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 The paper presents the transient behavior of the doubly fed induction 

generator (DFIG) in the wind turbine (WT) in the normal and voltage dip 

condition. When voltage dip occurs in to the grid, the rotor current increases 

and the DC-link voltage increases too and start to oscilate. In this paper,  
the proportional integral (PI) controllers are used to control  

the DFIG-basedwind farms for regulating the electronic devices including 

rotor side converter (RSC) and grid side converter (GSC) to control  

the active and reactive power of DFIG. The PI parameters are tuned by 

imperialist competitive algorithm (ICA). So, the transient behavour of  
the DFIG-based WF is explors when the voltage dip occurs.  

Hence, the induced electric motive force in to the rotor is measured.  

Also, an existed uncertainty for mutual inductance is considered caused by 

saturated curve during three-phase fault conditions and the bahavour of 

DFIG-based WT is examined and analyzed. All of simulation is done by 
Matlab/Simulink®. 
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1. INTRODUCTION  

Wind energy is growing fast for generating electricity because it is an important source of renewable 

energy resources [1]. With increasing penetration level of wind energy into the grid, wind turbine should 

remain connected to the grid to support the stability during various grid fault scenarios based on grid codes’ 

requirement [2]. The ability of the wind turbines to stay connected to the network during the voltage dips  

is called the low voltage ride through (LVRT) [3]. DFIG is one of the important generator used in the wind 

farmbut it is very sensitive to the grid disturbances [4].  

When a voltage dip occurs in the DFIG-based WT, two major issues are happened  

in the DFIG-based WT. The first one is the DC-link overvoltage, and the second one is rotor and stator  

over-current. Both of them can be supplied the excessive energy which cannot be transmitted into  

the electrical grid during voltage dip. The power electronics converters in the DFIG-based WT can’t undergo 

overcurrents and overvoltages  because they have a relatively low power rating. Also, the DC-Link capacitor 

is damaged when the overvoltage occurs. Hence, studying the LVRT capability of the DFIG-based WT  

is very requirment [5]. For the purpose of transient analysis of the DFIG, the passive LVRT capability 

method has been developed. Therefore, dynamic modelling of the DFIG has been needed. Additionally,  

for transient stability enhancement, the LVRT is improved by a Demagnetization Current Controller [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Many of research activities have focused on the impact of the disturbances on the DFIG-based WT 

in the fault conditions. So, they have proposed using a DC chopper to smooth DC link overvoltage  

and a crowbar resistor to suppress rotor overcurrent as the first solution in VD conditions [7]. When a fault 

occurs the conventional crowbar causes the rotor of the DFIG becomes short circuit, as it is installed across 

the rotor terminals. Consequently, the rotor is blocked and the DFIG begins absorbing reactive power from 

the grid. But the new model of the crowbar resistance only limits the current during the fault using the power 

electronic devices and new methods of control [8]. Some researcers present devices which absorb DC link 

overvoltage [9, 10].  

While the crowbar resistance and DC chopper are necessary for the protection systems, the usage of 

the energy storage system and the fault current limiters can increase the costs and decrease the system 

reliability [11]. Also, some researchers have designed more advanced control strategies for the RSC and  

the GSC [12], though some of these algorithms are too complicated and control parameters mus t choose 

precisely and properly. For example, in [13] has been proposed a control strategy to maximize the wind 

energy captured in a DFIG, at low to medium wind speeds . The robust nonlinear controller using  

the Hamiltonian controller in the presence of disturbances for the DFIG is proposed in [14]. To avoid dealing 

with the zero dynamic limitation brought by the bidirectional power flow through the RSC and the GSC  

in a DFIG, a new energy-based modeling and control scheme for the GSC is proposed in [15]. The other 

auxiliary hardware for LVRT enhancement such as a stator dynamic composite fault current limiter  

in the stator [16], a super capacitor energy storage system connected to the point of common  

coupling (PCC) [17], a bridge type fault current limiter connected to the PCC [18], a STATCOM connected 

to PCC [19], DC-link switchable resistive-type fault current limiter [20], a dynamic voltage restorer [21],  

a new stator-damping resistor unit and rotor current control [22], an active crowbar protection  

in the rotor [23], and etc. Moreover, using hardware strategies actually installs extra hardware in the DFIG 

and can increase the costs and may reduce the reliability of the system.  

This paper presents effects a voltage dip event on the rotor and stator of the DFIG. Then, it proposes 

a very simple control strategy using PI controllers to regulate and drive the RSC and GSC. So, to achieve to 

decrease the rotor over current and DC link over voltage through the VD conditions, PI controllers’ 

parameters, using the ICA are tunned and optimized. The uncertainty in DFIG parameters such as mutual 

inductance and saturated curve is also considered for DFIG in VD condition and the effects of it analyzed. 

This paper is organized as follows: in section II, the modelling of the DFIG-based WT is introduced.  

In section III, the transient behavour of DFIG in VD condition is examined. in section IV, the simulation 

results by MATLAB/SIMULINK@ are shown to validate the proposed method. 

 

 

2. DFIG-BAS ED WIND FARM MODEL 

It is necessary to examine the exchange of the active and reactive power between a DFIG-based 

wind farm and an electrical network using a precise model. The schemat ic diagram of a DFIG-based wind 

farm system connected to the grid is shown in Figure 1. The DFIG-based WT, including the doubly fed 

induction generator, Three-bladed wind turbine, the back-to-back converters (GSC and RSC), the drive train, 

and the control systems, are connected to the network through a three-phase transformer. The control system 

consists of three control parts including the WF control, the WT control, and the DFIG control. The WT part 

controls the mechanical power of the wind turbine through the pitch angle and generates the reference value 

of the rotor speed of the DFIG based on the measured wind speed and the reference value for active power 

tuned by Transmission System’ Operator (TSO) [24]. The DFIG control part, including the RSC and GSC 

controllers, and the voltage regulator for the DC-link control the active and reactive power of the DFIG using 

the PI controllers. This study has used the DFIG-based wind farm connected to the infinite bus for explaining 

the transient behavior of the DFIG-based wind farm in a voltage sag event. The single line diagram of the test 

system is shown in Figure 1. The parameters of the DFIG based WT are listed in Appendix. 
 

 

 
 

Figure 1. The single line diagram of the test system 
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3. THE TRANSIENT BEHAVIORS OF DFIG  

DFIG is highly sensitive to changes in its terminal voltage. Generally, when a disturbance occurs in 

the network causing a VD at the DFIG terminal, if the necessary actions are not taken, the  following 

problems can arise: 

− Stator flux fluctuations 

− Increase in the electromotive force in the rotor winding 

− Increase in the rotor current 

− Increase in the DC link voltage 

− Swing in torque and speed 

In order to provide a better physical understanding of the DFIG behavior during a VD condition, 

some of the above phenomena are investigated analytically as follows. 

 

3.1.  The increase in the electromotive force in the rotor winding 

In this section, the behavior of the stator flux fluctuation and the induced electromotive force  

in the rotor winding is investigated analytically and corresponding equations are derived for two cases 

including normal and VD conditions. 

 

3.1.1.  Normal condition 

By reducing DFIG terminal voltage, the stator flux changes and large electromotive force  

(about 3 to 4 times the nominal value) is induced in the rotor winding. This phenomenon ca n be explained as 

follows. 1 and 2 show the relationship between fluxes, currents and voltages of the stator and rotor windings.  
 

L i L is s s m r = +         (1) 

 

L i L ir m s r r = +         (2) 

 

d su R is s s dt


= +          (3) 

 

d ru R ir r r dt


= +          (4) 

 

Using (1), the stator current can be expressed as follows: 
 

/ /i L L i Ls s s m r s= −         (5) 

 

Substituting (5) in (2) gives the following for rotor flux: 
 

2
1

1
L L Lm m mL i L i L ir m s r r r s r rL L L L Ls s s s r

  
  
 = − + = + − 

      

     (6) 

 

( )/ rL L L ir m s s r r  = +         (7) 

 

where 2(1 / ( ))m s rL L L−  is defined as rotor leakage coefficient ( )r . Derivative of (7) yields (8). 

 

( )r
dd L disr m rLrdt L dt dts


= +         (8) 

 

By expressing (4) in the stator reference frame, and substituting (8) into (4), it yields: 
 

ss dd L ds s ssr mu R i R L ir r r r r rdt L dt dts




 
= + = + + 

 
      (9) 

In (9), the first term refers to the induced voltage in the rotor winding due to the stator flux fluctuations 

which is denoted as sEMFr : 
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sdLs smEMFr L dts


=          (10) 

 

By substituting the stator voltage phasor 
j teu V es s


= in (3) and neglecting the stator resistance we obtain: 

 

/ /
j teV e u R i d dt d dts s s s s s


 = = +        (11) 

 

By expressing (11) in the stator reference frame, and integrating of stator voltage phasor it yields: 
 

. . . /s
s

j t j te eu dt V e dt V e js s s e
 

 = = =        (12) 

 

By expressing (12) in the rotor reference frame, the stator flux in the rotor winding can be derived as follows: 
 

( ) ( )
/ / /r

s
j t j t j s tj te e r erV e e j V e j V e js e s e s e
   

   
−−

=  = =     (13) 

 

By expressing (10) in the rotor reference frame, it will yield the following: 
 

( )
rd VL L L Lj s t js t j tdr s sm m m me e sEMF e sV e sV er s sL dt L dt j L Ls s e s s

   



 
= = = = 

 
 

   (14) 

 

Generally, at normal conditions, slip (s) varies between -0.3 and +0.3 yielding a low value for r
rEMF  

 

3.1.2.  Voltage dip condition  

In this section, the effect of a symmetrical VD condition on the rotor induced EMF is investigated. 

For evaluating the changes in the stator flux due to a VD at the PCC, the rotor is assumed to be open -circuit 

and the impact of the rotor current on the stator flux is neglected. By combining (1) and 3 for stator flux and 

neglecting rotor current (ir=0) and representing stator voltage us by phasor, (15) will be obtained: 
 

(1 )
R j td s eu V g es s s sdt Ls


 + = = −        (15) 

 

By integrating (15) in the stator reference frame,(16) will be obtained. 
 

(1 ) /V g V gj t ts s se se es j je e

 


 

− −
= +        (16) 

 

where /L Rs s s =  is the time constant of the stator winding and g refers to the VD percentage. Th e first and 

second terms of (16) represent the positive sequence and DC component of the stator flux respectively.  

The stator flux in the rotor reference frame can be expressed as follows: 
 

(1 ) (1 )/ ( ) /V g V g V g V gj t t j s t tj t j tr s s s se s e sr re e e e e es j j j je e e e

    


   

− −− −− −
= +  = + 
 
  
 

  (17) 

 

When the voltage at the PCC decreases due to a symmetrical fault in the network, the induced electromotive 

force in the rotor reference frame 
rEMFr  is derived from (17): 

( ) /1
(1 ) ( )

V gL L j t td j tr r sm m e r srEMF sV g e j e er s s rL dt L js s e s

  
 

 

− −−
= = − − +

 
 
 

   (18) 

 

By neglecting 1/ s  , (18) can be simplified as: 

 

( ) /
(1 ) (1 ) /

j t tj tr e r srEMF L sV g e V g s e e Lr m s s s
  − −− 

= − − − 
 

    (19) 
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From (19), it can be seen that at the initial moments of the fault (t=0), the induced (0)rEMFr   

is relatively large due to the DC offset in the flux. For example, for s=-0.2 and g=1, the value of the (0)rEMFr  

becomes 1.2 /V L Ls m s  in the initial moments, which is 6 times the normal value. Also, (19) shows that  

the induced EMF depends on the speed of the generator, the amount of VD, and the stator voltage before VD. 

Therefore, the initial value of the induced EMF immediately after a VD can be evaluated as follows:  
 

(0) (1 ) (1 )
Lr mEMF s V g V g sr s sLs

  − + − 
      (20) 

 

3.2.  Analytical analysis of the flux and induced EMF during VD 

In this section, by using analytical equations derived for DFIG, the variation of stator flux and 

induced EMF are illustrated. For this purpose, a 2.5 MW, 690 volts DFIG is used and by solving (17) and 

(18), the variation of the stator flux and induced EMF are obtained. In this study, at t=200 ms, when the slip 

is -0.2, a three-phase VD (g=0.9) occurs. Figure 2(a) and 2(b) show the stator flux fluctuations in the stator 

and rotor reference frames respectively. Figure 2(c) shows the induced EMF variation in the rotor due to 

stator flux fluctuation. The variation of the induced EMF in the rotor at the initial moment of a VD event 

with respect to VD% and slip is illustrated in Figure 2(d). As it can be seen, the maximum EMF is induced 

when g=1.0 and s=-0.3, which refers to a higher speed of DFIG. 
 

 

 

 

(a) (b) 

  

  
  

(c) (d) 
  

Figure 2. (a) Stator flux fluctuations in the stator reference frame, (b) Stator flux fluctuations in the 

rotor reference frame, (c) The inducted EMF in the rotor winding due to stator flux luctuation, and 

(d) The variation of the EMF at the initial moment of VD event with respect to slip and voltage dip 

 

 

4. THE PRINCIPLE OF PI CONTROL PROPOSED METHOD 

4.1.  Proposed control method for studying the the saturation curve 

In this approach, it has been used the six PI controllers for driving and controlling of  

the DFIG-based WF. PI controllers have set very simple, two PI contollers for RSC, 3 PI controllers for GSC 

and one PI controller for driving the speed of the rotor. Figure 3 shows the block diagram of the proposed 

control method for DFIG-based WT. Fot tunning the PI parameters the ICA has been used that it has been 

done in steady-state condition and transient behaviour [25, 26]. The innovation used in this paper is the use of 

six PI controllers without any extra hardware strategy which causes to increase cost. Also, proposed control 

method is very simplicity and decreases the calculation content.  
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Figure 3. The proposed control method DFIG-based wind farm connected to infinite bus  

 

 

5. RESULTS AND DISCUSSIONS 

For finding the influences of the saturation curve of the DFIG, a three-phase fault occurs into  

the grid causing a voltage dip in PCC of the DFIG. Considered value for VD is 0.9 per unit and it takes 300 

milliseconds and occurs in t=0.5s. Finally, the DFIG response to VD condition has been examined using two 

scenarios including (a) saturation curve (WSC) and (d) without using saturation curve (WoSC) in which the 

mutual inductance equals to 2.9 p.u. Figure 4(a) presents the variation of the objective function in terms of 

the iteration and Figure 4(b) shows the saturation curve of DFIG of Lm. In the steady state condition, 

according to saturation curve, Lm equals to 2.9 p.u but during 90% VD, it is equal to 3.7 p.u. 
 

 

 
 

(a) (b) 
  

Figure 4. (a) Objective function curve, (b) saturation curve 
 

 

Figure 5 shows the DFIG-based wind turbine response under 90% symmetric three-phase VD.  

As depicted in Figures 5(a), when VD occurs the oscilation of active power is disappeared after 0.625s using 

WoSC and 0.67s using WSC. As shown in Figures 5(b), during VD, the oscilation of the reactive power of 

the DFIG is vanished after 0.69s using WoSC and 0.6s using WSC. As depicted in Figures 5(c), using WSC, 

the increase of the PCC voltage is equal to 0.6553 p.u and the oscilation is finished at 0.69s, while by using 

WoSC, the PCC voltage is 0.6875 p.u and the oscilation is finished at 0.563 p.u. The fluctuation of the q-axis 

of the rotor current in synchronous reference frame depicted in Figures 5(d) is vanished at 0.5625s using 

WoSC and 0.65s using WSC, but in these two scenarios, the d-axis of the rotor current does not have 

fluctuation when VD occurs. The fluctuation of the q-axis of the stator current in depicted in Figures 5(e)  

is vanished after 0.5625s using WoSC and 0.625s using WSC, but in these two scenarios, the d -axis  

of the rotor current has a low fluctuation when VD occurs. As can be seen in Figures 5(f), the machine speed 

does not have the sensitive differences in the mentioned scenarios. 

Depending on the results, when using WSC, the fluctuations of the variables of the DFIG-based WT 

increase because when the VD occurs, on the basis of the saturation curve, the Lm varies and increases.  
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The values of Lm creates an uncertainty when the VD happens. So, it needs to use the robust controllers in 

which the uncertainties such as saturation curve, wind speed, or variations of machine variables can not 

influence on them. In addition, with regard to the results in Figure 5(c), the Lm value affects on the increase 

of voltage profile of the PCC during the VD condition and decreases it. 
 

 

Without considering saturation curve With considering saturation curve 

 
T ime (sec) 

 
T ime (sec) 

  

(a) 
  

 
T ime (sec) 

 
T ime (sec) 

  

(b) 
  

 
T ime (sec) 

 
T ime (sec) 

  

(c) 
  

 
T ime (sec) 

 
T ime (sec) 

  

(d) 
  

 
T ime (sec) 

 
T ime (sec) 

  

(e) 
  

 
T ime (sec) 

 
 

  

(f) 

Figure 5. (a) The active power, (b) the reactive power, (c) the PCC voltage, (d) the d and q-axis rotor current, 

(e) the d and q-axis stator current, and (f) the machine speed of the DFIG without and with saturation cure 

under 90% VD condition 

 

6. CONCLUSIONS 

In this research, the transient behaviour of the DFIG under VD condition is examined. Depending 

on the results, when the slip of machine is maximum and the machine works on the super-synchronous speed, 
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the induced EMF is maximum. Also, with considering the uncertainty in the mutual inductance, us ing 

saturation curve, the variables of the DFIG in response to VD condition have more oscilitions. Also, under 

VD condition using saturation curve, the values of the voltage profile in the PCC decreases. So, it needs to 

use the robust controllers in which the uncertatinties such as saturation curve, wind speed, or variations of 

machine variables can not influence on the operation of the DFIG. This study has used the simple model  

of GSC and RSC including a gain whithout delay unit. This model is clearly sufficient to show the influence 

of saturation curve beacause the full model of GSC and RSC do not have effect on the mutual inductance.  

 

 

APPENDIX 

DFIG-based wind farm parameters: 

Rated power DFIG=1.5 MW, stator voltage=575 V, magnetization inductance generator=2.9 pu, 

stator leakage inductance=0.18 pu, rotor leakage inductance=0.16 pu, rotor resistance=0.016 pu, stator 

resistance=0.023 pu, number of pair of poles=3, conversion ratio from stator to rotor: 575/1975, 

frequency=60 Hz; H=0.658. Kp1=200, Ki1=200, Kp2=95.7, Ki2=66.6, Kp3=0.01, Ki3=0.01, Kp4=100, Ki4=0.01, 

Kp5=9.1551 ,Ki5=77.7758. 
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