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Executive Summary 

We introduce a generic description of MILS systems (Chapter 2), and the MILS architecture 

template (Chapter 3). Chapter 4 discusses MILS main components. The practical aim of this 

document is two-fold: (1) to get a common understanding of MILS terms and definitions, and 

(2) to provide a framework to derive the information flow, access control and resource 

allocation of the demonstrators from individual MILS components. 
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Chapter 1 Introduction 

EURO-MILS claims that “the project's cornerstone is MILS (Multiple Independent Levels of 

Security), a high-assurance security architecture that supports the coexistence of untrusted 

and trusted components, based on verifiable separation mechanisms and controlled 

information flow” [Cordis12]. While MILS is well established in practice, and products 

claiming MILS compliance do exist since the mid 2000s, it so far has not been standardized or 

given a formal definition, in particular “there is no standard that defines which functionalities 

reside in a MILS-compliant system and how a MILS kernel should be designed.” [DPF09, p. 

4]. 

In the absence of such a standard, to reflect meaningfully MILS, a common understanding of 

some terms related to “architecture” is helpful. We introduce a generic description of MILS 

systems (Chapter 2), and the MILS architecture template (Chapter 3). Chapter 4 discusses 

MILS main components. 
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Chapter 2 MILS concepts and state of the art 

In publications on MILS such as [AFHOT06] reference is made to high-assurance safety (in 

particular avionics) and high-assurance security. We briefly recapitulate both backgrounds, 

based on well available material, without claiming to completely cover each development 

until the present. We also introduce certification and architectural decomposition and 

modelling aspects of MILS. 

2.1 Modular high-assurance safety in avionics 

Safety assurance levels: [ARP4754] introduces a notion of safety assurance levels: if the 

failure of an application would have an impact that causes severe damage (e.g. loss of 

aircraft), the application is of a high assurance level. Otherwise, if the failure of an application 

would have an impact that causes a minor nuisance (e.g. loss of passenger entertainment 

system), the application is of a low assurance level. Applications at a high safety assurance 

level have stronger process requirements (planning, development, verification) than 

applications at a low safety assurance. 

IMA: Integrated Modular Avionics (IMA) is an architectural concept for modular avionics 

software systems that has been inspired from previous architectural concepts for physically 

modular hardware systems that consisted of LRUs (Line Replacement Units). IMA replaces 

multiple instances of separate and dissimilar LRUs with fewer common processing modules, 

and provides shared power supplies, housing and communication links. IMA decomposes an 

IMA system into (1) an IMA platform consisting of hardware and core software doing 

resource management and process scheduling, and (2) IMA applications, which are software 

components interacting with the IMA platform. 

IMA systems are designed to host several applications with appropriate isolation on a set of 

shared hardware and software resources. In IMA, applications execute in an environment 

generally called a set of partitions. A partition is a unit of separation regarding resource (i.e., 

CPU, memory, etc.) allocation in space and time domains. The IMA architecture dictates the 

underlying operating system (OS) to be developed for hard real-time, safety critical avionics 

applications. One of the functional requirements applied to such an OS is to host multiple 

independent aircraft applications while the computing platform shall not introduce significant 

common failure modes between those applications; evidences of the mechanisms providing 

isolation between those applications shall be demonstrated. One upside is that this enables 

incremental qualification, under which one application can be upgraded without requiring the 

others to undergo new certification. 

IMA-related standards include a common interface for applications [ARINC653], and 

guidance for the development and certification of systems [DO-297]. 

[ARINC653] requires an operating system to manage partitions and a rich set of interfaces to 

manage their inter-partition communication, periodic assignment of CPU time to a partition, 

applications (“processes”) within a partition, memory allocation, and a health monitor 

responsible for reporting hardware, operating system software and application failures. 

[ARINC653] provides implementable interfaces for the above-mentioned functionalities (e.g., 

parameters and return values including error codes are defined). 
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Processes for the system development, certification planning, requirements determination, 

safety assessment, implementation verification and process assurance have been developed 

for complex integrated systems in avionics in general [ARP4754]. Similarly, [DO-297] 

describes the IMA-specific aspects of design assurance for all parties involved in 

development, integration, verification and validation of IMA systems. As considerations of 

the IMA platform, [DO-297, p. 11] lists availability (functional performance and resource 

management, health monitoring), integrity (including protection features, fault detection and 

partitioning), safety (appropriate architecture and design assurance), fault management and 

composability. [DO-297, p. 14] defines the aim of “robust partitioning” to provide an 

equivalent level of functional isolation and independence as a federated system 

implementation. A partitioning analysis demonstrates that “no application or sub-function in a 

partition could affect the behaviour of a sub-function or application in another partition in an 

adverse manner”. [DO-297] splits validation, verification, configuration management and 

certification processes into tasks done at the application level, the platform level, and the 

system level. 

IMA design is made to provide high-assurance safety systems for avionic industry. However, 

IMA requirements and development do not include security aspects, only random hardware 

faults and involuntary design errors are considered without taking into account failures due to 

malicious actions. 

2.2 Modular high-assurance computer security 

Security assurance levels: In computer security, the Common Criteria for Information 

Technology Security (CC, [CC12]) standard states that owners of assets (something valuable, 

e.g. a component in an aircraft or important data) place value on the assets. The risk of a 

threat to an asset “depends on the likelihood of the threat being realised and the impact on the 

assets when that threat is realised” [CC12, Part 1, p. 39]. Similar to the concept of safety 

assurance levels, an application which, under attack, impairs assets of high value (e.g., 

confidentiality of top secret data, integrity of a critical system) needs to provide a high 

security assurance and an application which, under attack, impairs assets only of low value 

needs to provide a low security assurance. Security assurance levels for individual 

components are especially used for standards that typically analyze distributed systems such 

as [ARINC811] for avionics and [ISA62443] for industrial automation. 

Evaluation assurance levels: However, there is an additional difference in computer security 

versus safety: safety assurance usually considers probabilities of faults (e.g., ARP 4761, ISO-

26262), and in systems, combined and dependent probabilities (e.g. “fault tree analysis”). In 

computer security, security risks are more “all or nothing”: for example, once an attacker 

knows that access to an asset is possible by exploiting two weaknesses successively, he/she 

will perform those actions in the required order. In particular this also holds if a larger system 

is incorrectly specified, and exploits against the larger system can be derived simply by 

analysis of the specification. In [CC12, Part 1, p. 41] the sufficiency of the countermeasures 

against a threat is thus shown by analysis in a document (the “Security Target”), and the 

correctness of a product is shown by evaluation in a graded evaluation process. If a product 

has undergone an extensive evaluation process, it gets assigned a high evaluation assurance 

level (EAL). If a product only has undergone a more limited evaluation process, it gets 

assigned a low evaluation assurance level. 

Security policy and security policy levels: To build systems on consistent specifications, a 

security policy is imposed upon a system. A security policy often assigns security policy 
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levels to elements of a system. A widely applied security policy for confidentiality was Bell-

LaPadula that assigned to each component a label indicating a security level such as “public”, 

“classified”, “secret”, “top secret”, where “public” is less than “classified”, “classified” less 

than “secret” and “secret” less than “top secret”. On such a policy, each pair of components 

can be compared (a set with such features is also called a “total order”). It allows 

implementing schemes such as Bell-LaPadula, which (in simple terms) says that no-one is 

allowed to “read up” (read information of a higher security level than his/her classification) or 

to “write down” (write information to a lower security level than his/her classification). Bell-

LaPadula was also chosen as the reference model for the Orange Book [Dod83]. Similarly, 

the Biba integrity policy can be seen as inverting the labels (“no write up”, “no read down”). 

Multi-level secure systems (MLS): An MLS system maintains multiple security policy levels 

at the same time, often by assigning security labels to its components and resources. Systems 

implementing the afore-mentioned Bell-LaPadula or Biba models have been called MLS 

systems [And08]. A broader definition of the term MLS will be discussed under “MLS versus 

MILS nowadays” below. 

Operating systems: Much early work in high-assurance modular computer security has been 

on secure operating systems [MP97]. The earliest uses of computers involved programs 

directly operating on hardware, addressing individual memory cells directly and exclusively 

using the entire hardware. However, maintainability concerns lead to the development of a 

more modular usage, by installing an operating system on the hardware. An operating system 

is a software system that (1) simplifies access to underlying hardware by providing 

appropriate abstractions to applications, (2) provides resource management (e.g. memory) and 

in particular is able to allocate CPU(s) to applications (scheduling). Operating systems also 

can provide networking or file system infrastructure to computers. 

Security kernels: Many secure operating systems have used security kernels [MP97]. Security 

kernels have a small implementation, and thus can be more easily reviewed than a complex 

operating system. Security kernels target integrity, availability, and (usually a lesser concern 

in safety) confidentiality of applications and data and impose a security policy on the system. 

Security kernels, for example Honeywell‟s Scomp [Fr83], supporting a security policy with 

multiple security policy levels had usually been subsumed under “multi-level secure” (MLS) 

systems. 

In a security kernel, applications that are running at a certain security policy level fixed for 

each application are called “single-level secure” (SLS). If multiple instance of one SLS 

implementation are deployed in a system while each of those instances processes a different 

security level it will lead to “multiple single-level secure” (MSLS) components. Applications 

may implement security policies on completely different features than security kernels, so 

policies provided by applications versus policies provided by the separation kernel cannot 

always be directly compared. However, an implicit requirement on security kernels is that 

their security assurance level is at least as high as or higher than the highest security 

assurance level found in any application.  

Classification of applications in a security kernel: Unless otherwise specified, the 

applications are SLS. Applications spanning multiple security policies are also MLS, such as 

a downgrader. For a collection of classifications, see Table 1. The underlying idea of such 

classification is that, from an information flow policy and resource sharing viewpoint only 

MSLS and MLS components need to be verified [AFHOT06]. 
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SLS: Single-Level 

Secure Components 

[Alv98, AFHOT06, 

ZAV06] 

A Single Level Secure Component is a component that every time 

processes data of one security level. 

MSLS: Multiple 

Single-Level Secure 

Component 

[AFHOT06, ZAV06] 

A Multiple Single-Level Secure Component is a special kind of SLS 

component that processes data of multiple security levels, but 

always maintains separations between classes of data by exclusively 

processing only one security level during its runtime instance. For 

example this separation can be implemented by allowing access to a 

different security level only when the component has rebooted with 

different parameters. Also deploying multiple instances of one SLS 

component processing different single security levels turn this SLS 

component into an MSLS component. 

Note: in [Alv98] this was restricted to temporal separation, “at a 

single time-point, only handles information from one component”. 

If such a single-level process is to be implemented as untrusted 

process [Alv98], it can be supplemented by an appropriate labelling 

and filtering of messages. Moreover, in [Alv98] SLS and MSLS are 

subsumed under “secure single-level process”. 

MLS: Multi-Level 

Secure Component 

[Alv98, AFHOT06, 

ZAV06] 

A Multi-Level Secure Component is a component that handles 

information of with different security levels concurrently during 

one runtime instance. An example of an MLS component is a 

separation kernel [MPT+12] or a downgrader [ZAV06]. 

Table 1: Levels of components 

Multiple independent levels of security (MILS): Encoding rich functionality into a central 

component raises the question of how to design a security kernel that is itself secure. 

Therefore, the functionality of security kernels has been broken up into a more structured 

design. To differentiate such systems from “MLS” systems, the term “MILS” (multiple 

independent levels of security) has been introduced. It describes systems where different 

partitions hosting applications are either independent from each other or connected by 

communication channels without an explicit hierarchical ordering policy that would require 

attaching global security policy levels to each partition. 

The MILS architecture approach was popularized by John Rushby in 1981 ([Rus81], “Design 

and Verification of Secure Systems”; at that time, Rushby did not use the term MILS), which 

started a formalisation of MILS concepts. In his approach, the system is designed as a 

distributed one and is based on a special kind of operating system using a separation kernel 

(SK). He proposed that the security should be achieved partly through physical separation, 

partly through the use of components and partly through trusted functionalities performed 

within some components. The purpose of the separation kernel is to allow such a “distributed” 

system to run within a single processor. This is achieved by offering a very strong separation 

between the different partitions except for very carefully controlled information flow between 

them. 

The basic idea of MILS is to make the security-critical part of the system (i.e., SK) small 

enough and with specific functionality so it can be certified at high assurance levels. 
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Traditional operating system services like device drivers, file system, etc. are pulled out of the 

separation kernel and run in non-privileged mode; the only part of the MILS system running 

in privileged mode is the SK. Safety and security policies must be enforced at each level: by 

the separation kernel and by any other component needed by the applications hosted in the 

partitions, but also by the applications themselves. A key MILS objective is to enable the 

evaluation and certification of a complex system to be modularized into a number of 

independent, small evaluations. 

MILS separation kernel security assurance characteristics: In practice, MILS principles 

largely match the requirements imposed by users and producers of IMA systems who, in 

addition to their IMA safety requirements, had an additional need for security requirements. 

In the MILS literature, explicit concerns for security assurance have been formulated as 

“NEAT” [BBH+05, KW08, UV05], as follows: 

 Non-bypassable: Policy enforcement functions cannot be circumvented. 

 Evaluatable: Policy enforcement functions are small enough and simple enough that 

proof of correctness is practical and affordable. 

 Always Invoked: Policy enforcement functions are invoked each and every time. 

 Tamperproof: Policy enforcement functions and the data that configures them cannot 

be modified without authorization. 

Similar definitions exist elsewhere, e.g. “evaluatable”, “always invoked”, “tamperproof” for 

reference monitors in [And72, p. 22]. 

Objectives and threats in MILS systems: In computer security, a threat is characterized by 

some adverse action achieved by an attacker who attacks system assets. The objectives of 

computer security are to counter threats in order to mitigate the risk of a threat scenario. 

Assets for MILS system and its components can be formulated in a straightforward way: 

 for each component itself,  

o with the objectives of the preservation of its confidentiality, integrity, and 

(possibly) availability, 

 for each resource the component uses,  

o with the objectives of the preservation of its confidentiality, integrity, and 

(possibly) availability. 

Threats can be named against the preservation of each the security attributes: 

 for confidentiality, the threat is disclosure, 

 for integrity, the threat is modification, 

 for availability, the threat is depletion. 

MLS versus MILS nowadays: Earlier in this section (“Multi-level secure systems (MLS)”) a 

strict hierarchically ordered security policy based on security policy levels had been discussed 

in the context of MLS. One insight gained by the MILS approach was that several 

components on the same platform have safety and security requirements that are just 

“different” in a wider sense. This insight had led to (1) applying the term MLS also in that 

wider sense [DCS+04, LRP+11], and (2) to use MILS to describe an architectural 

decomposition approach of an MLS system into components [Alv98, AFHOT06, ZAF08]. 
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For the rest of this document we use the term MLS for systems based in the wider sense (1) 

and MILS for the architectural decomposition approach (2). 

2.3 Certification aspects 

For IMA, DO-297 describes how to perform incremental certification [DO-297, WP08]. A 

case study on compositional certification of a system built on a separation kernel using 

Common Criteria approach is given in [MPS+12]. 

The Open Group plans to develop a catalogue of components under the “Mils
(TM)

” (this 

spelling) trademark that are backed by an Open Group Mils protection profile. [RD07, Del10] 

list protection profiles for MILS components such as console system, a network system and a 

file system, and suggest to specify the allocation of trust of specific MILS components to a 

MILS Integration Protection Profile (MIPP); however, these PPs are in draft form and are not 

public.  

[SKPP] was a protection profile for separation kernels running on hardware. Successful 

certification was achieved for the Green Hills Integrity system running on PowerPC 750CXe 

PCI extension card [Gre08]. However, [SKPP] has been retracted (“sunsetted”) by NSA in 

September 2011. The published rationale for the sunsetting includes the considerations (1) 

that the NSA “will focus on specific government systems using separation kernels rather than 

general OS evaluation” [Wis11], and points [Hou11] to that (2) in the project “one box one 

wire” (OB1) “the underlying commodity workstation (as part of a separation platform) does 

not appear to be appropriate for SKPP certification due to its complexity” and that “the 

problem with commodity desktop platforms comes down to the fact that too many developers 

and vendors are interdependent” [SNAC10]. In balance, in the same document, it is pointed 

out that “commodity workstations may present a completely acceptable risk profile given 

available options” and the “findings in this document do not condemn OB1 or the use of 

separation kernels in commodity workstations”, [SNAC10, also discussed in NG12]. Note: 

concerning (1), this policy change does not apply to Europe, concerning (2), our certification 

approach for the separation kernel component does not include the hardware. That is, we 

assume that either the hardware has been certified by the CC, or it is trusted to be reliable for 

other reasons, e.g. by evidence from the hardware vendor that the hardware is suitable for the 

security-critical purpose intended.  

For partitioning communications systems (PCS), a protection profile draft exists [Uch05] 

(available on demand from the author) which extends the PIFP (partitioned information flow 

policy) from [SKPP] to distributed environments. The High Assurance Security Kernel 

protection profile [HASK] also addresses distributed communication systems in the style of a 

PCS. 

2.4 Architectural decomposition and modelling 

Since a long time research on security software architecture has emphasized principles that 

also can be found in MILS systems. For example, discussing mechanisms and techniques that 

define who may use or modify the information stored in a computer, Saltzer and Schroeder 

have pointed out that the design shall be kept “as simple and small as possible” [SS75, p. 

1282], that “every access to every object” shall be checked and that the design shall be open 

(not secret). As they are widely known, we will revisit the [SS75] design principles and the 

extent to which they are fulfilled later (in Section 5.2). 
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In the context of general research on software architecture, the MILS approach with its strong 

emphasis on how a system is composed would subsumed under a structural model which is 

characterized by components, connectors and additional constraints [BCK03, SG95, ZAF06, 

ZAF08]. A MILS channel is a “connector” and the additional constraint on the system (“other 

stuff” in [SG95]) is non-interference. For component-connector type systems, [CBB+03, 

Section 4.7] proposes documentation in the form of either Architecture Description 

Languages or UML. If UML is used, [CBB+03, Section 4.7] discusses how to represent 

components and connectors in UML and note that connectors can be either expressed as 

dependencies between a component, and the ports/interfaces realized by the component or as 

components themselves (p. 162). [ZAF06, ZAF08] discuss decomposition patterns for 

components such as “product pattern”, “cascade pattern”, “feedback pattern” and several 

instances of “aggregation patterns”. 

The secure refinement of a downgrader with regards to information flow properties is 

demonstrated by a paper-and-pencil argument in [CVdM09]. 

MILS architectures have been expressed in Architecture Analysis and Design Language 

(AADL), verified by the REAL tool [GH08], and then been used for code generation by 

[DPK10]. MILS components have been expressed in the LOTOS language by [Alv98]. In 

[BBH+05], boundary flow modelling and secure UML are listed as possible support to the 

system integrator. The software engineering tool Specware for the breakup of a system has 

been used by [MWTG00]. [Cof11] discusses identification of architecture design patterns on 

an IMA system. 
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Chapter 3 MILS representation adopted by EURO-

MILS 

This chapter presents the EURO-MILS project view of a MILS architecture template using a 

top-down approach (Section 3.1), followed by a bottom-up approach giving definitions of 

terms considered useful to describe the MILS architecture template (Section 3.2). We 

conclude this chapter with an example (Section 3.3). 

3.1 MILS architecture template 

Figure 1 presents a high-level view of a MILS architecture template. This is the template we 

adopt in the EURO-MILS project. The term “MILS architecture template” names a template 

encompassing many possible MILS systems, whereas the term “MILS architecture” (without 

“template”) refers to the architecture of the implementation of a concrete MILS system. 

From the outside (i.e., external world, which could be a larger system comprising the MILS 

system), the MILS system is seen as a system that handles information from multiple 

components with different security and safety levels concurrently, in other words, an MLS 

system. The MILS system‟s internal architecture is not visible from the point of view of the 

infrastructure around the MILS system (it is like a black box). Thus, a MILS system can be 

used as a base to build a system that has different safety/security requirements for different 

components, called an MLS system. 

In the rest of the section, we are discussing in more details each part shown in Figure 1. 
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Figure 1: MILS architecture template (components in dashed lines are optional). 

3.1.1 MILS system 

We define a MILS system as a system where its MILS architecture is visible to the person 

composing the MILS system from its components, i.e., the system integrator. 

A MILS system consists of components interacting with each other. We define three main 

components in a MILS system: 

 MILS core (Section 3.1.2) 

 MILS platform (Section 3.1.3) 

 Partition (Section 3.1.4) 
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3.1.2 MILS core 

 

Figure 2: MILS architecture template: MILS core 

The only goal of the MILS core is to provide separated partitions with controlled information 

flow between them. Thus, the MILS core provides the primary security functionality of a 

MILS system. The MILS core (Figure 2) consists of components that implement and enforce 

the separation both in space and time: separation-supporting hardware and the separation 

kernel. Depending on use-case implementation, the MILS core may also include hardware 

critical devices and software for these hardware devices. 

 Separation-supporting hardware. 

This hardware consists of implementation (gates in silicon) and 

configuration/initialization. 

The hardware shall support separation, e.g. CPU with different privilege modes, MMU, 

memory bus, IOMMU. Hardware consists of interconnected components. A hardware 

component‟s interactions with other hardware components can be restrained by a guard. 

For example 

o Let‟s consider a CPU, memory, and MMU. Assume the CPU is working in a user 

mode. In this mode, the CPU can only access memory if the access has been 

permitted by the MMU. Thus, the MMU is the guard for the CPU. 

o Let‟s consider a device, memory, and IOMMU. Assume the device accesses 

memory as a DMA. In this case, DMA access will happen only if the IOMMU 

permits it. Thus, the IOMMU is the guard for this device. 

Configuration/initialization is software that performs hardware-specific initialization and 

configuration of hardware, e.g. firmware and/or bootloader and/or stand-alone software. 

 Separation kernel. 

The separation kernel guarantees separation and controlled information flow by enforcing 

the security policy. 

Examples of enforced security polices are 

o resource allocation policy (e.g. allocation of CPU time and memory to partitions), 

o access control policy (e.g. access rights to objects under control of separation 

kernels), 

o information flow policy (e.g. communication rights of partitions). 
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Separation kernel functionality relies on the hardware supporting functionality. 

A separation kernel may further configure hardware with the respect to a given security 

policy. For example, it configures guards, creates page tables and sets MMUs. 

 Critical hardware parts/devices. 

These devices can bypass the enforcement mechanisms of the separation kernel. For 

example, DMA capable devices without guards (i.e. without IOMMU) can bypass the 

separation kernel. To have such critical devices is optional. However, if such device is 

present, its associated software acting as a guard for it must be also present in the 

architecture. 

 Software for critical hardware parts/devices.  

This software is the guard for a critical device. It provides an API to partitions to work 

with the device. Therefore, this software implements and enforces part of the separation. 

We assume that if the software correctly works with the device, the device will not bypass 

the separation kernel security policies. 

3.1.3 MILS platform 

 

Figure 3: MILS architecture template: MILS platform 

The MILS platform (Figure 3) consists of the MILS core and optional software and/or 

hardware components that provide secondary security functionalities and do not contribute to 

the enforcing of separation. These are security services that can be used based on the use-case 

needs. 

These optional components are part of the platform because they  

 contribute to the system security, however, they do not enforce separation between 

partitions, 

 can be used by several partitions, 

 may be realized by different implementations for a given optional security service (use-

case dependent), 

 might need a tighter integration with separation kernel or hardware.  

Examples of such optional components are: 

o security audit (Section 3.1.5), 

o crypto functionality shared between partitions, 
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o software implementing virtualization of devices (e.g., multiplexing of accesses for 

the network interface, shared graphics or shared audio). 

3.1.4 Partition 

A partition is a unit of the separation created by the MILS core. A partition will get resources 

as specified in a security policy and enforced by the MILS core. A partition is a container that 

hosts executable and/or non-executable data. An executable in the partition can use allocated 

resources, communicate with the MILS core, and communicate with other partitions under 

control of the MILS core if such communication is explicitly allowed by the security policy. 

Partitions also may include hardware that is not separation-relevant. For example, an FPGA 

doing cryptography can be under full control of a single partition. 

3.1.5 Security audit 

Security audit, if it exists, is part of the MILS platform. Security audit is the trustworthy 

gathering of audit records. The audit records can be generated by the MILS core components 

or applications hosted by partitions. 

A security audit component processes incoming data by adding trustworthy security related 

information such as time stamps and source of audit record. It can be local and managed by 

the audit component but also exported to an external media, this aspect being use-case 

implementation dependent. 

3.1.6 Middleware 

 

Figure 4: MILS architecture template with middleware: components in dashed lines are optional. 
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The term middleware is generally not well defined and its meaning always depends on the 

context. 

We define middleware as a set of services that are used by several partitions. Middleware 

does not contribute to the separation enforced by the MILS platform and is itself under control 

of the MILS platform, thus it is a unit (a partition) under control of the separation kernel. The 

system integrator of a MILS platform for a MILS system can decide to have middleware or 

not. Middleware can be a partition providing some functionality for several other partitions or 

be a part of a partition (e.g. libraries, run-time environments guest operating systems). For 

instance, the habitat of middleware is also restricted to be within a partition in [Win13, p. 3, 

Figure 2]. 

By introducing the concept of the middleware, we acknowledge that it can be useful to 

express that some partitions can be part of a bigger function (see Figure 4), and thus, need 

common infrastructure, which is not related to the MILS core or the MILS platform. In the 

generic MILS architecture template, we agreed to not use the term middleware to avoid any 

misunderstanding because it depends on the use-case where a MILS system is employed. 

3.2 MILS terminology 

3.2.1 Component 

A component is a term to describe the decomposition of a (in general, any) system into 

meaningful self-contained parts. For example, a (yet to be defined) MILS system consists of 

components. In general, components may be implemented by (1) hardware, (2) software, or 

(3) a combination of hardware and software [CBB+03, DO-297]. A component provides a 

given functionality that can be configured according to a given use-case. 

3.2.2 Resource 

A resource is anything (processor such as a CPU or a processing core, memory, software, 

data, network, etc.) internally used or exported by a component. A resource may be physical 

(a hardware device) or logical (a piece of information). A resource may be shared by multiple 

components or be dedicated to a specific component. 

Exported resources are those resources to which an explicit reference is possible via a 

component interface, e.g., the programming or configuration interface. Internal resources are 

those resources used exclusively by the component, and which have no explicit reference via 

a component interface. 

For example, internal resources of an operating system usually comprise physical memory 

space, I/O memory space, the set of processors the applications can run on, allocated 

processor time for each processor (at least, when the operating system is a real-time operating 

system), and interrupts. A resource commonly exported by an operating system is a “file”. 

The operating system enforces an access control policy on the file. Internally, it uses memory 

to export the file. Another exported resource exported by an operating system is time slices, 

and the operating system enforces a scheduling policy (a resource management policy). 

Internally, the operating system uses CPU time that itself has access to. 
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3.2.3 Communication object 

A communication object is an exported resource provided by a component. It can be shared 

between components. Communication objects are used by components to communicate 

between them. 

3.2.4 Security policy 

A security policy is a set of rules to be enforced by a component. Examples of security 

policies are: 

- Resource allocation policy (Section 3.2.5) 

- Access control policy (Section 3.2.6) 

- Information flow policy (Section 3.2.7) 

In our context, all three policies describe rules for granting or denying some “treatment” of 

exported resources, with “treatment” of a resource standing for to be able to eventually 

“read”, “write”, or “execute” the exported resource. The distinction between the resource 

allocation policy and the access control policy is which interface the rules for access are 

applied on.  

The term information flow policy has more than one usage, the most simple one is to use it as 

an umbrella term for “access control policy” and “resource allocation policy” combined. For 

most components, in the scope of this document, we adopt this simple interpretation, making 

these three security policies closely related. We decided not to merge the three policies in 

order to allow a precise characterization of components where needed later. Moreover, a more 

“complicated” usage of the term “information flow policy” will be encountered when the 

separation kernel is described (Section 3.2.13). 

An operation might be governed by several policies: we consider both operations of “opening 

a file” and “reading/writing” to be involving access control to the file, however, the operation, 

depending on the implementation, could also be governed by a “resource allocation policy” 

such as the exclusive ownership of memory for the file descriptor to the component opening 

it. Similarly, the virtualization of a network component could comprise “access control” to 

Single Root I/O virtual functions and “resource allocation” if some of the virtual functions, 

after proper reinitialization, are assigned to different components during different periods of a 

time cycle (say 20 milliseconds each 100 milliseconds). 

Note: We have observed that making the distinction between resource allocation policy and 

access control policy mixes concerns of interface (functional requirements) into policy 

requirements. However, the interface available to an attacker defines the possible malicious 

operations of the attacker. Thus, making the distinction allows to differentiate attacks based 

on resource depletion (attacking the resource allocation policy defined below) and attacks 

against confidentiality/integrity of the resources (attacks against the access control policy 

defined below). 

A security policy can be dependent on system state, yet be bounded. For example, writing to a 

file may depend on that, statically, access to the file is allowed, and that, dynamically, a file 

descriptor is available after “opening” the file. Sometimes, in a usage that, after discussion, 

we do not follow in this document, the term “resource allocation” is used for initial 

establishment of a dynamic state, e.g. “opening a file” would be considered “resource 

allocation”, whereas “reading/writing” the file would be governed by access control. For this 
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document, as outlined above, we consider both operations of “opening a file” and 

“reading/writing” to be involving access control to the file.  

When describing the protection of assets in the system, one can assume that every action that 

is eventually possible by configuration will be used by an attacker, even if some initialization 

of the state is needed. Thus, the static configuration describes a bound for the behaviour that 

is dynamically possible. Section 4.3 further discusses system configuration. 

3.2.5 Resource allocation policy 

A component‟s resource allocation policy acts on the component‟s interface used to manage 

exported resources. This interface is characterized by that a request for a resource is made 

without knowing in advance how the resource is “named” or “addressed”. The request is 

made for a quantity of the resource, and then the component decides whether to grant or deny 

the request to export that resource in the desired quantity. The resource allocation policy 

defines which of the component‟s resources are kept internal to the component and which are 

exported to which other components. When a resource is exported to more than one other 

component, the resource is shared. A resource allocation policy can be in the “space” domain, 

when resources can be used simultaneously but are kept in different spatial (e.g. memory) 

locations or in the “time” domain, where resources are used sequentially, but kept in different 

time slices. An example for resource allocation in the “time” domain is the allocation of a 

CPU to a component for a limited period of time. 

3.2.6 Access control policy 

A component‟s access control policy acts on the component‟s interface used to manage 

exported resources. In this respect it is identical to the aforementioned resource allocation 

policy (Section 3.2.5). However, the interface is characterized by that a request to the resource 

includes an explicit reference to the resource (e.g. the resource‟s name or a numerical 

identifier). Identically to the aforementioned resource allocation policy (Section 3.2.5), the 

access control policy defines which of the component‟s resources are kept internal to the 

component and which are exported to which other components. When a resource is exported 

to more than one other component, the resource is shared. The access control policy is in the 

“space” domain. 

Note: as observed in Section 3.2.4, the resource allocation policy (Section 3.2.5) and the 

access control policy (this section) differ in the interface offered on the exported resources 

and they differ in the threats (exhaustion versus violation of integrity/confidentiality). For 

resource sharing, the threats a shared resource is exposed to are different: a resource shared 

under a resource allocation policy, e.g. a memory allocator that can be used by different 

components, can be exhausted (“denial of service”), but a resource shared by an access 

control policy, e.g. a piece of memory at a fixed address that is marked as accessible to 

several components, cannot. 

3.2.7 Information flow policy 

The term information flow policy has more than one usage,  

(1) the most simple one is to use it as an umbrella term for “access control policy” and 

“resource allocation policy” combined or  

(2) to express policies where pieces of information (messages) are written to one or 

several communication objects(s) by a sender and subsequently these messages are 
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read from the communication object(s) by a receiver. Such policies may include rules 

based  

(2a) on the sender/receiver of the messages and/or  

(2b) on the content of these messages.  

Note: for most components, interpretation (1) is used. (2a) will be used in the context of a 

separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of security 

gateway (discussed as an example in Section 3.3). An information flow policy in the sense of 

(2a) is either explicit, based on identities of components between which information flow is 

allowed, or implicit, as unambiguously defined by the resource allocation policy and access 

control policy. 

3.2.8 Configuration 

The configuration of a component contains the component‟s identity, and it defines any 

security policy (access control policy, resource allocation policy, information flow policy) 

enforced by the component. An information flow policy configuration also may be implicitly 

configured by resource allocation policy configuration and access control policy 

configuration. 

3.2.9 Application 

An application is one or more executable(s). 

3.2.10 Domain 

A domain (or “security domain”) is a unit of separation created and maintained by any MILS 

component, for example by an application (Section 3.2.9), a function (Section 3.2.12), or the 

MILS core (Section 3.2.14), which is enforcing a security policy on exported resources.  

In particular, a domain is a “space” domain, if exported resources can be used simultaneously 

but are kept in different spatial (e.g. memory) locations. A domain is a “time” domain, if 

exported resources are used sequentially, but kept in different time slices. 

3.2.11 Partition 

A partition is a component that serves to encapsulate application(s) and/or data. Thus, the 

content of a partition is application(s) and possibly other data. A partition is a unit of 

separation with respect to 

 resource allocation in the space and time domains, 

 an access control policy and an information flow policy in the space domain. 

In a MILS system, partitions are created and maintained by the MILS core (see definitions 

below) based on security policies defined for a given use-case. 

Note: this bottom-up definition of a partition has a different emphasis than the previous top-

down characterization given in Section 3.1.4, but does not contradict it.  

A partition is a domain, but a domain is not necessarily a partition. 
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3.2.12 Function 

A function is a logical group of partitions for achieving common objectives. The implied 

partitions may be connected using information flows. 

3.2.13 Separation kernel 

A separation kernel is a component that enforces a resource allocation policy and an access 

control policy on its exported resources (partition, resources allocated to a partition, 

communication objects). Communication objects allow for controlled information flow 

between partitions. A separation kernel may have an explicit or an implicit information flow 

policy on its partitions (see definition of information flow policy for details). 

The separation kernel uses separation-supporting hardware to provide the separation between 

partitions in a MILS core. 

Examples: 

 A resource allocation policy might assign a certain amount of time, for example 20 

milliseconds periodically every 100 milliseconds, of the resource CPU access to a 

certain partition, for example partition number 5.  

 An access control policy might assign communication object C as writable to 

partition A and readable to partition B, defining an implicit information flow policy 

from A to B. 

 An explicit information flow policy for a separation kernel could consist of the 

specification that only partition P via whatever interface may send information to 

partition Q. 

3.2.14 MILS core 

By MILS core we refer to the minimal set of components needed for separation of partitions 

on a MILS platform. The only goal of the MILS core is to provide separated partitions with 

controlled information flow between them. Thus, the MILS core provides the primary security 

functionality of a MILS system. The MILS core (Figure 2) consists of components that 

implement and enforce the separation both in space and time. 

3.2.15 MILS platform 

A MILS platform consists of the MILS core and optional software and/or hardware 

components that provide secondary security functionalities and do not contribute to the 

enforcing of separation. 

3.2.16 MILS system 

A MILS system is a concrete deployment of a MILS platform with a defined set of partitions. 

3.2.17 MLS system 

An MLS system is a system with different security requirements for different components. It 

can be implemented by a MILS system. 
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3.2.18 Terminology rationale 

The term component is a standard term for the description of software architectures (see also 

Section 2.4). On what can be a component we note that some presentations of MILS systems 

such as [UV05] come with a fixed number of layers. Others argue that, in principle, 

components themselves can contain MILS systems, allowing recursive compositions [Del12a, 

p. 56]. 

Resource: In software interface documentation, when specifying a component, we can 

describe what resources the component provides and what resources the component uses 

[CBB+03, p. 229]. In [SKPP, p. 21] resources that are provided by the component are called 

“external resources” whereas resources that are required by the component are called “internal 

resources”. From a resource usage perspective, resources can either be hardware or resources 

provided by other components as in [Tan07, p. 432] where “a resource can be a hardware 

device (e.g. tape drive) or a piece of information (e.g. a locked record in a database)” or “Any 

element of a data processing system needed to perform required operations; for example: 

storage devices, input/output units, one or more processing units, data files, and programs.” 

[ANS01]. The use of “resource” for describing hardware is also established in virtualization 

[PG74]. We have not found a stand-alone definition of the term “resource” in the MILS 

literature, but for separation kernels the hardware notion it appears close to [AFHOT06, p. 3] 

where the term is not explicitly defined. In the context of a description of a separation kernel, 

the term “shared resources” is expanded to “microprocessors, system registers etc.” whereas 

the “piece of information” aspect appears to be addressed in [Rus08a, p. 10]. 

In [Rus08a], our resource allocation policy, access control policy, and information flow 

policy are equated to a “resource sharing” + (information flow) “policy”. Also [SKPP] does 

not have any notion of an access control policy. We prefer to keep the three terms, because it 

simplifies mapping to [CC12], where the resource allocation policy can be mapped to the 

functional requirement class FRU_RSA, the access control policy can be mapped to 

FDP_ACF, and the information flow policy can be mapped to FDP_IFF. That resource 

sharing implies information flows and that conversely resource sharing analysis supports 

information flow analysis is widely accepted [Kem83, AFOB+12]. Resource allocation 

policies versus access control list-based policies, e.g. the need to maintain resource exhaustion 

quantifiers to enforce resource allocation quotas, are discussed in [Ste91, p. 228]. 

Our definition of application is based on [ANS01]. It avoids any notion of user, as 

mentioning the term “user” at an early stage of the introduction could create the 

misunderstanding that users are limited to human beings using the system interactively. 

The use of the term domain for environments where a security policy is imposed by a 

component can be found, for example, in [Lam71]. The same paper also shows (p. 428) 

examples for hardware-imposed domains (supervisor and software states) and software (user 

environments in an operating system). 

Our definition of partition is close to [AFHOT06, p. 2] where a partition is defined as “a 

collection of data objects, code and system resources”. [SKPP, p. 20] points out that the term 

is motivated from its use in mathematics, where a partition of a set A is used to describe the 

split of a set into disjoint subsets, so that each element of A belongs to exactly one of the 

subsets. 

Our definition of function (logical group of partitions for achieving common objectives) is 

what in [DO-297] is called an application.  
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MILS platform + partitions content = MILS system: this is emulated after IMA, where an 

IMA platform + partitions give an IMA system.  

MLS system: We identify a MLS system with a system having different security requirements 

for different components. In safety, the term “mixed criticality” is often used for this. As 

discussed in Section 2.2, historically, there exists also a more restrictive usage, where a MLS 

system has a transitive security policy [BDR+08]. In line with many others (e.g. [DCS+04, 

LRP+11]), we do not adopt that more strict definition. 

3.3 Example of a MILS system 

In this section the terminology of Section 3.2 is applied to a concrete MILS system described 

in [MPT+12]. The paper explains a gateway architecture implemented using the MILS 

principles for the purpose of controlling the content of the information flow between the 

hosted applications. Those applications process data of different security classification 

logically grouped into a green domain and a brown domain. As foundation, the gateway uses 

a separation kernel, which provides the functionality of partitioning and controlled non-

bypassable information flow. Thus, the separation kernel applies a Resource Allocation Policy 

and maintains an Access Control Policy and a basic Information Flow Policy, defining the 

partitions that are allowed to communicate among each other. However, this Information 

Flow Policy of the separation kernel is not able to ensure additional constraints on content of 

the data that is transferred using the communication objects. The gateway enhances this 

Information Flow Policy by this capability using the available foundations. 

 

Figure 5: Gateway architecture of a MILS system [MPT+12, Figure 3]. 

 Applying a black-box view from the outside onto the system in Figure 5, the system 

appears as a MLS system, since it processes data belonging to the green domain and 

data belonging to the brown domain concurrently. 

 Having a closer look into the architecture of the system, the system is a MILS system, 

since it uses a MILS platform (the Separation Kernel-based Operating System) and 

partitions identified by the blue dotted lines in Figure 5. 

 The MILS platform comprises the Separation Kernel-based Operating System (the 

MILS core) plus the Auditing Module mentioned in [MPT+12, Section II.D]. 

 The MILS core is the Separation Kernel-based Operation System [MPT+12, Section 

II.D] plus some unspecified hardware (that is not further described in [MPT+12]) but 

used and managed by this separation kernel. 

 As Separation Kernel the example uses PikeOS [MPT+12, Section II.D]. This 

separation kernel enforces the Resource Allocation Policy and Access Control Policy 

to form partitions (the blue dotted boxes) based on the available resources, such as 

memory, CPU cores and the program binaries. The separation kernel exports some of 

those resources for building communication objects. By controlling the accesses of the 
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partitions to those exported resources the separation kernel creates and applies a basic 

Information Flow Policy. Examples for exported resources are: ARINC 653 ports or 

file providers [MPT+12, Section IV.C]. 

 Partitions are provided by the separation kernel. The gateway relies on this crucial 

element for implementing its function. 

 Within the partitions the example executes several Applications, which is the content 

of the six blue dotted boxes in Figure 5. The paper specifies applications running 

within the “Gateway Outbound Partition” and within the “Gateway Inbound 

Partition”. Other applications are the Brown Applications and Green Applications. 

 As components the modules of [MPT+12, Section IV.II], such as the modules with 

specific functionality for filtering packets (named “Viewer Module”), reading/writing 

filtered packets across partitions (“Border-crossing Module”) or making decisions on 

packet routing (“Routing Module”) can be identified. The paper does not explicitly 

identify hardware; however it is assumed that the system contains at least a CPU, 

which again is a (hardware) component. 

 The purpose of the gateway is to enhance the basic Information Flow Policy of the 

Separation Kernel by the ability of controlling the content of the information flow 

(unidirectionally) [MPT+12, Section IV.I] and [MPT+12, Section V]. For achieving 

this logical function, the gateway uses the collaboration of two partitions: the Gateway 

Outbound Partition and the Gateway Inbound Partition. Other functions are given by 

the applications located inside the two security domains, which “can comprise one or 

more partitions” [MPT+12, Section IV]. Functions are depicted as a black solid boxes 

in Figure 5. 

  The system contains configurations of different applications: 

o The configuration of the gateway for defining the enhanced Information Flow 

Policy.  

o The configuration of the separation kernel for defining the Resource Allocation 

Policy and the Access Control Policy for the gateway components [MPT+12, 

Section IV.II]. [MPT+12, Section IV.III] forces the system integration to 

provide “enough buffer space” for the exported communication objects. 

[MPT+12, Section IV.IV] discusses the scheduling configuration of the 

system. Non-bypassability of the gateway‟s enhanced Information Flow Policy 

is ensured by the separation kernel. 
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Chapter 4 MILS main components 

The following characterization of components does not include all MILS components, but 

rather discusses the security properties of MILS components that are common to MILS 

platforms and occur frequently. We begin with software components (Section 4.1), followed 

by hardware components (Section 4.2) and discuss the configuration of MILS systems 

(Section 4.3). 

4.1 Software components 

4.1.1 Separation kernel 

A concise characterization of a “separation kernel” already has been given in Section 3.2.13. 

In this section, we look at the “separation kernel” as a MILS software component. 

4.1.1.1 Services 

4.1.1.1.1 Pictorial view 

 

Figure 6: Generic picture of a separation kernel with several partitions. 

The pictorial view is the most commonly found way to describe the services of a separation 

kernel. Figure 6 shows that each partition is under control of the separation kernel, in the 

sense that the separation kernel enforces the system configuration upon all their 

communication and resource requests in a non-bypassable way, while it is not inspecting or 

protecting what happens within the partition itself. For example, if a partition is authorized to 

communicate over a network and to use the HTTP protocol, the SK will not protect the 

application against infection by a virus introduced into the HTTP payload. 

 

4.1.1.1.2 Classical approach 

In some of the early work such as [BBH+05, UV05, AFHOT06] a strong emphasis on the 

implementation of information flow and its absence has been taken. 
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“The only tasks assigned to a MILS separation kernel are the partitioning of processes and 

failure containment. Consequently, we can represent the safety and security requirements for 

a separation kernel by four simple foundational policies: 

• Data Isolation: Information in a partition is accessible only by code running in that 

partition. Private data remains private. 

• Control of Information Flow: Information flow among partitions is from an authenticated 

source to authenticated recipients. The source of information is authenticated to the recipient. 

Information goes only where intended. 

• Resource Sanitization: Usage of the microprocessor and other hardware, such as 

networking hardware, cannot be used as covert channels to leak information. 

• Fault Isolation: A failure in one partition is prohibited from cascading to any other 

partition. Failure detection, containment, and recovery are performed locally” [UV05]. 

Similar formulations are found in an early draft of an SKPP predecessor (defining “data 

isolation”, “control of information flow”, “resource sanitization”) [WOM02]. 

 

4.1.1.1.3 Policy-based description 

For convenience, we repeat our definition from Section 3.2.13. 

“A separation kernel is a component that enforces a resource allocation policy and an access 

control policy on its exported resources (partition, resources allocated to a partition, 

communication objects). Communication objects allow for controlled information flow 

between partitions. A separation kernel may have an explicit or an implicit information flow 

policy on its partitions (see definition of information flow policy for details). 

The separation kernel uses separation-supporting hardware to provide the separation 

between partitions in a MILS core.” 

We think this description with an emphasis on policies fits better in a systematic exposition. A 

description based on policies has also been adopted in the “MILS constitution” [Rus08a], 

another attempt to systematically explain MILS. 

This characterization is isomorphic to the characterization of Section 4.1.1.1.2: “resource 

sanitization” and “damage limitation policies” are implied by the requirement of complete 

information flow control. “Data isolation” is the default of the access control policy, resource 

allocation policy and information flow policy on internal resources, whereas “control of 

information flow” addresses the access control policy, resource allocation policy and 

information flow policy on external resources. 

 

4.1.1.1.4 Description of functionality grouped according to where separation is made 

(space/time) 

In the following paragraphs, we present the approach taken in [TBF13] then we comment it 

versus previous sections (i.e., classical approach and policy-based description). 

Separation in space: Applications can be hosted in different partitions. Partitions get 

assigned memory resources (i.e. space). In this way, the separation kernel enforces its 

configuration: that is, access control on partition content, per-partition provision of physical 

memory space and I/O memory space. By confining applications into partitions, the 
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separation kernel enforces that these applications can affect neither applications in other 

partitions nor the separation kernel itself. 

Separation in time: Applications can be hosted in different partitions. Partitions get assigned 

CPU time (i.e. time windows). In this way, the separation kernel enforces its configuration: 

that is the allocation of a predefined amount of the CPUs’ time to partitions. Several 

partitions can share the same time window. On a partition switch CPUs will be reused. The 

separation kernel enforces that no residual information is in CPU registers or memory caches 

according to the configuration. The separation kernel assigns a priority to every subject to 

allow priority based scheduling within one time window. 

Provision and management of communication objects: Applications hosted in different 

partitions can get assigned a set of communication objects under control of the separation 

kernel. A communication object is an object exposed to one or multiple partitions with access 

rights as defined in the configuration data, thus allowing communication between partitions. 

Separation kernel self-protection and accuracy of security functionality: Separation kernel 

self-protection and accuracy of functionality supports reaching and keeping a safe and secure 

state of the MILS system. The separation kernel statically assigns automatic invocations of 

error handling functions to recover from or respond to error conditions. 

Again, this characterization is isomorphic to the characterization of Section 4.1.1.1.2 and 

Section 4.1.1.1.3. Like the one of Section 4.1.1.1.2, it is optimized to be stand-alone and 

concrete. It splits up the data isolation of Section 4.1.1.1.2 of into “separation in time” and 

“separation in space”. The “resource sanitization” of Section 4.1.1.1.2 is subsumed under 

“separation in time”. “Control of information flow” is represented by “provision and 

management of communication objects”. “Fault isolation” is subsumed under “separation in 

space” and “self-protection”. 

Also in the SKPP, while claimed as security functional requirements, “fault containment” and 

“resource sanitization” are not listed explicitly in the introductory high-level characterization 

of “core functional requirements” [SKPP, p. 25]. 

 

4.1.1.1.5 Virtualization services on top of separation kernels 

Virtualization is not a necessary part of separation kernels. However, because many 

separation kernel deployments provide support for virtualization services, the concept is 

described here. We discuss these concepts in form of tables (Table 2 and Table 3), 

juxtaposing a generic description of virtualization and the analogous or differing complement 

in a separation kernel. 

A virtual machine (VM) consists of software that imitates a physical hardware machine. The 

virtual machine will for example give the illusion of a physical CPU and physical memory to 

an operating system that is running in it. An operating system running in a virtualization 

environment is called “guest”. In the MILS context, a virtualized operating system is a 

special case of an application (the term “application” was defined in Section 3.2.9). 

A virtual machine monitor (VMM), also called a “host” (for type 2 VMMs) or “hypervisor” 

(for type 1 VMMs, see Table 2 for type 1 and 2 explanation), is the software managing virtual 

machines. 
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Requirements: 

Table 2 lists virtualization requirements in general and their fulfilment or non-fulfilment by a 

MILS separation kernel. 

Virtualization Requirement in General Virtualization Requirement Compliance 

in a MILS Separation Kernel 

An operating system running on a VMM is 

characterized by: 

(1) the resource control property, that the 

VMM is in complete control of system 

resources, [PG74] 

Concerning (1), the resource control 

property: In MILS systems, the resource 

control property is implemented by the 

separation kernel via its security policies. 

An operating system running on a VMM is 

characterized by: 

(2) the sufficiency property, that a VMM 

provides an environment for the operating 

system which is sufficient for running it. 

Concerning (2), the sufficiency property: The 

sufficiency property means that the API 

provided by a MILS system to its 

applications does not have to provide the 

same API as in virtualization of a machine, 

e.g. for a MILS system it is sufficient to 

provide communication channels instead of, 

for example, a network interface, but it need 

not necessarily provide a full replica of 

another machine. In a VMM, the API is the 

full CPU instruction set. When under a 

VMM, a VM attempts to execute an 

instruction that only runs in supervisor mode 

of CPU, VMM intercepts this attempt and 

VMM tries to emulate the instruction as 

faithfully as possible. In a separation kernel, 

when an application in a partition executes 

an instruction that only runs in supervisor 

mode, the SK traps it, and usually its 

execution is rejected. Instead, the separation 

kernel offers explicit additional interfaces to 

allow partitions to do certain things (e.g. 

create new thread within a partition, use a 

new address space within a partition, access a 

shared resource etc.). The main difference 

would be that VMM tries to create virtual 

environment but SK does not. 

An operating system running on a VMM is 

characterized by:  

(3) the isolation property, that is applications 

running in different VMs do not interfere 

with each other 

Concerning (3), the isolation property: this is 

provided by the fact that the separation 

kernel enforces temporal and spatial 

separation properties on applications. 

An operating systems running on a VMM is Concerning (4), the efficiency property: 
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Virtualization Requirement in General Virtualization Requirement Compliance 

in a MILS Separation Kernel 

characterized by: 

(4) the efficiency property that programs run 

on VMM with only minor decreases in speed 

[PG74] 

While, in practice, the efficiency property is 

probably fulfilled by most MILS systems, the 

emphasis is less on good average application 

performance but rather on guaranteed real-

time worst case execution time bounds. 

(5) While virtualization has traditionally 

been focusing on the isolation of virtual 

machines hosted by the same hardware 

platform, controlled resource sharing, such as 

for example a common storage, can also be a 

desired feature [Kar05]. 

Concerning (5) controlled resource sharing: 

it is well supported by communication 

objects. 

Table 2: Virtualization requirements: in general and their compliance with MILS SK 

 

(Note: instead of the sufficiency property and isolation property [PG74] gives the stronger 

equivalence property, that a VMM provides an environment for programs which is 

essentially identical with the original machine, except for timing effects. Our definition is 

broader to allow for paravirtualization, see below.) 

Implementation: 

Table 3 lists virtualization implementation characteristics in general and their applicability or 

non-applicability in a MILS separation kernel. 

Virtualization Implementation 

Characteristics (of an Operating System) 

in General 

Virtualization Implementation 

Characteristics (of a MILS application) in 

a MILS Separation Kernel 

(1) Since [Gol73], it is customary to 

distinguish between Type 1 VMMs that run 

on bare-metal hardware (e.g. Microsoft‟s 

Hyper-V, IBM‟s System z Processor 

Resource/System Manager (PR/SM), bare-

metal version of VMWare) and Type 2 

VMMs that run on top of another operating 

system (e.g. VirtualBox, user-space version 

of VMWare). An extensive list of VMMs 

and their classification can be found at 

[Wik13]. 

Concerning (1), the VMM type: MILS 

platforms are always of Type 1. Contrary to 

virtualization techniques where 

safety/security requirements do not matter, in 

MILS systems, there is an additional 

emphasis on deployability in domains with 

safety/security requirements, e.g. that a 

MILS system, is “NEAT”, which is not 

necessary for VMMs in general. For 

example, if safety/security requirements are 

not a primary concern, VMMs are not only 

provided by stand-alone systems but also 

running on COTS operating systems (e.g. a 

VirtualBox running a Windows on a Linux 

or vice-versa). 

(2) A virtual machine can be run as an 

emulator, intercepting all instructions from 

Concerning (2), running a virtual machine as 

emulation: while the exception, this can be 
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Virtualization Implementation 

Characteristics (of an Operating System) 

in General 

Virtualization Implementation 

Characteristics (of a MILS application) in 

a MILS Separation Kernel 

the operating system running on it, this 

comes at a high performance price [PG74]. 

done by a separation kernel, e.g. to run a 

legacy system designed for slower hardware, 

so that the performance cost is acceptable. 

(3) Alternative to (2), a virtual machine can 

be run in a way that it runs an operating 

system directly on a CPU and the VMM only 

intercepts the operating system when needed, 

that is when invoked either by a trap coming 

from the application or from elsewhere (e.g. 

a system timer interrupt). 

Concerning (3), running a virtual machine 

directly on hardware: also MILS applications 

can be run by a separation kernel directly on 

a CPU, and the separation kernel intercepts 

the MILS application only when certain traps 

arrive (e.g. a system timer interrupt). 

(4) Alternative to (2) and (3), hardware 

virtualization support (also known as full-

virtualisation) introduced by AMD and Intel 

in the mid-2000s ensures that all instructions 

that need to be intercepted can be trapped 

and it increases efficiency, by providing 

support for per-VM page tables. 

Concerning (4), hardware support: a 

separation kernel can make good use of 

hardware support for virtualization when the 

running application is an operating system, 

simplifying page table management. 

(5) Paravirtualization is a technique allowing 

to adapt the VM operating system and, if 

needed, the applications running on such VM 

to avoid instructions that are either inefficient 

or, on some architectures cannot be trapped 

(see “Note on imperfect virtualization 

support on hardware” below). Recall that, as 

applications can comprise virtualized 

operating systems, invocations of 

instructions to be run in supervisor mode is 

frequent. Paravirtualization replaces these 

supervisor mode instructions. 

Paravirtualization allows applications to run 

more efficiently or allows running 

applications that otherwise would not be 

running at all. 

Concerning (5), paravirtualization: the 

technique of paravirtualization also can be 

applied to applications running within a 

partition of a separation kernel, e.g. a 

paravirtualized Linux operating system, that, 

in the MILS context, is just an application. 

The paravirtualization technique may enable 

applications otherwise not runnable on the 

separation kernel to run on the separation 

kernel, or make them more performant. From 

a security point of view, paravirtualization 

does not add any value to the security 

properties of a MILS system but it introduces 

a threat vector of attacks, which needs to be 

taken into account when a MILS system is 

configured. 

Table 3: Virtualization implementation: in general and compliance with MILS SK 

Note on imperfect virtualization support on hardware: Most modern CPUs enable to 

restrict the privileges of untrusted applications (“supervisor” versus “user” mode). This 

feature to restrict user applications to “user” mode is fundamental to general-purpose 

operating system design [Tan07, p. 1]. Integrity is a design goal of general-purpose operating 

systems and their CPUs, but the complete control of information flow channels is not 

necessarily a design goal neither for general-purpose operating systems nor CPUs they run 

on.  
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For example, [AA06, AFOB+12 (p. 153), RI00] and others have noted that, on some 

ia32/ia64 architectures, such as the Pentium, some instructions expose privileged state (such 

as reading out the global descriptor tables). Information flow can be mitigated if data, e.g. in 

global descriptor tables, is kept static. A second type of problem occurs when user 

applications are simply denied operations, but the CPU does not trigger any trap for the VMM 

to handle [AFOB+12, p. 149] also discusses similar caveats for another processor, the Cell 

Broadband Engine Architecture (CBEA) processor developed by Sony, Toshiba, and IBM 

that consists of a POWER architecture core and coprocessors elements for e.g. 3D multimedia 

acceleration. 

 

4.1.1.2 Architecture 

A separation kernel uses the interfaces of the hardware components it has been assigned in the 

MILS system in order to provide the services described in Section 4.1.1.1, enforcing its 

security policies according to configuration. 

4.1.1.3 Assumptions on the environment 

Hardware components are used by the separation kernel function as specified and provide 

policy enforcement as specified. 

4.1.2 Generic device abstraction component 

A generic device abstraction component is a MILS component having the purpose of 

abstracting the access mechanism of a special purpose hardware device to a defined set of 

connected partitions. In the simplest realization, this component mediates accesses from one 

partition to one hardware device only. The connected partition uses as interface to the 

component a standardized interface. More difficult realizations of this component allow 

connecting more than one partition to the component. This form requires a software-based 

virtualization strategy of the hardware component‟s functionality, which is supposed to be 

shared and impossible to be virtualized in hardware (e.g. by SR-IOV devices). In other words, 

all functionality that is not virtualizable by hardware shall be virtualized by software to 

provide the sharing functionality. As an example, communication based on an ethernet 

protocol optimized for avionics reliability requirements, Avionics Full Duplex Switched 

Ethernet (AFDX) requires sometimes to spread payload to multiple partitions. This is a 

functionality usually not supported by common (self-virtualizing) network hardware, since 

those devices can route data to one partition, only. Thus, the multiplication and distribution of 

payload needs to be done in software.  

4.1.2.1 Services 

Functionally correct implementation of the abstraction mechanism to the hardware devices. 

Functionally correct implementation of the separation mechanism (resource allocation policy 

and/or access control policy) if more than one device is using this instance of the component. 

4.1.2.2 Architecture 

Other partitions interact with this component using the abstraction mechanism, it is the 

service provided by the component. For example, you have the POSIX standard interface (e.g. 

“read”, “write”) on the one the side and real hardware register accesses on the other side. By 

this, the Generic Device Abstraction Component abstracts the accesses. This component 

interacts with other component, i.e. hardware devices via their interfaces. 
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4.1.2.3 Assumptions on the environment 

A separation kernel is available. The hardware device‟s interface to the component managing 

and abstracting it is not accessed directly by another component. 

4.1.3 Console system component 

Historically a console is a workstation at which a human operator can control a computer and 

interact with one program in a text-oriented (line or page) or graphical fashion. When 

interaction was simple and diagnostics means were primitive, a program would issue 

messages to the console, and the operator would grab the attention of the program from time 

to time. At the point in time the operator inputs commands, the program will usually answer 

by resuming its flow of messages. Progress in computing made it desirable to be able to 

address multiple programs at once, giving rise to a separation of the concept of a message 

console and that of the console or terminal used by an operator, and to the concept of 

multiplexing multiple virtual consoles over one physical one (or even within multiple layers 

of virtual consoles, in a tunnelling fashion). 

The message console concept will be addressed by the audit system component (see Section 

4.1.6). Here we focus on the console as a channel for interaction between an operator and 

programs. Note that on systems where users in the computer sense are not tied to human 

beings, a console is often absent, or hidden and used mainly for diagnostics and maintenance. 

Therefore, a console system component connects applications to human interface devices, and 

thus is an instance of the Generic Device Abstraction Component. 

If a console presents one program at a time, or several programs that belong to one security 

domain, then there will be no ambiguity for the human operator regarding the security 

classification. It is up to the human operator to ensure that he is controlling the right partition. 

If a console presents an operator with multiple security domains at the same time, then there 

has to be a non-bypassable mechanism such that the operator can always tell which domain 

he/she is interacting with. 

It typically has one of the following forms: 

- Physical, including specific displays, input devices [RD07, Del10]. In [Del12a], in 

addition to a specific monitor and console, a USB interface is also considered. 

Nordbotten and Gjertsen built a system where a console manager and a display 

manager are each encapsulated into a partition [NG12]. 

- Virtual, providing one console channel to one program or to a group of programs 

belonging to a single security domain, but running itself within some form of transport 

that can multiplex multiple such virtual consoles. Such transport can route to a local 

physical console or to something else, say, over a network connection offering 

adequate security properties. 

4.1.3.1 Services 

Input, output (e.g. display) streams 

Multiplexing of streams 

A physical console, in addition to a display device and human-machine input devices, can 

provide physical connection ports for external devices. Unlike external ports that would be 

associated with the computer itself, these external ports are meant to be associated with the 
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current operator. HMI devices such as displays, controllers, audio devices, usually are of this 

nature and are simply managed by making them available to the program or programs of the 

current operator. If the console can be switched between operators, then a policy must be 

devised for switching these devices as well, or not. 

Some devices can be connected to a console, that are themselves concerned with multi-

domain security. An example would be a mass-storage device through the file system 

component. Policies that make sense include: 

- Mapping the device to the computer rather than the console, e.g. in the case of a mass-

storage device, honouring file permissions and ownerships inside the regular file 

system component. 

- Mapping the entire block device to the programs of the current operator and letting 

them access arbitrary locations in the device, which now cannot be trusted by other 

programs. 

4.1.3.2 Architecture 

Data and control streams are separated [Del12a, p. 48], and passed from its clients to 

hardware for input and output. If not all channels are dedicated, then resources are scheduled 

for reuse (“multiplexing”). The architecture avoids information flow when a resource is 

reallocated. 

A console capable of serving multiple security domains at the same time can disambiguate 

which one or ones are presented to the user by: 

- Reserving a trusted portion of the display for telling what is displayed on the rest of 

the display and allowing the selection thereof. This must be “always invoked” in a 

very literal sense, meaning that a full-screen application cannot be supported, or an 

auxiliary display must be added. 

- Providing a “secure access key” that cannot be overridden by applications, that lets the 

user invoke a trusted status/selection panel that is overlaid on applications‟ displays. 

One must be very careful that operators are trained to ignore what they see if they are 

not positive that they invoked the trusted status/selection panel, as a malicious 

application could impersonate that panel, effectively realizing a Trojan horse, since 

applications have access to the display area where the trusted panel is shown. This also 

requires a guaranteed response time for showing the trusted status/selection panel after 

pressing the secure access key, otherwise there would still be a temporary opening for 

a Trojan horse. 

4.1.3.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the console 

component. 

4.1.4 Network system component  

A network system component is a MILS component having the tasks (1) of abstracting the 

used network infrastructure and topology connecting the MILS system with other platform-

external systems and (2) of abstracting or hiding the physical location of a partition‟s 

communication partners. Usually the network system component also (3) abstracts the access 

mechanism to the network device and, thus, is a special purpose instantiation of the Generic 

Device Abstraction Component. Note that a network system component can be very complex 
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and may by implemented by multiple partitions running encapsulated sub-functions for 

handling this complexity. For example, partition A could contain TCP/IP stack A’, partition B 

could contain TCP/IP stack B’ and partition C could make the decision to route packets either 

through A or B. 

For fulfilling task (1), the abstraction of the used network infrastructure and topology, the 

component has to implement the used network infrastructure protocols. The border between 

application-level protocols and infrastructure protocols is usually fluent, depending on the 

required means of communication. However, as example one could draw the border between 

layer 4 and layer 5 of the OSI model, i.e. that the network system component implements the 

protocol stack up to UDP, TCP, … and leaves the implementation of higher layers up to the 

connected partition. The network system component is mentioned in [UV05], with e.g. 

implementing CORBA, DDS, HTTP, SOAP. The task of the network system component on 

the ingress data traffic is to analyse the routing information and to route the ingress data to the 

associated connected partition correctly. This may or may not include reassembling of the 

data stream, depending if the connected partitions require lower protocol stack levels for their 

purposes or not. However, for full abstraction of the network infrastructure, the network 

system component should reassemble the data stream and provide only the application-level 

payload to the connected partitions. For the egress traffic, the partition provides the 

application-level payload to the network system component, which generates valid data 

network packets and transmits them to the correct partition (if on the same platform) or 

transmits them via the network link. 

Task (2), the abstraction of the communication partner‟s physical location, is another task 

performed by the network system component. From the application point of view 

encapsulated in the boundaries of its partition, the application does not know whether the 

communication partner is located on the same hardware platform or platform-externally. The 

task of the network system component is to determine the location of the communication 

partner and the correct routing of the data stream. 

Task (3), the abstraction of the device interaction (i.e. the driver), applies only if the MILS 

system is actually connected to a network. To this task also applies to virtualize the network 

device to allow network sharing among the connected partitions.  

By implementing all three tasks, the network component is required to ensure separation of 

data stream, in particular if one instance of this component handles data streams of different 

criticality (thus the component is MLS). Having such an MLS implementation may also 

require considerations on load-balancing and Quality of Service on the network link. For 

reducing complexity, the system designer should consider to implement multiple instances of 

network system components handling data of only one criticality (SLS components). 

However, this is only feasible if the system possesses multiple network devices or the network 

device is capable to support hardware virtualization technology.  

For ensuring separation, it is also conceivable to use other MILS components, such as crypto 

components, which apply cryptographic methods to the data stream beforehand sending it to 

the network component. 

Similar proposals for a network protocol component occur as MILS network system 

protection profile (MNSPP) [RD07, Del10, Del12a]. Other related work mentions a 

Partitioning Communications System (PCS) [AFOB+12, Uch07] or MILS Message Router 

(MMR) [AFOB+12, AFHOT06, ZSP+12]. The described functionality of those components 

is similar to a subset of the network system component. However, it is difficult to draw a clear 
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line between the functionality of the PCS compared to the one of the MMR. For avoiding 

complexity in terminology, we find it more intelligible to use the network system component 

to consolidate and cover the functionality of the PCS and the MMR. 

4.1.4.1 Services 

Functionally correct implementation of network infrastructure protocols. 

Functionally correct implementation of the data routing to connected partitions including its 

reassembling (if applicable) of ingress data traffic. 

Functionally correct segmentation of egress data streams received by connected partitions. 

Functionally correct implementation of the device interaction and its abstraction. 

4.1.4.2 Architecture 

The network system component is a component interacting with other partitions using it. If 

the MILS system possesses network devices, the network system component interacts with a 

subset of the device‟s interfaces. 

4.1.4.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the network protocol 

component. 

4.1.5 File system component 

A file system component is a MILS component and an instantiation of the Generic Device 

Abstraction Component that implements file system services. It is described in [RAV07]. The 

purpose of the File system component is the abstraction of the access mechanism and the 

physical location of the block devices storing data permanently. For decoupling the physical 

location of the storage, the component could use the services of the Network component. To 

maintain the separation properties, the component has to ensure separation in a physical or 

logical (or both) way: 

- Physical Separation: by storing data of different partitions on different physical 

locations of the storage volume (i.e. using the hard disk partitions) or on different 

storage volumes. 

- Logical Separation: by applying cryptographic methods (e.g. provided by a crypto 

component) or special storage patterns using the same storage partition (e.g. gap 

storage with different offsets, special file system formats, …). 

4.1.5.1 Services 

Functionally correct implementation of the applied separation mechanism to ensure data 

separation of stored data. 

Functionally correct implementation of the access mechanism to the device (i.e. driver), if the 

storage device is located on the same hardware platform. 

4.1.5.2 Architecture 

The file system component is a component interacting with other partitions using it. If the 

storage device is located remotely the file system component may interacts with other 

components as well. 
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4.1.5.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the file system 

component. 

4.1.6 Audit system component 

An audit system component is a MILS component that implements audit services that can be 

used by other components [Del12b, p. 24]. 

4.1.6.1 Services 

Functionally correct implementation of audit system. 

4.1.6.2 Architecture 

The file audit component is an optional component interacting with other partitions using it. 

The benefit of audit can be (1) to document that an entity has received a piece of information 

(non-repudiation) and (2) to monitor the MILS system, e.g. for information flow policy 

violations by components, (3) get event notifications from partitions to the audit system. 

4.1.6.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the audit system 

component. 

The separation kernel supports auditing [Del12b, p. 24]. 

A messaging system is available [Del12b, p. 24]. 

The compilation of memory structures is supported [Del12b, p. 24]. 

The audit system is able to retrieve information about the origin of the audit information it is 

supposed to store. 

4.1.7 Generic application component 

4.1.7.1 Services 

The generic application component implements any functional service required by an 

application. 

4.1.7.2 Architecture 

No statement can be made on the architecture of a generic application component. The system 

integrator can choose to configure a generic application component so that it is confined to a 

precise time-slot, limited memory and tightly controlled communication, so that it is not 

needed to trust its developer of the application, even if he is malicious. This kind of 

application is usually called “untrusted application”. In other scenarios, it may be meaningful 

to give the application strong access to the system, and even trust it do enforce a security 

policy for other applications, such as an information flow policy, e.g. when the application 

acts as a downgrader. This application is usually called “trusted application”. A trusted 

application can serve as guard to any application, whereas an untrusted application only can 

serve as guard to applications that are even less trusted. 

4.1.7.3 Assumptions on the environment 

The generic application component may assume the existence of other components, e.g. 

network component, other generic device abstraction component.  
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4.2 Hardware components 

4.2.1 Introduction 

[SKPP] formulates hardware requirements for separation kernel in the non-standard class 

“platform assurance” (APT). They are again discussed in [AFHOT06]. [AFOB+12] discuss 

the security needs of separation kernels with regards to existing multicore architectures.  

[Tri12] discusses in particular on the topic of hardware requirements for mixed-criticality 

systems (safety and security) from the perspective of aviation computer systems and 

formulates current research directions. 

In general hardware requirements for MILS systems are dependent on the MILS architecture 

itself and the external interfaces required by the system‟s functionality. If the MILS 

architecture relies on a separation kernel as fundamental component for implementing the 

separation and information flow property of MILS, the basic hardware requirements are 

defined by the separation kernel. In general separation kernels rely on common hardware 

protection units as the Memory Management Unit (MMU) and recently also Input/Output 

MMUs (IOMMUs). In addition, separation kernels also use hardware timers. 

Those units are essentially the only functionally indispensable hardware elements for a 

separation kernel that are specified to be robust against attacks through illicit information 

flows, i.e. internal partition interference or malicious flows by misusing external interfaces 

(remote attacks). Any added hardware elements exist rather for in-depth defence, for added 

safety against (random) hardware failures, or for robustness against physical local attacks 

(mechanisms such as authenticated boot and OS code, storage for secrets, etc.). 

4.2.2 Processing units 

Processing units, such as processor cores or special purpose co-processor, are essential parts 

of MILS systems. Processing cores are responsible for processing the software-based MILS 

components by using other system resources. By following the control flow encoded in the 

software component‟s programming code the cores are able to achieve the intended 

component‟s objectives, usually by interacting with other hardware resources, such as 

memory or devices. Even if the major purpose of processing units is their ability to execute 

the binary code, they also have requirements with respect to spatial and temporal separation. 

In particular this applies to the interaction with the memory hierarchy comprising of various 

cache-levels and system‟s memory. However, it also applies to the internal processing flow of 

the processing cores, which have to ensure separation, too.  

During partition runtime especially challenging are concurrent memory and device accesses 

of novel multicore processing platforms, due to the measureable interferences in access times 

depending on the amount of active cores [NP12]. During partition switch for the purpose of 

ensuring spatial and temporal isolation software (usually the separation kernel) has to ensure 

the proper sanitization of the (shared) resources used during processing the control flow. This 

includes the flush of core-internal pipelines or caches to prevent cache attacks [YF13, 

SBY+13]. 

One important mechanism for ensuring spatial and time separation is the provision of 

different execution modes for commands processed by the processing units. For example 

changing critical configuration of other hardware component, like MMUs settings, needs to 
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be restricted in a way that only privileged software, e.g. the SK can execute the commands for 

modifying those settings. 

4.2.3 Memory Management Units (MMUs) 

MMUs translate virtual addresses used by the processors into physical addresses required for 

interacting with the resource memory. In general this component can also be used for 

protecting certain memory area from processor accesses, it thus enforces an access control 

policy. Dependent on the architecture of the MMU and its way to maintain the translation 

tables, the MMU can be configured in a static or dynamic way: 

- Static means that all partition applications have static entries in the MMU‟s translation 

table construct, which do not change during system runtime. If identical virtual 

addresses are used multiple times in various partitions, the hardware has to provide a 

runtime mechanism for indicating which partition is currently active and indicating the 

correct MMU translation entries (e.g. runtime identifier or reconfiguration of pointers 

to the translation tables). Such a static MMU configuration also implies a static spatial 

separation of the memory without dynamic (re)allocation of memory regions for 

partitions. 

- Dynamic means that the separation kernel has to reconfigure the translation tables 

during partition switch. This approach does not require the previously mentioned 

hardware platform identifiers but might require additional processing cycles during 

partition switch. 

Dynamic MMU configuration also allows realizing dynamic (re)allocation of memory 

during application runtime. However, the necessary increased trust in the reallocation 

mechanism is essential for assuring the security properties of the separation kernel 

(e.g. zeroing memory after memory release). Additionally, dynamic MMU 

configuration can be useful for implementing performant inter partition 

communication, since the ownership of communication pages can be shared or 

transferred between partitions for purpose of avoiding the overhead of data copying. 

Note that some available separation kernels use a combination of both mechanisms, e.g. for 

realizing a static spatial separation of the memory but also allowing shared pages for fast inter 

partition communication. 

A security vulnerability of current MMUs is their level of trust put into the reliable operation 

of its configuring software, e.g. the separation kernel. More specifically this means that the 

separation kernel is able to interact with memory pages actually belonging to partitions 

“privately”, without being visible to the SK. [JH11] discusses this issue and provides 

hardware improvements for future MMUs. For example, [JH11] propose that a VM can mark 

its page as private (in hardware) after allocation from a hypervisor (analogous to a separation 

kernel in our context). Having the private bit set this page can only be accesses by the VM 

and the hypervisor only can sanitize it as soon as the VM allows it. Encoding new features 

into MMU hardware, of course again raises the problem of ensuring that the hardware 

realization of this approach is correct. 

4.2.4 Input/Output Memory Management Units (IOMMUs) 

An IOMMU provides transparent, isolated access to virtual instances of I/O devices to one or 

more partitions [KS08]. These virtual device instances can be used just like a physical 

instance of the same I/O device by these partitions. Other partitions have no access to these 



 

D21.1 – MILS Architecture   

EURO-MILS D21.1 Page 36 of 59 

virtual devices, nor can the virtual devices access memory spaces of partitions other than the 

ones they have been assigned to. 

If the system‟s functionality demands to use external DMA-capable devices, hardware 

components as IOMMUs are helpful to protect the system memory from invalid DMA 

triggered by the device and thus, to achieve spatial separation. The task of IOMMUs is similar 

to the one of MMUs. However, there are two differences to MMUs: 

1. MMUs are placed between the processor and the system memory. The location of 

IOMMUs is between devices and the system memory. 

2. The intention to apply MMUs into hardware was to increase the performance for 

address translations between virtual and physical addresses. Later on, its use for 

memory protection has been introduced. The motivation of using IOMMUs is the 

other way around. Primary IOMMUs have been deployed for memory protection 

reasons but can also be used for address translation. However, using the address 

translation mechanism smartly can open the opportunity of sharing hardware devices 

usually not intended to be shared, e.g. by reconfiguration of the address tables on 

partition switch. Thus, an IOMMU can provide transparent, isolated access to virtual 

instances of I/O devices to one or more partitions [KS08]. Nevertheless, this approach 

is only possible for stateless devices with immediate and short processing which only 

perform DMA on behalf of cores, e.g. external FPU or vector processing engines. 

IOMMUs are getting required in a system in which DMA-capable devices shall be directly 

assigned to an untrusted partition, i.e. an untrusted driver shall be allowed to interact without 

additional software-based checks of the separation kernel (e.g. for performance reasons).  

Since in such a design the untrusted driver can access the entire memory abusing the directly 

assigned device by triggering DMA to addresses outside of its allowed memory resources, the 

hardware requires a component to restrict those accesses. This is the task of the IOMMU.  

For proper hardware architectures with IOMMUs it is necessary that the IOMMU identifiers 

used for device‟s identification are provided in a secure way. In particular [SLN+10], [SV10], 

[WR11] and [MIM+13] discuss attacks using DMA and harming IOMMU-based hardware 

designs. One class of those attacks abuses Message Signalled Interrupts (MSIs) to trigger 

interrupts which do not belong to the device. These attacks are possible since former 

IOMMUs only mediated transfers based on (1) the accessing device, (2) the involved 

addresses and (3) the operational code for the transaction but ignoring the data content of the 

transaction. For example, Intel counteracts the class of attacks by a technology called 

“Interrupt Remapping”, which validates also the interrupt vectors (messages) of the MSI 

[Int11]. Another class of attacks uses a vulnerability of PCI to PCIe bridges, where the 

identifier is added by the bridge but not by the devices connected to the bus “behind” the 

bridge. More generic views on this issue introduce discussion on suitable device interconnect 

topologies. The interconnect topology should provide the separation kernel possibilities to 

uniquely identify the physical hardware interface (e.g. card slot) the device is connected to. In 

general a bus strategy achieves this requirement worse than a star topology. 

In addition IOMMUs usually do not apply countermeasures against devices performing 

timing attacks, like exhausting bandwidth, interrupt bombing or uninterruptible long bus 

transactions (a timing attack on latency that can alter real-time properties without needing to 

saturate the bus). Some timing attacks again various in their utilization on the used 

interconnect topology. 
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4.2.5 I/O sharing 

A special case of directly assigned device interfaces is the approach of using self-virtualizing 

devices. With this technology it is possible to securely share a device without requiring 

trusted software components for runtime device interactions (runtime driver). For example it 

may also allow transferring parts of the functionality of the network component into the 

hardware. Using this technology the hardware device provides a physical interface for 

configuration purposes and a various number of virtual interfaces appearing as runtime 

interface to the partitions that shall interact with the device instance. A special standard called 

Single Root I/O (SR-IOV) [SRIOV] extends the PCI Express (PCIe) standard and defines the 

hardware interface for PCIe devices. To restrict DMA of virtual functions to the assigned 

partitions only, an IOMMU is essential. Further investigation on platform requirements using 

PCIe SRIOV is provided in [MIM+13].  

Work on performance comparison of software-based and hardware-based I/O sharing 

approaches are provided by [YYW08] and [WR08]. Both publications conclude that 

hardware-based sharing using IOMMUs and direct mapping almost performs with native 

performance. However, [WR08] additionally investigates on the provided granularity of 

memory protection (inter- and intra-guest) of software-based approaches compared to 

different strategies for reconfiguring the IOMMU on partition switch. The final statement of 

this work is that software-based pre-validation of DMA descriptors performs better than some 

approaches (not direct map!) for hardware-based late validation of DMA transfers. Also 

software-based sharing strategies enable enhanced intra-partition memory protection with 

respect to the granularity. However, the downside of software-based approaches is their 

inability to protect against device misbehaviours and the required assurance property of the 

software components. 

4.2.6 Timers 

Separation kernels are in charge to provide separation properties in time and space for a MILS 

system. Regarding time separation (e.g. real-time scheduling of applications) the kernel 

requires a reliable signal defining the unit “time” for the system. For this purpose hardware 

normally provides a periodic and stable transducer in combination with a counter counting the 

generated signals. Knowing the frequency of the transducer allows defining the resolution and 

thus the smallest possible unit of time in the system. Both the transducer and the counter 

together build the basics for implementing timers. Separation kernels use timers in one of two 

fashions: 

 Inflexible periodic timers that give rise to a so-called «tick» timer in the kernel, 

periodically fired irrespective of whether there is activity to be carried out or not. A 

number of OSes have this design because they are backwards compatible with the 

Intel 8253 Programmable Interval Timer (PIT) that was the only timer chip found in 

the original IBM PC (discounting the alarm function of the MC146818 RTC chip that 

does not have a high repeat rate), even though modern PC-compatible hardware has 

better timers. 

 more flexible arbitrarily programmable timers that give rise to a «tickless» kernel that 

wakes up only when necessary. Intel/Microsoft High-Precision Event Timers (HPET, 

[Int04]), formerly known as Multimedia Timers because they originated from the need 

for high-resolution arbitrary timers for sound generation in desktop PCs, provide this 

capability with a free-running counter and comparators although a subtlety of this 
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hardware implementation for some software designs is that a timer must be armed in 

the future only, e.g. it will not trigger if armed too late just based on the fact that the 

comparison is “now true”. Alternative designs typical of microcontrollers involve 

downcounters with a feature for auto-reloading the timer with the next deadline that 

was provided by the software ahead of time. This trivially eliminates jitter, whereas 

downcounters without auto-reload have to be compensated in software by accounting 

for the time lost between the previous deadline and the time when the software 

actually loads the next deadline from some interrupt handler, and while it is easy to 

compensate for absolute drift, jitter or a small lateness can never be completely 

eliminated on processors where writing fully time-deterministic code is impractical. 

One timer is usually sufficient. Having several timers available may yield simpler or faster 

software, although an implementation can be fairly simple with just one hardware timer if that 

timer has just the right flexibility. 

4.2.7 Chain of trust 

A last important fact necessary to mention in this chapter is the topic of trusted initialization 

of the different layers in a MILS system. Usually these different layers are initialized in a 

well-defined sequence, e.g. first general boot code, followed by the layer providing the 

separation property, followed by other layers providing system-specific security functions and 

applications. To ensure that the entire sequence is not compromised a root of trust is needed at 

the beginning of the sequence. Usually a special hardware component storing a secret key and 

a hard coded boot code provides this feature. Thus, also hardware components implementing 

the root of trust can be necessary [Fre10]. Regarding trust in the software involved in the boot 

sequence, there have been 2 schools of thought: 

- All software from the reset vector (possibly with the assistance of firmware in an internal 

ROM) is trusted and therefore hardware-assisted mechanisms are provided to verify 

initial trust, and then it is up to this trusted software to preserve the chain of trust to the 

next trusted software until usual hardware protection mechanisms (user/supervisor mode 

and memory protection) are used to allow controlled execution of untrusted code. This is 

the pattern used by the IBM/Sony Cell BE™ [Shi06], Freescale‟s Secure Boot [Fre11a] 

and Trust Architecture [Fre11b] and, to our knowledge, ARM‟s TrustZone® [ARM13]. 

- Boot software is not trusted, but hardware mechanisms exist in order to re-establish a 

trusted context later on, or let trusted software establish that initial software was not 

altered nor bypassed and therefore could only have taken known action. This is the 

pattern used by the Trusted Computing Group™‟s Trusted Platform Module [TCG11]. 

4.3 System configuration of components 

The configuration of a MILS system comprises the configuration of the separation kernel, and 

the configuration of other components, such as the configuration of applications, and the 

configuration of hardware.  

4.3.1 Configuration of the separation kernel: configuration space 

We have defined the separation kernel to be the main policy-enforcing element of a MILS 

system, using hardware mechanisms provided by the hardware in the MILS core. Thus, its 

configuration options to a large extent need to reflect the configuration of a MILS system. In 

Section 3.2.13 of this document, a separation kernel has already been characterized as 



 

D21.1 – MILS Architecture   

EURO-MILS D21.1 Page 39 of 59 

enforcing the resource allocation, access control and information flow policies. Thus, the 

configuration of a separation kernel equals the configuration of these policies. 

The above definition is fairly abstract. Giving an exhaustive, yet product-independent list of 

configuration parameters is non-trivial, and perhaps not even desirable: If we start with SKPP, 

despite the string “configuration” occurs at least 510 times in SKPP, SKPP does not give a 

comprehensive list of configuration data at one place. For example, SKPP mentions system 

memory and processing time per partition [SKPP, p. 78] and then information flow policy 

configuration data, audit configuration data, clock settings, and self-test period as other 

examples [SKPP, p. 175]. Taking into account that an operating system used for IMA (recall 

Section 2.1) can be provided by a separation kernel (“a separation kernel is similar to the 

"partitioning kernels" used in integrated modular avionics (IMA), but is more aggressively 

minimized”) [BDR+08, p. 9], possibly a better, more concrete, yet still product-independent 

example can be found in [ARINC-653]. For an IMA operating system, [ARINC-653, p. 22] 

specifies that, (1) for each partition, its memory requirements, its scheduling parameters 

(period, duration), identity of messages to be sent/received by the partition are configured by 

a configuration table, (2) globally, that a configuration table of inter-partition communication 

objects is kept and a fault handling is configured.  

4.3.2 Configuration of other components: configuration space 

However, note that the separation kernel configuration only addresses part of the overall 

MILS system configuration. For example [AFOB+12, p. 181] emphasizes that, in addition to 

the configuration layer at the separation kernel level, the configuration of a MILS system is 

also strongly determined by the configuration of its hardware. For example, the configuration 

of a MILS system includes which PCI slot to use for which PCI card, the memory mapping of 

hardware and so on.  

4.3.3 Configuration management 

Configuration management: The need of configuration management for secure systems is 

addressed by the [CC12] in general and, more particular, for IMA systems in [DO-297, 

Rom08]. It is emphasized that to reproduce the configuration of a system using a separation 

kernel, the configuration of each level must be stored, including hardware and configuration 

data of applications running in partitions managed by the separation kernel. [SKPP, p. 17, 27] 

defines (1) the generation of an abstract configuration vector by a configuration tool, (2) its 

transformation to machine-readable configuration data on a boot medium by a load function, 

and (3) its usage by a boot function during operation. Also, [ARINC-653, p. 22] stipulates that 

configuration tables of an IMA operating system must be built separate from the operating 

system and they are not directly accessed by applications; an implementation detail that of 

course is only binding for a separation kernel if it is to be used for an IMA system. However, 

except for that mention of separate build of configuration tables that is not a requirement in 

[SKPP], detailed configuration workflow guidance for an entire MILS system is out of scope 

and rather scarce in this IMA [ARINC-653] application software standard interface 

description. 

Reconfiguration: Reconfiguration of a system is making some change(s) to the configuration 

of that system; we call that a configuration change. 

A configuration change modifies the system configuration data. For example, in the 

separation kernel the Information Flow Policy could be modified. When a configuration 

change occurs by going the system offline and reboot, the change is called a static 
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configuration change. When the change occurs on-line without reboot during an execution, 

then the configuration change is dynamic [SKPP, p. 16, p.40; NLI, Section 5.2]. If 

configuration change capability is not built-in into a separation kernel, it can be implemented 

by the component of the MILS platform, for example select or upload another image of the 

separation kernel into the MILS platform or a partition component that specializes in doing 

this. Another example would be the dynamic configuration of virtualization hardware, which 

e.g. could be done from within a partition. In this case, you have already configured the 

virtual interfaces for the partition in the separation kernel, and then you connect the virtual 

device hardware to them. 

4.3.4 System update 

Related to topic of configuration management is the treatment of system updates of the MILS 

components. A common automotive use case for reconfiguration is a software update of 

possibly every software component in the system. The security policy for system updates 

typically specifies that system updates cannot be done by the internet but only locally via the 

on-board bus. 

However, many automotive manufacturers (OEMs) tend to require software updates „over the 

air‟ and request for improved methods to guarantee (1) fail safety (robustness in case of 

failures during the update procedure), (2) integrity (updating sources other than originated by 

the OEM must be rejected) and (3) security (the software update mechanism must be resistant 

against attacks). Since access control policies themselves may be subject of software updates, 

hence modification, special care must be taken to self-protection. 
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Chapter 5 Conclusion 

5.1 Overview of component policies and reuse 

An overview of policies enforced and usage of services by other components is given in Table 

4. 

In Table 4, for “provides” or “used-by” relations, an “M” means “provision/use is 

mandatory”, an “O” means “provision/use is optional”. In the case of “M” for “component X 

used by component Y” component X is meant only as mandatory for component Y, if the 

MILS system has component Y at all (this also may not be that case). As it is always an 

implementation option, for brevity, we do not consider self-use or self-invocation in this table. 

A component is a guard if it enforces some resource allocation policy, access control policy 

and/or information flow policy in the sense (2a) or (2b) of Section 3.2.7. 
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Audit 

system 

component 

 M  O  O O  M 

Application 

(trusted) 

O O O      O 

Application 

(untrusted) 

O
[1]

 O
[1]

 O
[1]

       

Hardware components 

Processor  M  M M M M M M 

MMU  M  M  M/O
[2]

   M 

IOMMU  M  M
[3]

 M
[3]

 M
[3]

 M
[3]

 M
[3]

 M 

I/O sharing  M    O O
[4]

  M 

Timer    M      

Chain of 

trust 

 
[5] 

 O     M 

Remarks: 

[1] A trusted application can serve as guard to any application, whereas an untrusted application only can serve as guard to applications that 

are even less trusted.  

[2] MMUs may be needed for network components depending on hardware, e.g. on PowerPC network devices are memory-mapped. Also on 
Intel, the entire PCI express is memory mapped. 

[3] If and only if DMA is used. 

[4] E.g. a physical harddisk that is accessed by the file system component. 

[5] As a chain of trust denies access if a signature is not provided properly, it can be seen either as access control policy or as integrity policy. 

Table 4: Policies enforced and usage by other components 
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We observe that access control policy is provided by almost any component, a resource 

allocation policy or information flow policy is more rarely encountered. A timer and a chain 

of trust do not implement their own access control/resource allocation/information flow 

policies, but can be used by the separation kernel to support resource allocation and integrity 

requirements. 

5.2 Secure design principles 

In Table 5 we compare our MILS experience with the Saltzer and Schroeder Design 

Principles [SS75] previously introduced in Section 2.4. It can be seen that many principles 

carry over to MILS systems. Those principles that are not fully carried over are those which 

clash with the stringent performance and real-time requirements of MILS systems. 

Design Principle (as in 

[SS75]) 

Explanation (as summarized 

by [Bis00]) 
Implementation in MILS 

Economy of Mechanism The protection mechanism 

should have a simple and 

small design. 

Some MILS components, 

such as the separation kernel, 

are small. 

Fail-safe Defaults The protection mechanism 

should deny access by 

default, and grant access only 

when explicit permission 

exists. 

The default policy in a MILS 

system is: no information 

flow and no resource sharing 

unless specified. 

Complete Mediation The protection mechanism 

should check every access to 

every object. 

This is implemented by a 

small reference monitor, the 

separation kernel. 

Open Design The protection mechanism 

should not depend on 

attackers being ignorant of its 

design to succeed. It may 

however be based on the 

attacker‟s ignorance of 

specific information such as 

passwords or cipher keys. 

MILS design is 

comparatively well 

understood and open. 

Separation of Privilege The protection mechanism 

should grant access based on 

more than one piece of 

information. (e.g., two 

commanders need to agree to 

launch a weapon). 

For performance reasons, and 

because this kind of policy is 

not so common in embedded 

systems, this is usually not 

implemented in MILS 

systems. 

Least Privilege The protection mechanism 

should force every process to 

operate with the minimum 

privileges needed to perform 

This is usually only 

implemented at a partition 

granularity level in MILS 

systems (the calculation of 
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Design Principle (as in 

[SS75]) 

Explanation (as summarized 

by [Bis00]) 
Implementation in MILS 

its task. the “minimum privileges” 

can be non-trivial). 

Least Common Mechanism The protection mechanism 

should be shared as little as 

possible among users. (e.g. 

shared variables shall be 

avoided) 

An example implementation 

of this principle is that 

middleware (user space 

libraries) is usually put into 

partitions of a separation 

kernel. 

Psychological Acceptability The protection mechanism 

should be easy to use (at least 

as easy as not using it). 

Use of the protection 

mechanism is implemented 

by fail-safe defaults. The 

decomposition of a system 

into partitions requires some 

initial effort, but in the long 

run makes it easier to 

understand and maintain its 

functionality. 

Table 5: Secure design principles and their implementation in MILS 

5.3 Results 

We have identified and described the origins where MILS comes from (Chapter 2) and 

established a foundation we can use for the description of the architecture of MILS systems. 

For example, we have obtained a common “picture” of a MILS system (Section 3.1). We have 

also created working definitions for fundamental MILS terms in a bottom-up way, including 

definitions of closely related security policies such as access control policy, resource 

allocation policy or information flow policy (Section 3.2). Several iterations were needed to 

obtain this in a clean, yet understandable way, which may explain why we have not seen this 

bottom-up approach done elsewhere.  

We have also identified some widely used terms we chose to avoid, such as “PCS” or 

“middleware”, because we consider them of little help and even misleading. We were able to 

apply the terminology to previous work on security gateway (Section 3.3). 

We have reached consensus to present hardware and software components as equal citizens 

and compiled a catalogue of MILS hardware and software components, including a security-

centric description (Chapter 4). In particular, we have identified a generic device abstraction 

component. We have identified several instances where separation kernel policy enforcement 

depends on guarantees by hardware components. In Section 5.1, we have summarized security 

policies provided by components, mutual interdependencies of components and classified 

components as “guards”. This could serve as a basis for a more detailed analysis of 

information flows and their guards of concrete components as proposed in [AFOB+12, 

Chapter 4]. Section 5.2 establishes that MILS largely follows well-established principles of 

secure system design. Our document appears to be a reasonable basis for further description 

of individual components within the EURO-MILS project. 
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Glossary 

Access control policy: A component‟s access control policy acts on the component‟s 

interface used to manage exported resources. In this respect it is identical to the 

aforementioned resource allocation policy (Section 3.2.5). However, the interface is 

characterized by that a request to the resource includes an explicit reference to the resource 

(e.g. the resource‟s name or a numerical identifier). Identically to the aforementioned resource 

allocation policy (Section 3.2.5), the access control policy defines which of the component‟s 

resources are kept internal to the component and which are exported to which other 

components. When a resource is exported to more than one other component, the resource is 

shared. The access control policy is in the “space” domain. 

Application: An application is one or more executable(s). 

Audit System Component: An audit system component is a MILS component that 

implements audit services that can be used by other components 

Communication object: A communication object is an exported resource provided by a 

component. It can be shared between components. Communication objects are used by 

components to communicate between them. 

Component: A component is a term to describe the decomposition of a (in general, any) 

system into meaningful self-contained parts. For example, a (yet to be defined) MILS system 

consists of components. In general, components may be implemented by (1) hardware, (2) 

software, or (3) a combination of hardware and software [CBB+03, DO-297]. 

Configuration: The configuration of a component contains the component‟s identity, and it 

defines any security policy (access control policy, resource allocation policy, information 

flow policy) enforced by the component. An information flow policy configuration also may 

be implicitly configured by resource allocation policy configuration and access control policy 

configuration. 

Console system component: A console system component connects applications to human 

interface devices, and thus is an instance of the Generic Device Abstraction Component. 

Domain: A domain (or “security domain”) is a unit of separation created and maintained by 

any MILS component, for example by an application (Section 3.2.9), a function (Section 

3.2.12), or the MILS core (Section 3.2.14), which is enforcing a security policy on exported 

resources. 

File system component: A file system component is a MILS component and an instantiation 

of the Generic Device Abstraction Component that implements file system services. 

Function: A function is a logical group of partitions for achieving common objectives. The 

implied partitions may be connected using information flows. 

Generic device abstraction component: A generic device abstraction component is a MILS 

component having the purpose of abstracting the access mechanism of a special purpose 

hardware device to a defined set of connected partitions. 

Information flow policy: The term information flow policy has more than one usage,  
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(1) the most simple one is to use it as an umbrella term for “access control policy” and 

“resource allocation policy” combined or  

(2) to express policies where pieces of information (messages) are written to one or 

several communication objects(s) by a sender and subsequently these messages are 

read from the communication object(s) by a receiver. Such policies may include rules 

based  

(2a) on the sender/receiver of the messages and/or  

(2b) on the content of these messages.  

Note: for most components, interpretation (1) is used. (2a) will be used in the context of a 

separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of security 

gateway (discussed as an example in Section 3.3). An information flow policy in the sense of 

(2a) is either explicit, based on identities of components between which information flow is 

allowed, or implicit, as unambiguously defined by the resource allocation policy and access 

control policy. 

MILS architecture: “MILS architecture” refers to the architecture of the implementation of a 

concrete MILS system. 

MILS architecture template: “MILS architecture template” refers to a template 

encompassing many possible MILS systems. 

MILS platform: A MILS platform consists of the MILS core and optional software and/or 

hardware components that provide secondary security functionalities and do not contribute to 

the enforcing of separation. 

MILS system: A MILS system is a concrete deployment of a MILS platform with a defined 

set of partitions. 

MLS system: An MLS system is a system with different security requirements for different 

components. It can be implemented by a MILS system. 

Multi-level Secure (MLS) component: A Multi-Level Secure Component is a component 

that handles information of with different security levels concurrently during one runtime 

instance. 

Multiple Single-Level Secure (MSLS) component: A Multiple Single-Level Secure 

Component is a special kind of SLS component that processes data of multiple security levels, 

but always maintains separations between classes of data by exclusively processing only one 

security level during its runtime instance. For example this separation can be implemented by 

allowing access to a different security level only when the component has rebooted with 

different parameters. Also deploying multiple instances of one SLS component processing 

different single security levels turn this SLS component into an MSLS component. 

Note: in [Alv98] this was restricted to temporal separation, “at a single time-point, only 

handles information from one component”. If such a single-level process is to be implemented 

as untrusted process [Alv98], it can be supplemented by an appropriate labelling and filtering 

of messages. 

Network system component: A network system component is a MILS component having the 

tasks (1) of abstracting the used network infrastructure and topology connecting the MILS 

system with other platform-external systems and (2) of abstracting or hiding the physical 

location of a partition‟s communication partners. Usually the network system component also 
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(3) abstracts the access mechanism to the network device and, thus, is a special purpose 

instantiation of the Generic Device Abstraction Component. 

Partition: A partition is a component that serves to encapsulate application(s) and/or data. 

Thus, the content of a partition is application(s) and possibly other data. A partition is a unit 

of separation with respect to 

 resource allocation in the space and time domains, 

an access control policy and an information flow policy in the space domain. 

Resource: A resource is anything (processor such as a CPU or a processing core, memory, 

software, data, network, etc.) internally used or exported by a component. A resource may be 

physical (a hardware device) or logical (a piece of information). A resource may be shared by 

multiple components or be dedicated to a specific component. 

Exported resources are those resources to which an explicit reference is possible via a 

component interface, e.g., the programming or configuration interface. Internal resources are 

those resources used exclusively by the component, and which have no explicit reference via 

a component interface. 

Resource allocation policy: A component‟s resource allocation policy acts on the 

component‟s interface used to manage exported resources. This interface is characterized by 

that a request for a resource is made without knowing in advance how the resource is 

“named” or “addressed”. The request is made for a quantity of the resource, and then the 

component decides whether to grant or deny the request to export that resource in the desired 

quantity. The resource allocation policy defines which of the component‟s resources are kept 

internal to the component and which are exported to which other components. When a 

resource is exported to more than one other component, the resource is shared. A resource 

allocation policy can be in the “space” domain, when resources can be used simultaneously 

but are kept in different spatial (e.g. memory) locations or in the “time” domain, where 

resources are used sequentially, but kept in different time slices. An example for resource 

allocation in the “time” domain is the allocation of a CPU to a component for a limited period 

of time. 

Separation kernel: A separation kernel A separation kernel is a component that enforces a 

resource allocation policy and an access control policy on its exported resources (partition, 

resources allocated to a partition, communication objects). Communication objects allow for 

controlled information flow between partitions. A separation kernel may have an explicit or 

an implicit information flow policy on its partitions (see definition of information flow policy 

for details). 

The separation kernel uses separation-supporting hardware to provide the separation between 

partitions in a MILS core. 

Shared resource: When a resource is exported to more than one other component, the 

resource is shared. 

Single-Level Secure (SLS) component: A Single Level Secure Component is a component 

that every time processes data of one security level. 

System integrator: The person composing the MILS system from its components. 
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Virtual machine: A virtual machine (VM) consists of software that imitates a physical 

hardware machine. The virtual machine will for example give the illusion of a physical CPU 

and physical memory to an operating system that is running in it 



 

D21.1 – MILS Architecture   

EURO-MILS D21.1 Page 50 of 59 

List of Abbreviations  

AFDX Avionics Full Duplex Switched Ethernet 

AMD Advanced Micro Devices 

CBEA Cell Broadband Engine Architecture 

CC Common Criteria for Information 

Technology Security [CC12] 

CDS Cross-Domain Solution 

COTS Commercial Off-the-Shelf 

CPU Central Processing Unit 

DMA Direct Memory Access 

EAL Evaluation Assurance Level 

HW hardware 

IMA Integrated Modular Avionics 

I/O Input/Output 

IO/MMU I/O Memory Management Unit 

IPC Inter-Process Communication 

LRU Line Replacement Unit 

MILS Multiple Independent Levels of Security 

MIPP MILS Integration Protection Profile 

MLS Multi-Level Secure 

MMU Memory Management Unit 

MSI Message Signalled Interrupt 

MSLS Multiple Single-Level Secure 

NEAT Non-Bypassable, Evaluatable, Always 
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Invoked, Tamperproof 

NSA National Security Agency 

OEM Original Equipment Manufacturer 

PCI Peripheral Component Interconnect 

PCIe Peripheral Component Interconnect Express 

PCS Partitioning Communications System 

SK Separation Kernel 

SKPP Separation Kernel Protection Profile 

SLS Single-Level Secure 

SW software 

VM virtual machine 

VMM Virtual Machine Monitor 
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