes or not. However, for full abstraction of the network infrastructure, the network

system component should reassemble the data stream and provide only the application-level

payload to the connected partitions. For the egress traffic, the partition provides the

application-level payload to the network system component, which generates valid data

network packets and transmits them to the correct partition (if on the same platform) or

transmits them via the network link.

Task (2), the abstraction of the communication partner‟s physical location, is another task

performed by the network system component. From the application point of view

encapsulated in the boundaries of its partition, the application does not know whether the

communication partner is located on the same hardware platform or platform-externally. The

task of the network system component is to determine the location of the communication

partner and the correct routing of the data stream.

Task (3), the abstraction of the device interaction (i.e. the driver), applies only if the MILS

system is actually connected to a network. To this task also applies to virtualize the network

device to allow network sharing among the connected partitions.

By implementing all three tasks, the network component is required to ensure separation of

data stream, in particular if one instance of this component handles data streams of different

criticality (thus the component is MLS). Having such an MLS implementation may also

require considerations on load-balancing and Quality of Service on the network link. For

reducing complexity, the system designer should consider to implement multiple instances of

network system components handling data of only one criticality (SLS components).

However, this is only feasible if the system possesses multiple network devices or the network

device is capable to support hardware virtualization technology.

For ensuring separation, it is also conceivable to use other MILS components, such as crypto

components, which apply cryptographic methods to the data stream beforehand sending it to

the network component.

Similar proposals for a network protocol component occur as MILS network system

protection profile (MNSPP) [RD07, Del10, Del12a]. Other related work mentions a

Partitioning Communications System (PCS) [AFOB+12, Uch07] or MILS Message Router

(MMR) [AFOB+12, AFHOT06, ZSP+12]. The described functionality of those components

is similar to a subset of the network system component. However, it is difficult to draw a clear

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 32 of 59

line between the functionality of the PCS compared to the one of the MMR. For avoiding

complexity in terminology, we find it more intelligible to use the network system component

to consolidate and cover the functionality of the PCS and the MMR.

4.1.4.1 Services

Functionally correct implementation of network infrastructure protocols.

Functionally correct implementation of the data routing to connected partitions including its

reassembling (if applicable) of ingress data traffic.

Functionally correct segmentation of egress data streams received by connected partitions.

Functionally correct implementation of the device interaction and its abstraction.

4.1.4.2 Architecture

The network system component is a component interacting with other partitions using it. If

the MILS system possesses network devices, the network system component interacts with a

subset of the device‟s interfaces.

4.1.4.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the network protocol

component.

4.1.5 File system component

A file system component is a MILS component and an instantiation of the Generic Device

Abstraction Component that implements file system services. It is described in [RAV07]. The

purpose of the File system component is the abstraction of the access mechanism and the

physical location of the block devices storing data permanently. For decoupling the physical

location of the storage, the component could use the services of the Network component. To

maintain the separation properties, the component has to ensure separation in a physical or

logical (or both) way:

- Physical Separation: by storing data of different partitions on different physical

locations of the storage volume (i.e. using the hard disk partitions) or on different

storage volumes.

- Logical Separation: by applying cryptographic methods (e.g. provided by a crypto

component) or special storage patterns using the same storage partition (e.g. gap

storage with different offsets, special file system formats, …).

4.1.5.1 Services

Functionally correct implementation of the applied separation mechanism to ensure data

separation of stored data.

Functionally correct implementation of the access mechanism to the device (i.e. driver), if the

storage device is located on the same hardware platform.

4.1.5.2 Architecture

The file system component is a component interacting with other partitions using it. If the

storage device is located remotely the file system component may interacts with other

components as well.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 33 of 59

4.1.5.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the file system

component.

4.1.6 Audit system component

An audit system component is a MILS component that implements audit services that can be

used by other components [Del12b, p. 24].

4.1.6.1 Services

Functionally correct implementation of audit system.

4.1.6.2 Architecture

The file audit component is an optional component interacting with other partitions using it.

The benefit of audit can be (1) to document that an entity has received a piece of information

(non-repudiation) and (2) to monitor the MILS system, e.g. for information flow policy

violations by components, (3) get event notifications from partitions to the audit system.

4.1.6.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the audit system

component.

The separation kernel supports auditing [Del12b, p. 24].

A messaging system is available [Del12b, p. 24].

The compilation of memory structures is supported [Del12b, p. 24].

The audit system is able to retrieve information about the origin of the audit information it is

supposed to store.

4.1.7 Generic application component

4.1.7.1 Services

The generic application component implements any functional service required by an

application.

4.1.7.2 Architecture

No statement can be made on the architecture of a generic application component. The system

integrator can choose to configure a generic application component so that it is confined to a

precise time-slot, limited memory and tightly controlled communication, so that it is not

needed to trust its developer of the application, even if he is malicious. This kind of

application is usually called “untrusted application”. In other scenarios, it may be meaningful

to give the application strong access to the system, and even trust it do enforce a security

policy for other applications, such as an information flow policy, e.g. when the application

acts as a downgrader. This application is usually called “trusted application”. A trusted

application can serve as guard to any application, whereas an untrusted application only can

serve as guard to applications that are even less trusted.

4.1.7.3 Assumptions on the environment

The generic application component may assume the existence of other components, e.g.

network component, other generic device abstraction component.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 34 of 59

4.2 Hardware components

4.2.1 Introduction

[SKPP] formulates hardware requirements for separation kernel in the non-standard class

“platform assurance” (APT). They are again discussed in [AFHOT06]. [AFOB+12] discuss

the security needs of separation kernels with regards to existing multicore architectures.

[Tri12] discusses in particular on the topic of hardware requirements for mixed-criticality

systems (safety and security) from the perspective of aviation computer systems and

formulates current research directions.

In general hardware requirements for MILS systems are dependent on the MILS architecture

itself and the external interfaces required by the system‟s functionality. If the MILS

architecture relies on a separation kernel as fundamental component for implementing the

separation and information flow property of MILS, the basic hardware requirements are

defined by the separation kernel. In general separation kernels rely on common hardware

protection units as the Memory Management Unit (MMU) and recently also Input/Output

MMUs (IOMMUs). In addition, separation kernels also use hardware timers.

Those units are essentially the only functionally indispensable hardware elements for a

separation kernel that are specified to be robust against attacks through illicit information

flows, i.e. internal partition interference or malicious flows by misusing external interfaces

(remote attacks). Any added hardware elements exist rather for in-depth defence, for added

safety against (random) hardware failures, or for robustness against physical local attacks

(mechanisms such as authenticated boot and OS code, storage for secrets, etc.).

4.2.2 Processing units

Processing units, such as processor cores or special purpose co-processor, are essential parts

of MILS systems. Processing cores are responsible for processing the software-based MILS

components by using other system resources. By following the control flow encoded in the

software component‟s programming code the cores are able to achieve the intended

component‟s objectives, usually by interacting with other hardware resources, such as

memory or devices. Even if the major purpose of processing units is their ability to execute

the binary code, they also have requirements with respect to spatial and temporal separation.

In particular this applies to the interaction with the memory hierarchy comprising of various

cache-levels and system‟s memory. However, it also applies to the internal processing flow of

the processing cores, which have to ensure separation, too.

During partition runtime especially challenging are concurrent memory and device accesses

of novel multicore processing platforms, due to the measureable interferences in access times

depending on the amount of active cores [NP12]. During partition switch for the purpose of

ensuring spatial and temporal isolation software (usually the separation kernel) has to ensure

the proper sanitization of the (shared) resources used during processing the control flow. This

includes the flush of core-internal pipelines or caches to prevent cache attacks [YF13,

SBY+13].

One important mechanism for ensuring spatial and time separation is the provision of

different execution modes for commands processed by the processing units. For example

changing critical configuration of other hardware component, like MMUs settings, needs to

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 35 of 59

be restricted in a way that only privileged software, e.g. the SK can execute the commands for

modifying those settings.

4.2.3 Memory Management Units (MMUs)

MMUs translate virtual addresses used by the processors into physical addresses required for

interacting with the resource memory. In general this component can also be used for

protecting certain memory area from processor accesses, it thus enforces an access control

policy. Dependent on the architecture of the MMU and its way to maintain the translation

tables, the MMU can be configured in a static or dynamic way:

- Static means that all partition applications have static entries in the MMU‟s translation

table construct, which do not change during system runtime. If identical virtual

addresses are used multiple times in various partitions, the hardware has to provide a

runtime mechanism for indicating which partition is currently active and indicating the

correct MMU translation entries (e.g. runtime identifier or reconfiguration of pointers

to the translation tables). Such a static MMU configuration also implies a static spatial

separation of the memory without dynamic (re)allocation of memory regions for

partitions.

- Dynamic means that the separation kernel has to reconfigure the translation tables

during partition switch. This approach does not require the previously mentioned

hardware platform identifiers but might require additional processing cycles during

partition switch.

Dynamic MMU configuration also allows realizing dynamic (re)allocation of memory

during application runtime. However, the necessary increased trust in the reallocation

mechanism is essential for assuring the security properties of the separation kernel

(e.g. zeroing memory after memory release). Additionally, dynamic MMU

configuration can be useful for implementing performant inter partition

communication, since the ownership of communication pages can be shared or

transferred between partitions for purpose of avoiding the overhead of data copying.

Note that some available separation kernels use a combination of both mechanisms, e.g. for

realizing a static spatial separation of the memory but also allowing shared pages for fast inter

partition communication.

A security vulnerability of current MMUs is their level of trust put into the reliable operation

of its configuring software, e.g. the separation kernel. More specifically this means that the

separation kernel is able to interact with memory pages actually belonging to partitions

“privately”, without being visible to the SK. [JH11] discusses this issue and provides

hardware improvements for future MMUs. For example, [JH11] propose that a VM can mark

its page as private (in hardware) after allocation from a hypervisor (analogous to a separation

kernel in our context). Having the private bit set this page can only be accesses by the VM

and the hypervisor only can sanitize it as soon as the VM allows it. Encoding new features

into MMU hardware, of course again raises the problem of ensuring that the hardware

realization of this approach is correct.

4.2.4 Input/Output Memory Management Units (IOMMUs)

An IOMMU provides transparent, isolated access to virtual instances of I/O devices to one or

more partitions [KS08]. These virtual device instances can be used just like a physical

instance of the same I/O device by these partitions. Other partitions have no access to these

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 36 of 59

virtual devices, nor can the virtual devices access memory spaces of partitions other than the

ones they have been assigned to.

If the system‟s functionality demands to use external DMA-capable devices, hardware

components as IOMMUs are helpful to protect the system memory from invalid DMA

triggered by the device and thus, to achieve spatial separation. The task of IOMMUs is similar

to the one of MMUs. However, there are two differences to MMUs:

1. MMUs are placed between the processor and the system memory. The location of

IOMMUs is between devices and the system memory.

2. The intention to apply MMUs into hardware was to increase the performance for

address translations between virtual and physical addresses. Later on, its use for

memory protection has been introduced. The motivation of using IOMMUs is the

other way around. Primary IOMMUs have been deployed for memory protection

reasons but can also be used for address translation. However, using the address

translation mechanism smartly can open the opportunity of sharing hardware devices

usually not intended to be shared, e.g. by reconfiguration of the address tables on

partition switch. Thus, an IOMMU can provide transparent, isolated access to virtual

instances of I/O devices to one or more partitions [KS08]. Nevertheless, this approach

is only possible for stateless devices with immediate and short processing which only

perform DMA on behalf of cores, e.g. external FPU or vector processing engines.

IOMMUs are getting required in a system in which DMA-capable devices shall be directly

assigned to an untrusted partition, i.e. an untrusted driver shall be allowed to interact without

additional software-based checks of the separation kernel (e.g. for performance reasons).

Since in such a design the untrusted driver can access the entire memory abusing the directly

assigned device by triggering DMA to addresses outside of its allowed memory resources, the

hardware requires a component to restrict those accesses. This is the task of the IOMMU.

For proper hardware architectures with IOMMUs it is necessary that the IOMMU identifiers

used for device‟s identification are provided in a secure way. In particular [SLN+10], [SV10],

[WR11] and [MIM+13] discuss attacks using DMA and harming IOMMU-based hardware

designs. One class of those attacks abuses Message Signalled Interrupts (MSIs) to trigger

interrupts which do not belong to the device. These attacks are possible since former

IOMMUs only mediated transfers based on (1) the accessing device, (2) the involved

addresses and (3) the operational code for the transaction but ignoring the data content of the

transaction. For example, Intel counteracts the class of attacks by a technology called

“Interrupt Remapping”, which validates also the interrupt vectors (messages) of the MSI

[Int11]. Another class of attacks uses a vulnerability of PCI to PCIe bridges, where the

identifier is added by the bridge but not by the devices connected to the bus “behind” the

bridge. More generic views on this issue introduce discussion on suitable device interconnect

topologies. The interconnect topology should provide the separation kernel possibilities to

uniquely identify the physical hardware interface (e.g. card slot) the device is connected to. In

general a bus strategy achieves this requirement worse than a star topology.

In addition IOMMUs usually do not apply countermeasures against devices performing

timing attacks, like exhausting bandwidth, interrupt bombing or uninterruptible long bus

transactions (a timing attack on latency that can alter real-time properties without needing to

saturate the bus). Some timing attacks again various in their utilization on the used

interconnect topology.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 37 of 59

4.2.5 I/O sharing

A special case of directly assigned device interfaces is the approach of using self-virtualizing

devices. With this technology it is possible to securely share a device without requiring

trusted software components for runtime device interactions (runtime driver). For example it

may also allow transferring parts of the functionality of the network component into the

hardware. Using this technology the hardware device provides a physical interface for

configuration purposes and a various number of virtual interfaces appearing as runtime

interface to the partitions that shall interact with the device instance. A special standard called

Single Root I/O (SR-IOV) [SRIOV] extends the PCI Express (PCIe) standard and defines the

hardware interface for PCIe devices. To restrict DMA of virtual functions to the assigned

partitions only, an IOMMU is essential. Further investigation on platform requirements using

PCIe SRIOV is provided in [MIM+13].

Work on performance comparison of software-based and hardware-based I/O sharing

approaches are provided by [YYW08] and [WR08]. Both publications conclude that

hardware-based sharing using IOMMUs and direct mapping almost performs with native

performance. However, [WR08] additionally investigates on the provided granularity of

memory protection (inter- and intra-guest) of software-based approaches compared to

different strategies for reconfiguring the IOMMU on partition switch. The final statement of

this work is that software-based pre-validation of DMA descriptors performs better than some

approaches (not direct map!) for hardware-based late validation of DMA transfers. Also

software-based sharing strategies enable enhanced intra-partition memory protection with

respect to the granularity. However, the downside of software-based approaches is their

inability to protect against device misbehaviours and the required assurance property of the

software components.

4.2.6 Timers

Separation kernels are in charge to provide separation properties in time and space for a MILS

system. Regarding time separation (e.g. real-time scheduling of applications) the kernel

requires a reliable signal defining the unit “time” for the system. For this purpose hardware

normally provides a periodic and stable transducer in combination with a counter counting the

generated signals. Knowing the frequency of the transducer allows defining the resolution and

thus the smallest possible unit of time in the system. Both the transducer and the counter

together build the basics for implementing timers. Separation kernels use timers in one of two

fashions:

 Inflexible periodic timers that give rise to a so-called «tick» timer in the kernel,

periodically fired irrespective of whether there is activity to be carried out or not. A

number of OSes have this design because they are backwards compatible with the

Intel 8253 Programmable Interval Timer (PIT) that was the only timer chip found in

the original IBM PC (discounting the alarm function of the MC146818 RTC chip that

does not have a high repeat rate), even though modern PC-compatible hardware has

better timers.

 more flexible arbitrarily programmable timers that give rise to a «tickless» kernel that

wakes up only when necessary. Intel/Microsoft High-Precision Event Timers (HPET,

[Int04]), formerly known as Multimedia Timers because they originated from the need

for high-resolution arbitrary timers for sound generation in desktop PCs, provide this

capability with a free-running counter and comparators although a subtlety of this

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 38 of 59

hardware implementation for some software designs is that a timer must be armed in

the future only, e.g. it will not trigger if armed too late just based on the fact that the

comparison is “now true”. Alternative designs typical of microcontrollers involve

downcounters with a feature for auto-reloading the timer with the next deadline that

was provided by the software ahead of time. This trivially eliminates jitter, whereas

downcounters without auto-reload have to be compensated in software by accounting

for the time lost between the previous deadline and the time when the software

actually loads the next deadline from some interrupt handler, and while it is easy to

compensate for absolute drift, jitter or a small lateness can never be completely

eliminated on processors where writing fully time-deterministic code is impractical.

One timer is usually sufficient. Having several timers available may yield simpler or faster

software, although an implementation can be fairly simple with just one hardware timer if that

timer has just the right flexibility.

4.2.7 Chain of trust

A last important fact necessary to mention in this chapter is the topic of trusted initialization

of the different layers in a MILS system. Usually these different layers are initialized in a

well-defined sequence, e.g. first general boot code, followed by the layer providing the

separation property, followed by other layers providing system-specific security functions and

applications. To ensure that the entire sequence is not compromised a root of trust is needed at

the beginning of the sequence. Usually a special hardware component storing a secret key and

a hard coded boot code provides this feature. Thus, also hardware components implementing

the root of trust can be necessary [Fre10]. Regarding trust in the software involved in the boot

sequence, there have been 2 schools of thought:

- All software from the reset vector (possibly with the assistance of firmware in an internal

ROM) is trusted and therefore hardware-assisted mechanisms are provided to verify

initial trust, and then it is up to this trusted software to preserve the chain of trust to the

next trusted software until usual hardware protection mechanisms (user/supervisor mode

and memory protection) are used to allow controlled execution of untrusted code. This is

the pattern used by the IBM/Sony Cell BE™ [Shi06], Freescale‟s Secure Boot [Fre11a]

and Trust Architecture [Fre11b] and, to our knowledge, ARM‟s TrustZone® [ARM13].

- Boot software is not trusted, but hardware mechanisms exist in order to re-establish a

trusted context later on, or let trusted software establish that initial software was not

altered nor bypassed and therefore could only have taken known action. This is the

pattern used by the Trusted Computing Group™‟s Trusted Platform Module [TCG11].

4.3 System configuration of components

The configuration of a MILS system comprises the configuration of the separation kernel, and

the configuration of other components, such as the configuration of applications, and the

configuration of hardware.

4.3.1 Configuration of the separation kernel: configuration space

We have defined the separation kernel to be the main policy-enforcing element of a MILS

system, using hardware mechanisms provided by the hardware in the MILS core. Thus, its

configuration options to a large extent need to reflect the configuration of a MILS system. In

Section 3.2.13 of this document, a separation kernel has already been characterized as

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 39 of 59

enforcing the resource allocation, access control and information flow policies. Thus, the

configuration of a separation kernel equals the configuration of these policies.

The above definition is fairly abstract. Giving an exhaustive, yet product-independent list of

configuration parameters is non-trivial, and perhaps not even desirable: If we start with SKPP,

despite the string “configuration” occurs at least 510 times in SKPP, SKPP does not give a

comprehensive list of configuration data at one place. For example, SKPP mentions system

memory and processing time per partition [SKPP, p. 78] and then information flow policy

configuration data, audit configuration data, clock settings, and self-test period as other

examples [SKPP, p. 175]. Taking into account that an operating system used for IMA (recall

Section 2.1) can be provided by a separation kernel (“a separation kernel is similar to the

"partitioning kernels" used in integrated modular avionics (IMA), but is more aggressively

minimized”) [BDR+08, p. 9], possibly a better, more concrete, yet still product-independent

example can be found in [ARINC-653]. For an IMA operating system, [ARINC-653, p. 22]

specifies that, (1) for each partition, its memory requirements, its scheduling parameters

(period, duration), identity of messages to be sent/received by the partition are configured by

a configuration table, (2) globally, that a configuration table of inter-partition communication

objects is kept and a fault handling is configured.

4.3.2 Configuration of other components: configuration space

However, note that the separation kernel configuration only addresses part of the overall

MILS system configuration. For example [AFOB+12, p. 181] emphasizes that, in addition to

the configuration layer at the separation kernel level, the configuration of a MILS system is

also strongly determined by the configuration of its hardware. For example, the configuration

of a MILS system includes which PCI slot to use for which PCI card, the memory mapping of

hardware and so on.

4.3.3 Configuration management

Configuration management: The need of configuration management for secure systems is

addressed by the [CC12] in general and, more particular, for IMA systems in [DO-297,

Rom08]. It is emphasized that to reproduce the configuration of a system using a separation

kernel, the configuration of each level must be stored, including hardware and configuration

data of applications running in partitions managed by the separation kernel. [SKPP, p. 17, 27]

defines (1) the generation of an abstract configuration vector by a configuration tool, (2) its

transformation to machine-readable configuration data on a boot medium by a load function,

and (3) its usage by a boot function during operation. Also, [ARINC-653, p. 22] stipulates that

configuration tables of an IMA operating system must be built separate from the operating

system and they are not directly accessed by applications; an implementation detail that of

course is only binding for a separation kernel if it is to be used for an IMA system. However,

except for that mention of separate build of configuration tables that is not a requirement in

[SKPP], detailed configuration workflow guidance for an entire MILS system is out of scope

and rather scarce in this IMA [ARINC-653] application software standard interface

description.

Reconfiguration: Reconfiguration of a system is making some change(s) to the configuration

of that system; we call that a configuration change.

A configuration change modifies the system configuration data. For example, in the

separation kernel the Information Flow Policy could be modified. When a configuration

change occurs by going the system offline and reboot, the change is called a static

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 40 of 59

configuration change. When the change occurs on-line without reboot during an execution,

then the configuration change is dynamic [SKPP, p. 16, p.40; NLI, Section 5.2]. If

configuration change capability is not built-in into a separation kernel, it can be implemented

by the component of the MILS platform, for example select or upload another image of the

separation kernel into the MILS platform or a partition component that specializes in doing

this. Another example would be the dynamic configuration of virtualization hardware, which

e.g. could be done from within a partition. In this case, you have already configured the

virtual interfaces for the partition in the separation kernel, and then you connect the virtual

device hardware to them.

4.3.4 System update

Related to topic of configuration management is the treatment of system updates of the MILS

components. A common automotive use case for reconfiguration is a software update of

possibly every software component in the system. The security policy for system updates

typically specifies that system updates cannot be done by the internet but only locally via the

on-board bus.

However, many automotive manufacturers (OEMs) tend to require software updates „over the

air‟ and request for improved methods to guarantee (1) fail safety (robustness in case of

failures during the update procedure), (2) integrity (updating sources other than originated by

the OEM must be rejected) and (3) security (the software update mechanism must be resistant

against attacks). Since access control policies themselves may be subject of software updates,

hence modification, special care must be taken to self-protection.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 41 of 59

Chapter 5 Conclusion

5.1 Overview of component policies and reuse

An overview of policies enforced and usage of services by other components is given in Table

4.

In Table 4, for “provides” or “used-by” relations, an “M” means “provision/use is

mandatory”, an “O” means “provision/use is optional”. In the case of “M” for “component X

used by component Y” component X is meant only as mandatory for component Y, if the

MILS system has component Y at all (this also may not be that case). As it is always an

implementation option, for brevity, we do not consider self-use or self-invocation in this table.

A component is a guard if it enforces some resource allocation policy, access control policy

and/or information flow policy in the sense (2a) or (2b) of Section 3.2.7.

C
o
m

p
o
n
en

t
p
ro

v
id

es
 r

es
o
u
rc

e

al
lo

ca
ti

o
n
 p

o
li

cy

C
o
m

p
o
n
en

t
p
ro

v
id

es
 a

cc
es

s

co
n
tr

o
l

p
o
li

cy

C
o
m

p
o
n
en

t
p
ro

v
id

es

in
fo

rm
at

io
n
 f

lo
w

 p
o
li

cy

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y

se
p
ar

at
io

n
 k

er
n
el

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 c

o
n
so

le

co
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 n

et
w

o
rk

sy
st

em
 c

o
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 f

il
e

sy
st

em
 c

o
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 a

u
d
it

sy
st

em
 c

o
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 a
 g

u
ar

d

Software components

Separation

kernel

M M M M M M M M

Console

system

component

 M O O M

Generic

device

abstraction

component

O O O O O O O O O

Network

system

component

M M O O O O O M

File system

component

 M O O O O M

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 42 of 59

C
o
m

p
o
n
en

t
p
ro

v
id

es
 r

es
o
u
rc

e

al
lo

ca
ti

o
n
 p

o
li

cy

C
o
m

p
o
n
en

t
p
ro

v
id

es
 a

cc
es

s

co
n
tr

o
l

p
o
li

cy

C
o
m

p
o
n
en

t
p
ro

v
id

es

in
fo

rm
at

io
n
 f

lo
w

 p
o
li

cy

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y

se
p
ar

at
io

n
 k

er
n
el

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 c

o
n
so

le

co
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 n

et
w

o
rk

sy
st

em
 c

o
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 f

il
e

sy
st

em
 c

o
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 u
se

d
 b

y
 a

u
d
it

sy
st

em
 c

o
m

p
o
n
en

t

C
o
m

p
o
n
en

t
is

 a
 g

u
ar

d

Audit

system

component

 M O O O M

Application

(trusted)

O O O O

Application

(untrusted)

O
[1]

 O
[1]

 O
[1]

Hardware components

Processor M M M M M M M

MMU M M M/O
[2]

 M

IOMMU M M
[3]

 M
[3]

 M
[3]

 M
[3]

 M
[3]

 M

I/O sharing M O O
[4]

 M

Timer M

Chain of

trust

[5]

 O M

Remarks:

[1] A trusted application can serve as guard to any application, whereas an untrusted application only can serve as guard to applications that

are even less trusted.

[2] MMUs may be needed for network components depending on hardware, e.g. on PowerPC network devices are memory-mapped. Also on
Intel, the entire PCI express is memory mapped.

[3] If and only if DMA is used.

[4] E.g. a physical harddisk that is accessed by the file system component.

[5] As a chain of trust denies access if a signature is not provided properly, it can be seen either as access control policy or as integrity policy.

Table 4: Policies enforced and usage by other components

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 43 of 59

We observe that access control policy is provided by almost any component, a resource

allocation policy or information flow policy is more rarely encountered. A timer and a chain

of trust do not implement their own access control/resource allocation/information flow

policies, but can be used by the separation kernel to support resource allocation and integrity

requirements.

5.2 Secure design principles

In Table 5 we compare our MILS experience with the Saltzer and Schroeder Design

Principles [SS75] previously introduced in Section 2.4. It can be seen that many principles

carry over to MILS systems. Those principles that are not fully carried over are those which

clash with the stringent performance and real-time requirements of MILS systems.

Design Principle (as in

[SS75])

Explanation (as summarized

by [Bis00])
Implementation in MILS

Economy of Mechanism The protection mechanism

should have a simple and

small design.

Some MILS components,

such as the separation kernel,

are small.

Fail-safe Defaults The protection mechanism

should deny access by

default, and grant access only

when explicit permission

exists.

The default policy in a MILS

system is: no information

flow and no resource sharing

unless specified.

Complete Mediation The protection mechanism

should check every access to

every object.

This is implemented by a

small reference monitor, the

separation kernel.

Open Design The protection mechanism

should not depend on

attackers being ignorant of its

design to succeed. It may

however be based on the

attacker‟s ignorance of

specific information such as

passwords or cipher keys.

MILS design is

comparatively well

understood and open.

Separation of Privilege The protection mechanism

should grant access based on

more than one piece of

information. (e.g., two

commanders need to agree to

launch a weapon).

For performance reasons, and

because this kind of policy is

not so common in embedded

systems, this is usually not

implemented in MILS

systems.

Least Privilege The protection mechanism

should force every process to

operate with the minimum

privileges needed to perform

This is usually only

implemented at a partition

granularity level in MILS

systems (the calculation of

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 44 of 59

Design Principle (as in

[SS75])

Explanation (as summarized

by [Bis00])
Implementation in MILS

its task. the “minimum privileges”

can be non-trivial).

Least Common Mechanism The protection mechanism

should be shared as little as

possible among users. (e.g.

shared variables shall be

avoided)

An example implementation

of this principle is that

middleware (user space

libraries) is usually put into

partitions of a separation

kernel.

Psychological Acceptability The protection mechanism

should be easy to use (at least

as easy as not using it).

Use of the protection

mechanism is implemented

by fail-safe defaults. The

decomposition of a system

into partitions requires some

initial effort, but in the long

run makes it easier to

understand and maintain its

functionality.

Table 5: Secure design principles and their implementation in MILS

5.3 Results

We have identified and described the origins where MILS comes from (Chapter 2) and

established a foundation we can use for the description of the architecture of MILS systems.

For example, we have obtained a common “picture” of a MILS system (Section 3.1). We have

also created working definitions for fundamental MILS terms in a bottom-up way, including

definitions of closely related security policies such as access control policy, resource

allocation policy or information flow policy (Section 3.2). Several iterations were needed to

obtain this in a clean, yet understandable way, which may explain why we have not seen this

bottom-up approach done elsewhere.

We have also identified some widely used terms we chose to avoid, such as “PCS” or

“middleware”, because we consider them of little help and even misleading. We were able to

apply the terminology to previous work on security gateway (Section 3.3).

We have reached consensus to present hardware and software components as equal citizens

and compiled a catalogue of MILS hardware and software components, including a security-

centric description (Chapter 4). In particular, we have identified a generic device abstraction

component. We have identified several instances where separation kernel policy enforcement

depends on guarantees by hardware components. In Section 5.1, we have summarized security

policies provided by components, mutual interdependencies of components and classified

components as “guards”. This could serve as a basis for a more detailed analysis of

information flows and their guards of concrete components as proposed in [AFOB+12,

Chapter 4]. Section 5.2 establishes that MILS largely follows well-established principles of

secure system design. Our document appears to be a reasonable basis for further description

of individual components within the EURO-MILS project.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 45 of 59

5.4 Acknowledgment

The research leading to these results has received funding from the European Union‟s Seventh

Framework Programme (FP7/2007-2013) under grant agreement number 318353. We thank

Rance DeLong (Open Group) for commenting on some parts of an earlier version of the text.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 46 of 59

Glossary

Access control policy: A component‟s access control policy acts on the component‟s

interface used to manage exported resources. In this respect it is identical to the

aforementioned resource allocation policy (Section 3.2.5). However, the interface is

characterized by that a request to the resource includes an explicit reference to the resource

(e.g. the resource‟s name or a numerical identifier). Identically to the aforementioned resource

allocation policy (Section 3.2.5), the access control policy defines which of the component‟s

resources are kept internal to the component and which are exported to which other

components. When a resource is exported to more than one other component, the resource is

shared. The access control policy is in the “space” domain.

Application: An application is one or more executable(s).

Audit System Component: An audit system component is a MILS component that

implements audit services that can be used by other components

Communication object: A communication object is an exported resource provided by a

component. It can be shared between components. Communication objects are used by

components to communicate between them.

Component: A component is a term to describe the decomposition of a (in general, any)

system into meaningful self-contained parts. For example, a (yet to be defined) MILS system

consists of components. In general, components may be implemented by (1) hardware, (2)

software, or (3) a combination of hardware and software [CBB+03, DO-297].

Configuration: The configuration of a component contains the component‟s identity, and it

defines any security policy (access control policy, resource allocation policy, information

flow policy) enforced by the component. An information flow policy configuration also may

be implicitly configured by resource allocation policy configuration and access control policy

configuration.

Console system component: A console system component connects applications to human

interface devices, and thus is an instance of the Generic Device Abstraction Component.

Domain: A domain (or “security domain”) is a unit of separation created and maintained by

any MILS component, for example by an application (Section 3.2.9), a function (Section

3.2.12), or the MILS core (Section 3.2.14), which is enforcing a security policy on exported

resources.

File system component: A file system component is a MILS component and an instantiation

of the Generic Device Abstraction Component that implements file system services.

Function: A function is a logical group of partitions for achieving common objectives. The

implied partitions may be connected using information flows.

Generic device abstraction component: A generic device abstraction component is a MILS

component having the purpose of abstracting the access mechanism of a special purpose

hardware device to a defined set of connected partitions.

Information flow policy: The term information flow policy has more than one usage,

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 47 of 59

(1) the most simple one is to use it as an umbrella term for “access control policy” and

“resource allocation policy” combined or

(2) to express policies where pieces of information (messages) are written to one or

several communication objects(s) by a sender and subsequently these messages are

read from the communication object(s) by a receiver. Such policies may include rules

based

(2a) on the sender/receiver of the messages and/or

(2b) on the content of these messages.

Note: for most components, interpretation (1) is used. (2a) will be used in the context of a

separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of security

gateway (discussed as an example in Section 3.3). An information flow policy in the sense of

(2a) is either explicit, based on identities of components between which information flow is

allowed, or implicit, as unambiguously defined by the resource allocation policy and access

control policy.

MILS architecture: “MILS architecture” refers to the architecture of the implementation of a

concrete MILS system.

MILS architecture template: “MILS architecture template” refers to a template

encompassing many possible MILS systems.

MILS platform: A MILS platform consists of the MILS core and optional software and/or

hardware components that provide secondary security functionalities and do not contribute to

the enforcing of separation.

MILS system: A MILS system is a concrete deployment of a MILS platform with a defined

set of partitions.

MLS system: An MLS system is a system with different security requirements for different

components. It can be implemented by a MILS system.

Multi-level Secure (MLS) component: A Multi-Level Secure Component is a component

that handles information of with different security levels concurrently during one runtime

instance.

Multiple Single-Level Secure (MSLS) component: A Multiple Single-Level Secure

Component is a special kind of SLS component that processes data of multiple security levels,

but always maintains separations between classes of data by exclusively processing only one

security level during its runtime instance. For example this separation can be implemented by

allowing access to a different security level only when the component has rebooted with

different parameters. Also deploying multiple instances of one SLS component processing

different single security levels turn this SLS component into an MSLS component.

Note: in [Alv98] this was restricted to temporal separation, “at a single time-point, only

handles information from one component”. If such a single-level process is to be implemented

as untrusted process [Alv98], it can be supplemented by an appropriate labelling and filtering

of messages.

Network system component: A network system component is a MILS component having the

tasks (1) of abstracting the used network infrastructure and topology connecting the MILS

system with other platform-external systems and (2) of abstracting or hiding the physical

location of a partition‟s communication partners. Usually the network system component also

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 48 of 59

(3) abstracts the access mechanism to the network device and, thus, is a special purpose

instantiation of the Generic Device Abstraction Component.

Partition: A partition is a component that serves to encapsulate application(s) and/or data.

Thus, the content of a partition is application(s) and possibly other data. A partition is a unit

of separation with respect to

 resource allocation in the space and time domains,

an access control policy and an information flow policy in the space domain.

Resource: A resource is anything (processor such as a CPU or a processing core, memory,

software, data, network, etc.) internally used or exported by a component. A resource may be

physical (a hardware device) or logical (a piece of information). A resource may be shared by

multiple components or be dedicated to a specific component.

Exported resources are those resources to which an explicit reference is possible via a

component interface, e.g., the programming or configuration interface. Internal resources are

those resources used exclusively by the component, and which have no explicit reference via

a component interface.

Resource allocation policy: A component‟s resource allocation policy acts on the

component‟s interface used to manage exported resources. This interface is characterized by

that a request for a resource is made without knowing in advance how the resource is

“named” or “addressed”. The request is made for a quantity of the resource, and then the

component decides whether to grant or deny the request to export that resource in the desired

quantity. The resource allocation policy defines which of the component‟s resources are kept

internal to the component and which are exported to which other components. When a

resource is exported to more than one other component, the resource is shared. A resource

allocation policy can be in the “space” domain, when resources can be used simultaneously

but are kept in different spatial (e.g. memory) locations or in the “time” domain, where

resources are used sequentially, but kept in different time slices. An example for resource

allocation in the “time” domain is the allocation of a CPU to a component for a limited period

of time.

Separation kernel: A separation kernel A separation kernel is a component that enforces a

resource allocation policy and an access control policy on its exported resources (partition,

resources allocated to a partition, communication objects). Communication objects allow for

controlled information flow between partitions. A separation kernel may have an explicit or

an implicit information flow policy on its partitions (see definition of information flow policy

for details).

The separation kernel uses separation-supporting hardware to provide the separation between

partitions in a MILS core.

Shared resource: When a resource is exported to more than one other component, the

resource is shared.

Single-Level Secure (SLS) component: A Single Level Secure Component is a component

that every time processes data of one security level.

System integrator: The person composing the MILS system from its components.

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 49 of 59

Virtual machine: A virtual machine (VM) consists of software that imitates a physical

hardware machine. The virtual machine will for example give the illusion of a physical CPU

and physical memory to an operating system that is running in it

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 50 of 59

List of Abbreviations

AFDX Avionics Full Duplex Switched Ethernet

AMD Advanced Micro Devices

CBEA Cell Broadband Engine Architecture

CC Common Criteria for Information

Technology Security [CC12]

CDS Cross-Domain Solution

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

DMA Direct Memory Access

EAL Evaluation Assurance Level

HW hardware

IMA Integrated Modular Avionics

I/O Input/Output

IO/MMU I/O Memory Management Unit

IPC Inter-Process Communication

LRU Line Replacement Unit

MILS Multiple Independent Levels of Security

MIPP MILS Integration Protection Profile

MLS Multi-Level Secure

MMU Memory Management Unit

MSI Message Signalled Interrupt

MSLS Multiple Single-Level Secure

NEAT Non-Bypassable, Evaluatable, Always

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 51 of 59

Invoked, Tamperproof

NSA National Security Agency

OEM Original Equipment Manufacturer

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PCS Partitioning Communications System

SK Separation Kernel

SKPP Separation Kernel Protection Profile

SLS Single-Level Secure

SW software

VM virtual machine

VMM Virtual Machine Monitor

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 52 of 59

Bibliography

[AA06] Keith Adams, Ole Agesen, A Comparison of Software and Hardware Techniques for

x86 Virtualization, ASPLOS'06, p. 2-13, 2006, ACM, New York, NY, USA,

http://www.ittc.ku.edu/~niehaus/classes/750-s09/documents/asplos235_adams-2006.pdf.

[AFHOT06] Jim Alves-Foss, Scott Harrison, Paul W. Oman, Carol Taylor, The MILS

Architecture for high-assurance embedded systems, International Journal of Embedded

Systems, vol. 2, no. 3--4, p. 239-247, 2006,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6810.

[AFOB+12] Jim Alves-Foss, Paul Oman, Ryan Bradetich, Xiaohui He, Jia Song, Implications

of Multi-Core Architectures on the Development of Multiple Independent Levels of Security

(MILS) Compliant Systems, no. 0704-018, 2012, University of Idaho, Center for Secure and

Dependable Systems, Moscow, Idaho, http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA568860.

[Air97] Airlines Electronic Engineering Committee, Avionics application software standard

interface: ARINC specification 653, January, 1997, Aeronautical Radio, Inc., 2551 Riva

Road, Annapolis, MD 21401, http://www.arinc.com/.

[Alv98] Jim Alves-Foss, The Architecture of Secure Systems, Hawaii Interational Conference

on System Sciences, p. 307-316, January, 1998,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=pdf.

[And72] James P. Anderson, Computer Security Technology Planning Study, no. ESD-TR-

73-51, Oct., 1972, Deputy for Command and Management Systems HQ Electronic Systems

Division (AFSC), L. G. Hanscom Field, Bedford, MA,

http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf.

[And08] Ross Anderson, Security engineering, 2008, J Wiley & Sons,

http://www.cl.cam.ac.uk/~rja14/book.html.

[ANS01] American National Standards Institute, ANSI X3.172-1996 American National

Standard Dictionary of Information Technology (ANSDIT), Release 16, 2001,

http://www.incits.org/ANSDIT/Ansdit.htm.

[ARINC653] Airlines Electronic Engineering Committee, Avionics application software

standard interface: ARINC specification 653, January, 1997, Aeronautical Radio, Inc., 2551

Riva Road, Annapolis, MD 21401, http://www.arinc.com/.

[ARINC811] Airlines Electronic Engineering Committee (ARINC), Commercial Aircraft

Information Security Concepts of Operation and Process Framework, no. ARINC

specification 811, January, 2005, Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, MD

21401, http://www.arinc.com/.

[ARM13] ARM Ltd., http://www.arm.com/products/processors/technologies/trustzone.php.

[ARP4754] Society of Automotive Engineers, Safety Assessment for Airborne Systems,

Equipment Committee, ARP4754: Certification Considerations for Highly-Integrated Or

Complex Aircraft Systems, 1996, Society of Automotive Engineers, SAE World

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6810
http://www.arinc.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf
http://www.incits.org/ANSDIT/Ansdit.htm
http://www.arinc.com/
http://www.arm.com/products/processors/technologies/trustzone.php

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 53 of 59

Headquarters, 400 Commonwealth Drive, Warrendale, PA 15096-0001 USA,

http://www.sae.org.

[Avi08] Avionics designers choose SYSGO real-time embedded software for A400M cargo

system, Avionics Intelligence, 10 Dec 2008, http://www.avionics-

intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-

software-for-a400m-cargo-system.html.

[BBH+05]. William Beckwith, Carolyn Boettcher, Mark Hama, Jahn Luke, Tod Reinhart,

High Assurance Safe and Secure Distributed Systems and Information Sharing,

Infotech@Aerospace Conferences, 2005, American Institute of Aeronautics and Astronautics.

[BCK03] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 2
nd

 ed,

Addison-Wesley 2003.

[BDR+08] Carolyn Boettcher, Rance DeLong, John Rushby, Wilmar Sifre, The MILS

Component Integration Approach to Secure Information Sharing, Digital Avioncis Systems

Conference (DASC), 2008, http://www.csl.sri.com/~rushby/abstracts/dasc08

[Bis00] Matt Bishop, Saltzer's and Schroeder's Design Principles, 2000,

http://nob.cs.ucdavis.edu/classes/ecs153-2000-04/design.html.

[CBB+03] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed

Little, Robert Nord, Judith Stafford, Documenting Software Architectures: Views and

Beyond, Addison-Wesley 2003.

[CC12] Common Criteria Sponsoring Organizations, Common Criteria for Information

Technology Security Evaluation. Version 3.1, revision 4, vol. 1--3, September, 2012,

http://www.commoncriteriaportal.org/cc/.

[Cordis12] CORDIS document server

http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197414

[Cof12] Darren Cofer, Complexity-reducing design patterns for cyber-physical systems, 2011,

Rockwell Collins,

http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/Rockwell%20

Collins%20META%20Final%20Report.pdf.

[CVdM09] Stephen Chong, Ron van der Meyden, Using architecture to reason about

information security, 2009, http://www.cse.unsw.edu.au/~meyden/research/arch-filter.pdf.

[DCS+04] John Detombe, Darin Cowan, Mike Smith, John O'Brien, Survey of Multi-Level

Security (MLS) Products, no. CR 2004-268, 2004, Defence R & D Canada,

http://cradpdf.drdc-rddc.gc.ca/PDFS/unc82/p523341.pdf.

[Del06] Rance DeLong, MLS with MILS?, slides, 2006,

http://www.cisr.us/events/downloads/guests/delong.pdf

[Del10] Rance J. DeLong, An Evaluation and Certification Scheme for MILS, Fourth Annual

Layered Assurance Workshop (LAW 2010), 2010, http://fm.csl.sri.com/LAW/2010/law2010-

09-DeLong.pdf.

[Del12a] Rance DeLong, The Mils
TM

 Architecture -- a Foundation for Dependable Systems,

The Open Group Conference: Real-Time & Embedded Systems Forum, 2012,

http://www.opengroup.org/public/member/proceedings/q212/23RT.htm

http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.csl.sri.com/~rushby/abstracts/dasc08
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197414
http://www.cse.unsw.edu.au/~meyden/research/arch-filter.pdf
http://fm.csl.sri.com/LAW/2010/law2010-09-DeLong.pdf
http://fm.csl.sri.com/LAW/2010/law2010-09-DeLong.pdf
http://www.opengroup.org/public/member/proceedings/q212/23RT.htm

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 54 of 59

[Del12b] Rance DeLong, MILS Integration Protection Profile (MIPP) and the MIPP

Commentary (slides), The Open Group Conference, Barcelona, Spain, 2012.

[Dod83] Department of Defense, Trusted computer systems evaluation criteria (Orange

Book), DoD 5200.28-STD, 1983, http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt

[DO-297] RTCA SC-200 / EUROCAE WG-60, DO-297: Integrated Modular Avionics (IMA)

Development Guidance and Certification Considerations, November, 2005, Radio Technical

Commission for Aeronautics (RTCA), Inc., 1828 L St. NW., Suite 805, Washington, D.C.

20036.

[DPF09] Julien Delange, Laurent Pautet, Peter Feiler, Validating safety and security

requirements for partitioned architectures, Reliable Software Technologies--Ada-Europe

2009, p. 30-43, 2009, Springer, http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf.

[DPK10] Julien Delange, Laurent Pautet, Fabrice Kordon, Design, Verification and

Implementation of MILS systems, Proceedings of the 21th International Symposium on Rapid

System Prototyping, 2010, http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-

RSP.pdf.

[Fr83] Lester J. Fraim, Scomp: A Solution to the Multilevel Security Problem, Computer, vol.

16, no. 7, p. 26-34, 1983, IEEE.

[GH08] Olivier Gilles, Jerome Hugues, Validating requirements at model-level, IDM'2008 5-

6 juin Mulhouse, 2008, http://www.idm08.uha.fr/actes/p5.pdf.

[GN09] Tor Gjertsen, Nils Agne Nordbotten, Multiple independent levels of security (MILS)

- a high assurance architecture for handling information of different classification levels,

2009, Norwegian Defence Research Establishment (FFI),

http://rapporter.ffi.no/rapporter/2008/01999.pdf.

[Gol73] Robert P. Goldberg, Architectural Principles for Virtual Computer Systems, 1973, Ph

Thesis, Harvard, Cambridge, MA, http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0772809.

[Gre08] Green Hills Software, INTEGRITY-178B Separation Kernel Security Target, no. IN-

ICR750-0100-GH01ST, May, 2008, http://www.niap-ccevs.org/cc-scheme/st/vid10119/.

[HASK] Bundesamt für Sicherheit in der Informationstechnik (BSI), Sirrix AG security

technologies, Protection Profile for High-Assurance Security Kernel: Version 1.14, June,

2008,

http://web.archive.org/web/20110726034516/http://www.sirrix.com/media/downloads/54500.

pdf.

[HHOAF05] W. Scott Harrison, Nadine Hanebutte, Paul W. Oman, Jim Alves-Foss, The

MILS Architecture for a Secure Global Information Grid, The Journal of Defense Software

Engineering, Crosstalk: The Journal of Defense Software Engineering, vol. 18, no. 10, p. 20-

24, Oct., 2005, http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-

Harrison.pdf.

[Hou11] Carol S. Houck, Publications and Future Support for Separation Kernels, May, 2011,

http://www.niap-ccevs.org/announcements/SKPP%20Email%20to%20Vendors.pdf.

[Int04] Intel Corporation, “IA-PC HPET (High Precision Event Timers) Specification”, 2004.

[Int11] Intel Corporation, “Intel® Virtualization Technology for Directed I/O”, 2011.

http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf
http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf
http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf
http://rapporter.ffi.no/rapporter/2008/01999.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0772809
http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-Harrison.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-Harrison.pdf

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 55 of 59

[ISA62433] International Society of Automation, Security for industrial automation and

control systems, ISA-62443, 2013, http://isa99.isa.org/Documents/Drafts/.

[JH11] S. Jin and J. Huh, “Secure MMU: Architectural Support for Memory Isolation among

Virtual Machines,” in 41st International Conference on Dependable Systems and Networks -

Workshops (DSN-W), 2011, pp. 217-222.

[Kar05] Paul A. Karger, Multi-Level Security Requirements for Hypervisors, Computer

Security Applications Conference, 21st Annual, 2005,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6161.

[Kem83] Richard A. Kemmerer, Shared Resource Matrix Methodology: An Approach to

Identifying Storage and Timing Channels, ACM Transactions on Computer Systems, vol. 1,

no. 3, p. 256-277, 1983, http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-

kemmerer.pdf .

[KS08] P.A. Karger, D.R. Safford, "I/O for Virtual Machine Monitors: Security and

Performance Issues," Security & Privacy, IEEE , vol.6, no.5, pp.16,23, Sept.-Oct. 2008

[KW07] Robert Kaiser, Stephan Wagner, Evolution of the PikeOS Microkernel, MIKES: 1st

International Workshop on Microkernels for Embedded Systems, 2007,

http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf.

[KW08] David Kleidermacher, Mike Wolf, MILS Virtualization for Integrated Modular

Avionics, Digital Avionics Systems Conference (DASC), p. 1.C.3-1-1-C.3-1-8, 2008, IEEE.

[Lam71] Butler W. Lampson, Protection, Proc Fifth Annual Princeton Conference on

Information Sciences and Systems, p. 437-443, 1971, Princeton,

http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf.

[LRP+11] Joseph Loyall, Kurt Rohloff, Partha Pal, Michael Atighetchi, A Survey of Security

Concepts for Common Operating Environments, Object/Component/Service-Oriented Real-

Time Distributed Computing Workshops (ISORCW), 2011 14th IEEE International

Symposium on, p. 244-253, 2011, https://dist-

systems.bbn.com/people/krohloff/papers/2011/Loyall-WORNUS-CameraReady-Paper1.pdf.

[MIM+13] Daniel Münch, Ole. Isfort, Kevin Müller, Michael Paulitsch, Andreas Herkersdorf.

Hardware-Based I/O Virtualization for Real-Time Embedded Avionic Systems Using PCIe

SR-IOV. International Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation (SAMOS XIII) (in submission), 2013.

[MP97] Donald Mackenzie, Garrel Pottinger, Mathematics, Technology, and Trust: Formal

Verification, Computer Security, and the U.S. Military, IEEE Annals of the History of

Computing, vol. 19, no. 3, p. 41-59, 1997.

[MPS+12] Kevin Müller, Michael Paulitsch, Reinhard Schwarz, Sergey Tverdyshev, Holger

Blasum, MILS-Based Information Flow Control in the Avionic Domain: A Case Study on

Compositional Architecture and Verification, Digital Avionics Systems Conference (DASC)

proceedings, 2012, IEEE.

[MPT+12] Kevin Müller, Michael Paulitsch, Sergey Tverdyshev, Holger Blasum, MILS-

Related Information Flow Control in the Avionic Domain: A View on Security-Enhancing

Software Architectures, Workshop on Open Resilient human-aware Cyber-physical Systems

(WORCS 2012), 2012, IEEE, http://dx.doi.org/10.1109/DSNW.2012.6264665.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6161
http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-kemmerer.pdf
http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-kemmerer.pdf
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf
http://dx.doi.org/10.1109/DSNW.2012.6264665

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 56 of 59

[MWTG00] W. Martin, P. White, F. Taylor, A. Goldberg, Formal Construction of the

Mathematically Analyzed Separation Kernel, Proc 15th International Conference on

Automated Software Engineering, p. 131-141, 2000.

[NG12] Nils Agne Nordbotten, Tor Gjertsen, Towards a certifiable MILS based workstation,

2012, Norwegian Defence Research Establishment (FFI), http://www.ffi.no/no/Rapporter/12-

00049.pdf.

[NLI06] Thuy D. Nguyen, Timothy E. Levin, Cynthia E. Irvine, High robustness

requirements in a Common Criteria protection profile, Innovative Architecture for Future

Generation High-Performance Processors and Systems, International Workshop on, p. 66-78,

2006, IEEE Computer Society, Los Alamitos, CA, USA,

http://calhoun.nps.edu/public/handle/10945/7141.

[NP12] Jan Nowotsch, Michael Paulitsch, “Leveraging Multi-Core Computing Architectures

in Avionics,” European Dependable Computing Conference (EDCC), 2012.

[PG74] Gerald J. Popek, Robert P. Goldberg, Formal Requirements for Virtualizable Third

Generation Architectures, Comm. ACM, vol. 17, p. 412-421, July, 1974.

[Pri92] P.J. Prisaznuk, Integrated Modular Avionics, National Aerospace and Electronics

Conference (NAECON), p. 39-45, 1992.

[RAV07] Jeffrey Choi Robinson and Jim Alves-Foss, A High Assurance MLS File Server,

2007.

[RD07] John Rushby, Rance DeLong, MILS Integration Protection Profile, 2007,

http://www.csl.sri.com/users/rushby/slides/mipp-jan07.pdf.

[RHN+07] Jeffrey Choi Robinson, W. Scott Harrison, Nadine Hanebutte, Paul Oman, and Jim

Alves-Foss, Implementing Middleware for Content Filtering and Information Flow Control,

CSAW ‟07, 2007.

[RI00] John Scott Robin, Cynthia E. Irvine, Analysis of the Intel Pentium‟s Ability to Support

a Secure Virtual Machine Monitor, Proceedings of the 9th USENIX Security Symposium,

2000, www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA423654.

[RKG07] R. Ramaker, W. Krug, W. Phebus, Application of a Civil Intergrated Modular

Architecture to Military Transport Aircraft, Digital Avionics Systems Conference (DASC),

2007, p. 2.A.4-1 to 2.A.4-10, 2007.

[Rom08] George Romanski, Management of Configuration Data in an IMA System, Digital

Avionics Systems Conference (DASC), p. 1.B.5-1 - 1.B.5-10, 2008, IEEE.

[Rus81] John Rushby, Design and verification of secure systems, Eighth ACM Symposium

on Operating System Principles, p. 12-21, 1981,

http://www.sdl.sri.com/papers/sosp81/sosp81.pdf.

[Rus01] John Rushby, Formal Verification of McMillan‟s Compositional Assume-Guarantee

Rule, 2001, SRI International, http://ftp.csl.sri.com/users/rushby/papers/mcmillan.pdf.

[Rus08a] John Rushby, Separation and Integration in MILS (The MILS Constitution), SRI-

CSL-08-XX, February, 2008, SRI International,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.9324.

[Rus08b] John Rushby, A Formal Model for MILS Integration, no. SRI-CSL-08-XX, May,

2008, SRI International, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.9005.

http://www.ffi.no/no/Rapporter/12-00049.pdf
http://www.ffi.no/no/Rapporter/12-00049.pdf
http://calhoun.nps.edu/public/handle/10945/7141
http://www.csl.sri.com/users/rushby/slides/mipp-jan07.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.9324

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 57 of 59

[SBY+13] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy David Terei, Alejandro

Russoa, “Eliminating Cache-Based Timing Attacks with Instruction-Based Scheduling,” in

Proc. of the 18th European Symposium on Research in Computer Security (ESORICS) 2013,

2013, p. 718-735.

[SG95] Mary Shaw, David Garlan, Formulations and formalisms in software architecture,

Computer Science Today, p. 307-323, 1995, Springer, http://www-

2.cs.cmu.edu/~Compose/ProgCodif.pdf.

[Shi06] Kanna Shimizu, «The Cell Broadband Engine processor security architecture,

Hardware solutions to problems insoluble in software»,

http://www.ibm.com/developerworks/power/library/pa-cellsecurity/, IBM DeveloperWorks®,

April 2006.

[SKPP] Information Assurance Directorate, U.S. Government Protection Profile for

Separation Kernels in Environments Requiring High Robustness. Version 1.03, June, 2007,

http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/.

[SLN+10] F. L. Sang, É. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting an I/OMMU

vulnerability,” 5th International Conference on Malicious and Unwanted Software

(MALWARE), pp. 7-14, 2010.

[SNAC10] Systems and Network Analysis Center / Information Assurance Directorate,

Separation Kernels on Commodity Workstations, March, 2010, http://www.niap-

ccevs.org/announcements/Separation%20Kernels%20on%20Commodity%20Workstations.pd

f.

[SPL95] Olin Sibert, Phillip A. Porras, Robert Lindell, The Intel 80x86 Process Architecture:

Pitfalls for Secure Systems, Security and Privacy, Proceedings, 1995 IEEE Symposium on, p.

211-222, 1995.

[SRIOV] PCI-SIG. Single Root I/O Virtualization and Sharing Specification - Revision 1.01.

Technical report, 2010.

[SS75] Jerome H. Saltzer, Michael D. Schroeder, The Protection of Information in Computer

Systems, Proceedings of the IEEE, vol. 63, no. 9, p. 1278-1308, 1975,

http://web.mit.edu/Saltzer/www/publications/protection/,

\urlhttp://www.cs.virginia.edu/~evans/cs551/saltzer/.

[Ste91] Daniel F. Sterne, On the Buzzword `Security Policy', IEEE Computer Society

Symposium on Research in Security and Privacy, p. 219-230, 1991.

[SV10] F. L. Sang and V. Nicomette, “Attaques DMA peer-to-peer et contremesures,” in In

Proc. of Symposium sur la Sécurité des Technologies de l‟Information et des

Communications (SSTIC 2011), 2011, pp. 147-174.

[Tan07] Andrew S. Tanenbaum, Modern Operating Systems, 3rd edition, 2007, Prentice Hall,

Upper Saddle River, NJ, USA.

[TBF13] Sergey Tverdyshev, Holger Blasum, Igor Furgel, Compositional Assurance: EURO-

MILS ST/PP for Separation Kernel Based Virtualization, ICCC 2013,

http://www.fbcinc.com/e/iccc/day2.aspx.

[TCG11] Trusted Computing Group™, «TPM Main Specification»,

http://www.trustedcomputinggroup.org/resources/tpm_main_specification, 2011.

http://www-2.cs.cmu.edu/~Compose/ProgCodif.pdf
http://www-2.cs.cmu.edu/~Compose/ProgCodif.pdf
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/
http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 58 of 59

[Til+13] Axel Tillequin, and others, “Project Requirements: Classification, Cross-domain

analysis and High-Level Architecture”, EURO-MILS Deliverable D11.1

[Tri12] Benoît Triquet, “Mixed Criticality in Avionics”, Airbus, in Workshop on Mixed

Criticality Systems, European Commission, February, 2012,

http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/triquet.pdf.

[Uch05] Gordon Uchenik, Protection Profile for Partitioning Communications Systems in

Environments Requiring High Robustness, V0.85 (available on request from Objective

Interface Systems).

[Uch07] Gordon Uchenik, Partitioning Communications System for Safe and Secure

Distributed Systems, Digital Avioncis Systems Conference (DASC), p. 2.E.5-1 - 2.E.5-8,

2007.

[UV05] Gordon M. Uchenik, W. Mark Vanfleet, Multiple independent levels of safety and

security: high assurance architecture for MSLS/MLS, Military Communications Conference,

2005. MILCOM 2005. IEEE, p. 610-614, 2005.

[Wik13] Wikipedia, Comparison of platform virtual machines - Wikipedia, The Free

Encyclopedia, 2013,

http://en.wikipedia.org/w/index.php?title=Comparison_of_platform_virtual_machines&oldid

=567335721 [Online; accessed 15-August-2013].

[Win13] Wind River, Wind River VxWorks MILS Platform 3.0, 2013,

http://www.windriver.com/products/platforms/vxworks-mils/MILS-3_PN.pdf.

[Wis11] SKPP Sunset Q & A, 2011, http://www.niap-

ccevs.org/announcements/SKPP%2520Sunset%2520Q%26A.pdf.

[WM12] Carl Waldspurger and Mendel Rosenblum. 2012. I/O virtualization. Commun. ACM

55, 1 (January 2012), 66-73. DOI=10.1145/2063176.2063194

http://doi.acm.org/10.1145/2063176.2063194

[WOM02] Mike Weller, Roger Odell, Lee MacLaren, Partitioning Kernel Protection Profile

Report, 2002,

http://web.archive.org/web/20031209153634/http://www.omg.org/docs/security/02-11-07.doc

.

[WP08] Alex Wilson, Thierry Preyssler, Incremental Certification and Integrated Modular

Avionics, Digital Avionics Systems Conference (DASC), p. 1.E.3-1 - 1.E.3-8, 2008, IEEE.

[WR08] P. Willmann, S. Rixner, and A. L. Cox, “Protection Strategies for Direct Access to

Virtualized I/O Devices,” in 2008 USENIX Annual Technical Conference, 2008, pp. 15-28.

[WR11] R. Wojtczuk and J. Rutkowska, “Following the White Rabbit: Software Attacks

Against Intel VT-d Technology,” 2011.

[YF13] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low Noise, L3 Cache

Side-Channel Attack,” 2013, pp. 1-9.

[YYW08] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman, “IBM Research Report -

Direct Device Assignment for Untrusted Fully-Virtualized Virtual Machines,” IBM, 2008.

[ZAF06] Jie Zhou, Jim Alves-Foss, Architecture-Based Refinements for Secure Computer

Systems Design, Proc. Policy, Security and Trust, November, 2006.

http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/triquet.pdf
http://doi.acm.org/10.1145/2063176.2063194
http://web.archive.org/web/20031209153634/http:/www.omg.org/docs/security/02-11-07.doc

D21.1 – MILS Architecture

EURO-MILS D21.1 Page 59 of 59

[ZAF08] Jie Zhou, Jim-Alves Foss, Security policy refinement and enforcement for the

design of multi-level secure systems, Journal of Computer Security, vol. 16, p. 107-131, 2008,

IOS Press.

[ZSP+12] Yinping Zhou, Yulong Shen, Qingqi Pei, Xining Cui, Yahui Li, Security

Information Flow Control Model and Method in MILS, 2012 Eighth International Conference

on Computational Intelligence and Security

	Introduction
	MILS concepts and state of the art
	Modular high-assurance safety in avionics
	Modular high-assurance computer security
	Certification aspects
	Architectural decomposition and modelling

	MILS representation adopted by EURO-MILS
	MILS architecture template
	MILS system
	MILS core
	MILS platform
	Partition
	Security audit
	Middleware

	MILS terminology
	Component
	Resource
	Communication object
	Security policy
	Resource allocation policy
	Access control policy
	Information flow policy
	Configuration
	Application
	Domain
	Partition
	Function
	Separation kernel
	MILS core
	MILS platform
	MILS system
	MLS system
	Terminology rationale

	Example of a MILS system

	MILS main components
	Software components
	Separation kernel
	Services
	Pictorial view
	Classical approach
	Policy-based description
	Description of functionality grouped according to where separation is made (space/time)
	Virtualization services on top of separation kernels

	Architecture
	Assumptions on the environment

	Generic device abstraction component
	Services
	Architecture
	Assumptions on the environment

	Console system component
	Services
	Architecture
	Assumptions on the environment

	Network system component
	Services
	Architecture
	Assumptions on the environment

	File system component
	Services
	Architecture
	Assumptions on the environment

	Audit system component
	Services
	Architecture
	Assumptions on the environment

	Generic application component
	Services
	Architecture
	Assumptions on the environment

	Hardware components
	Introduction
	Processing units
	Memory Management Units (MMUs)
	Input/Output Memory Management Units (IOMMUs)
	I/O sharing
	Timers
	Chain of trust

	System configuration of components
	Configuration of the separation kernel: configuration space
	Configuration of other components: configuration space
	Configuration management
	System update

	Conclusion
	Overview of component policies and reuse
	Secure design principles
	Results
	Acknowledgment

	Glossary
	List of Abbreviations
	Bibliography

