
Bulletin of Electrical Engineering and Informatics  

Vol. 9, No. 1, February 2020, pp. 1~11 

ISSN: 2302-9285, DOI: 10.11591/eei.v9i1.1486  1 

  

Journal homepage: http://beei.org 

A robust state of charge estimation for multiple models of lead 

acid battery using adaptive extended Kalman filter  
 

 

Maamar Souaihia, Bachir Belmadani, Rachid Taleb 
Electrical Engineering Department, Hassiba Benbouali University of Chlef, LGEER Laboratory 

BP. 78C, Ouled Farès 02180, Chlef, Algeria 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 30, 2019 

Revised Aug 4, 2019 

Accepted Sep 26, 2019 

 

 An accurate estimation technique of the state of charge (SOC) of batteries  

is an essential task of the battery management system. The adaptive Kalman 

filter (AEKF) has been used as an obsever to investigate the SOC estimation 
effectiveness. Therefore, The SOC is a reflexion of the chemistry of the cell 

which it is the key parameter for the battery management system. It is very 

complex to monitor the SOC and control the internal states of the cell.  

Three battery models are proposed and their state space models have been 

established, their parameters were identified by applying the least square 
method. However, the SOC estimation accuracy of the battery depends  

on the model and the efficiency of the algorithm. In this paper,  

AEKF technique is presented to estimate the SOC of Lead acid battery.  

The experimental data is used to identify the parameters of the three models 

and used to build different open circuit voltage–state of charge (OCV-SOC) 
functions relationship. The results shows that the SOC estimation  

based-model which has been built by hight order RC model can effectively 

limit the error, hence guaranty the accuracy and robustness. 
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1. INTRODUCTION 

Photovoltaic energy is the modern technology developed among the recent years   

due to the necessity of clean resource, safe energy with a cost reduced. The radiation of the sun flows  

on the solar panel, which makes the cell generate an electrical energy. The electrical energy converted from 

the cells is using to run stand-alone systems and many applications and also stored in the battery pack.  

The conversion of the energy is an essential part in the solar systems by connecting the cells in some 

combination therefore to attain the necessary level of voltage and power. The battery man agement system  

is using to manage the electricity comes from solar panels, conduct operations by using different algorithms 

to achieve a high power whatever the radiation and the weather. Thus, it controls the charging process and 

manages the energy of the battery in discharge too. Therefore, it protects the whole system, controls and 

monitors the batteries , arranges the power between the system and the loads. 

Energy storage systems are widely used in photovoltaic systems (PV), power grids, and electric 

vehicle. Lead-Acid batteries take over these utilizations due to its high energy and cycle of life  [1].  

In PV, a battery pack is a fundamental part, usually numerous battery cells connected in series or parallel,  

or even in mix technology hence, they employed to safeguard, ensure the operations at nights or emergency 

https://creativecommons.org/licenses/by-sa/4.0/
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situations. Moreover, due the differences among the cells, finding the SOC for the whole pack is necessary. 

To ensure its proper running and extend the life of the battery, the key task is the estimation of the current 

status of the battery, which knows as the state of charge (SOC). Therefore, this paper investigates on the SOC 

estimation for the battery. The SOC, it is the reflexion ratio of the energy remaining on the battery , cannot be 

directly measured as it related to the chemical of the cell [2]. This is a challenge to use a capable algorithm 

for accurate estimating, by using measurable inputs, including the noise of sensors, temperature,  

and nonlinear behaviour.  

State estimation is a recent subject, but it has been well explained in the last decade for reason of 

electric vehicle and stand-alone emergency systems. There are numerous methods to determine  

the SOC [3, 4]. Current-based method (coulomb counting) [5, 6] use the equation of drawn current from  

the battery capacity to estimate SOC. It is a less accurate method, thus the initial SOC must be known and 

that is not always possible. Moreover, the accumulated current error measurement may cause inaccurate 

estimation. Voltage-based methods [7-9] use the relationship between open circuit voltage (OCV) and SOC. 

The battery has to be rested enough time to reach the equilibrium state. Therefore, the relationship suffers 

from changes with different effects. Model-based estimation [10-12] uses mathematical models to link 

measured signals, it is known to done accurate and robust estimates. It is based on the equivalent  

circuit models. 

SOC estimation using model-based, an accurate battery model is most important; a model suitable 

of capturing and tracking the battery dynamics and also easy to implement. Two general types of 

classification; Electrochemical models [13] use the chemical equations to describe the electrochemical 

process, they represent the battery behaviour accurately but they are complex to implement  and quivalent 

circuit models (ECM) [14, 15] use electrical components to describe electrochemical processes like resistors 

and capacitors. ECMs are commonly used due to their simplicity in implementation and accuracy  

of estimation. 

In [16-18] proposed ECM involved of Shepherd, Unnewher and Nernst models. Other models like 

hysteresis and self-correcting are presented, the accuracy of these models can be improved by adding RC 

branches. In [19] a comprehensive study is presented with determination of the parameter. Thus, different 

models have been used. Among them, the second order RC model has been given well results.  

Since, the estimation algorithm use measurements to construct the internal states, by the usage of observers.  

The extended Kalman filter is the common choice to deal with nonlinear systems [20]. In three  

papers [17, 18, 21] Gregory Plett, presented the EKF algorithm and investigate the accuracy of SOC 

estimation with battery model and explained the limitation of it. In both paper; states estimation wit h time 

varying parameters gave good results. Also SOC estimation using Kalman filter is investigated in [22-24] 

showed performance however the scenarios, also the unscented Kalman filter [25] (UKF) performs relatively 

better. In [19] the comparison between 18 different Kalman filter showed the dual EKF was found to perform 

the best. 

This paper investigates of the SOC estimating for a lead acid battery with adaptive Kalman filter. 

The battery model is critical for SOC estimation, therefore three model namely first order equivalent circuit, 

second order and third order model are considered, combined with four OCV-SOC functions in term to 

modelling accuracy. The paper is organized as follows: Section 2 introduces the battery models. In section 3, 

the method has been used to identify models parameters, the AEKF algorithm briefly introduced while  

this is followed by experiment results and analysis. Finally, conclusions of the paper are given in section 5.  

 

 

2. BATTERY MODELLING 

In order to apply a model based to achieve an accurate SOC estimation, firstly, a battery model 

should be designed and constructed. Thus, equivalent circuit model (ECM) equations required to build and 

estimate the parameters and the states. Therefore, , numerous types of battery models have been used to 

describe the dynamics of the battery were presented and evaluated  [1]. To reach excellent capture between 

the output voltage and the characteristics of the battery considering the complexity of computation and speed 

response, three models has been selected as illustrated in Figure 1. 

The first order model consists of an open circuit voltage (OCV), a series resistance Rs represents  

the internal resistance of the cell which denotes the resistivity of the electrolyte, the separator and electrodes.  

In addition to a parallel branch of resistance and capacitance polarization connected in series.  

While, the second order model contains two RC branches and the third order model contains three RC 

branches. IL expresses the load current (it takes negative for charge, positive for discharge), Vt indicates  

the terminal voltage. The OCV is used to denote the internal voltage source of the battery. The electrical 

behaviour of three proposed model a,b and c can be written in (1), (2) and (3) respectively: 
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Model (a) {

𝑑𝑉1

𝑑𝑡
=
−V1

𝑅1𝐶1
+
𝐼𝐿

C1
     𝑉𝑡 = 𝑂𝐶𝑉(𝑧) − 𝐼𝐿𝑅0− 𝑉1

 (1) 

   

Model (b) 

{
 
 

 
 

𝑑𝑉1

𝑑𝑡
=
−V1

𝑅1𝐶1
+
𝐼𝐿

C1
𝑑𝑉2

𝑑𝑡
=
−V2

𝑅2𝐶2
+
𝐼𝐿

C2
     𝑉𝑡 = 𝑂𝐶𝑉(𝑧) − 𝐼𝐿𝑅0 − 𝑉1 − 𝑉2

 (2) 

   

Model (c) 

{
 
 
 

 
 
 

𝑑𝑉1

𝑑𝑡
=
−V1

𝑅1𝐶1
+
𝐼𝐿

C1
𝑑𝑉2

𝑑𝑡
=
−V2

𝑅2𝐶2
+
𝐼𝐿

C2
𝑑𝑉3

𝑑𝑡
=
−V3

𝑅3𝐶3
+
𝐼𝐿

C3
     𝑉𝑡 = 𝑂𝐶𝑉(𝑧) − 𝐼𝐿𝑅0− 𝑉1 −𝑉2 − 𝑉3

 (3) 

   

Where z denotes the state of charge attached to each polarization voltage. 
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+
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(c) 

  

Figure 1. (a) The first order Thevenin model, (b) The second order RC model, (c) The third order RC model 

 

 

3. PARAMETERS IDENTIFICATION  

Before the implementation of the proposed approach to estimating the state, first, the identification 

of the parameters which the model contains is recommended. In order to determine the parameters  

of the model a pulse discharge method is applied. A test bench settles in to figure out these factors,  

a lead-acid battery is carried out in this experiment with a nominal voltage and capacity of 12 V and 22 Ah 

respectively. The OCV curve can be obtained based on the voltage measurement after the battery reaches its 

balance voltage. In this paper, the battery is fully charged and has been left a period to get its equilibrium,  

we measure the OCV at the beginning of the test. Then the cell discharged of 10% capacity with a current of 

1C, and let it in a relaxation period. We measure the OCV value with the 0.9 SOC, the steps can be repeated 

until the battery is fully discharged. 

It is clearly appearing that the main objective of this test is to excite the dynamics of the cell for  

a pulse discharge. The terminal voltage and current curves are illustrated in Figure 2. The terminal voltage 
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interval from around 12.83 V to 10.5 V when the pulse discharged applied, but it can be observed that returns 

back to 11 after relaxation. 

 

 

  
  

(a) (b) 
  

Figure 2. Pulse discharge, (a) Current 1C rate, (b) Terminal voltage measured 

 

 

3.1.  Electrical model parameters  

Based on the curve fitting tool in MATLAB, an equation of six-order polynomial built  

by the measured data is employed to simulate the open circuit voltage, as shown in Figure 3. Before applying 

the approaches technique for the SOC prediction, the state transition and measurement update equations that 

link the SOC to the terminal voltage based on the equivalent circuit model necessary to be built firstly.  

The transient response voltage for a period a pulse discharge is presented in Figure 4(a). The components  

of the equivalent circuit model can be identified from the transient voltage. The  voltage across the branch RC 

for the loaded in and the relaxation period is written in (4) and (5) as mentioned the Figure 4(b). 
 

R0 = (|
V1−V2

IL
| + |

V3−V4

IL
|)/2       (4) 

 
 

 
 

Figure 3. The relationship between open circuit voltage and SOC 

 

 

The transient parameters can be identified from the present equation for the first model  

by using LS method [26]: 

 

{
Vd   = IL ∗ Rp ∗ [1 − exp (

−td

τ
)]                      , IL ≠ 0

  Vd = Vd ∗ [exp (
−tr

τ
)]                                     , IL = 0     

    (5) 
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Where, IL denotes the discharge current, td is the time of the discharge period and tr is the time of the rest 

period for the model(a) as illustrated in Figure 1(a). And similarly, the transient parameters for the (b) and (c) 

models can be identified by adding the second branch transient and third transient as illustrate  

in the Figures 1(b) and Figure 1(c).  

 

 

  
  

(a) (b) 
  

Figure 4. The parameters identification method for Thevenin method, (a) Voltage response,  

(b) Zoomed transient response 

 

 

3.2.  The state of charge 

The SOC is defined in the literature as a ratio refers to the remaining energy in the battery.  

It indicated in the range of 0 and 1 or expressed in percentage. The SOC function given by:  

 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶0−
1

𝐶𝑛
∫ 𝑛𝑖𝐼𝐿,𝜏𝑑𝜏
𝑡

0        (6) 

 

Where 𝑆𝑂𝐶𝑡 is the current time. 𝑆𝑂𝐶0 is the initial value of the SOC,𝐼𝐿 is the current flow in the load 

assumed negative for charge and positive of discharge. 𝐶𝑛 is the present available capacity, which may 

change by the age effect. 𝑛𝑖  refers to the coulomb efficiency. Afterwards, the equation can be transformed to 

the discrete time form as: 

 

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1− 𝑛𝑖
𝐼𝐿,𝑘Δ𝑡

𝐶𝑛
       (7) 

 

Where Δ𝑡 is the sampling time. 

 

3.3.  AEKF algorithm  

Several models linked to the battery, such as electrochemical models and ECMs have been widely 

used due to the battery system belongs to the nonlinear systems. The version of Kalman filter which   

is designed to deal with such kind of systems is the extended Kalman filter [27]. It is a recursive filter based 

on mathematical equations for estimating the states of a process, designed to minimize the mean squared 

error. It has been used in many fields as tracking and estimating. The main goal to apply AEKF because  

it can iteratively regulate the gain automatically based on the update of the weight noise coefficient  

and adaptively adjusts the output model with the measured voltage. The state space equations of the three 

models can be formulated and presented as [28-30]: 

 

{
𝑥𝑘 = 𝐴𝑘𝑥𝑘−1+ 𝐵𝑘𝑢𝑘−1+ 𝑤𝑘
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘

       (8) 

 

where 𝑣𝑘 ,𝑣𝑘  are the process and measurement noise with zero mean Gaussian respectively of the nonlinear 

functions [27, 29] 𝑓(. ) and 𝑔(. ). Therefore, based on the equivalent circuit of the three selected batteries 

models, 𝑢𝑘 is selected as the input current and the output of the system 𝑦𝑘  is the terminal voltage.𝑥𝑘  
is the system states; here are the matrices of the system as follow in (9) for the three models respectively. 
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Model (a) Model (b) Model (c)  

{
 
 
 
 

 
 
 
 𝐴𝑘 = [𝑒

−
𝑇

𝑅1𝐶1 0
0 1

]

𝐵𝑘 = [
𝑅𝑝(1 − 𝑒

−
𝑇

𝑅1𝐶1)

−
𝑇

𝐶𝑛

]

𝐶𝑘 = [−1  
𝜕𝑂𝐶𝑉

𝜕𝑆𝑂𝐶
]

𝐷𝑘 = [−𝑅0]

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐴𝑘 = [

𝑒
−

𝑇

𝑅2𝐶2 0 0

0 𝑒
−

𝑇

𝑅1𝐶1 0
0 0 1

]

𝐵𝑘 =

[
 
 
 
 
 𝑅2 (1 − 𝑒

−
𝑇

𝑅2𝐶2)

𝑅1(1 − 𝑒
−

𝑇

𝑅1𝐶1)

−
𝑇

𝐶𝑛 ]
 
 
 
 
 

𝐶𝑘 = [−1 −1  
𝜕𝑂𝐶𝑉

𝜕𝑆𝑂𝐶
]

𝐷𝑘 = [−𝑅0]

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐴𝑘 =

[
 
 
 𝑒
−

𝑇

𝑅3𝐶3

0
0
0

0

𝑒
−

𝑇
𝑅2𝐶2

0
0

0
0

𝑒
−

𝑇

𝑅1𝐶1

0

0
0
0
1]
 
 
 

𝐵𝑘 =

[
 
 
 
 
 
 
 
 𝑅3 (1 − 𝑒

−
𝑇

𝑅3𝐶3)

𝑅2 (1 − 𝑒
−

𝑇

𝑅2𝐶2)

𝑅1 (1 − 𝑒
−

𝑇

𝑅1𝐶1)

−
𝑇

𝐶𝑛 ]
 
 
 
 
 
 
 
 

𝐶𝑘 = [−1 − 1 − 1  
𝜕𝑂𝐶𝑉

𝜕𝑆𝑂𝐶
]

𝐷𝑘 = [−𝑅0]

 (9) 

            

Where 𝐴𝑘  and 𝐵𝑘are discrete system matrix and discrete input matrix for system, respectively  

 𝑇 is the sampling time with 1 second, and 𝑘 is the step. Their covariance values are denoting as 𝑄𝑘 and 𝑅𝑘  

respectively to the process noise and measurement noise 𝑤𝑘  and 𝑣𝑘 . 𝐶𝑛 is the capacity of the battery supposed 

to be constant. Minimizing the mean square error is the base of the AEKF algorithm. It is applying  

the recursive estimation, involved of the initialization, time update and measurement update. Th e process  

is illustrated in Figure 5. 
 

 

Cp,Rp,R0

Battery
Model

ek = yk- yek

Qk,Rk,Kk

X = xk + ek Kk

Ye

Measured 
Voltage

Measured 
Current

yk
SOC 

estimated

 
 

Figure 5. Structure of the process of AEKF 
 

 

And the steps of the AEKF are summarized as follows: 

a. Initialization of parameters:  
 

 {
𝑥0 = 𝐸(𝑥0)

𝑃0 = 𝑣𝑎𝑟(𝑥0)
 (10) 

 

Where, E and var are the mean value of state variable and the initial covariance of the system, respectively,  

The calculation of AEKF consists of six steps.  
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b. Innovation: 
 

 𝑒𝑘 = 𝑦𝑘 −𝑔(𝑥𝑘
− ,𝑢𝑘) (11) 

   

c. Adaptive law: 

The covariance has been iteratively updating. 𝑄𝑘 and 𝑅𝑘  have been estimated respectively, which 

cannot estimate accurately in EKF calculation process. 
 

 𝐻𝑘 =
1

𝑀
∑ 𝑒𝑖𝑒𝑖

𝑇

𝑘

𝑘−𝑀+1

 (12) 

   

 𝑅𝑘 = 𝐻𝑘 − 𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 (13) 

   

𝐻𝑘 is the computation which states covariance of 𝑒𝑘  with a moving estimation windows of size M.  

d. State estimation covariance and Kalman gain  
 

 𝑃𝐾
− = (𝐼 + 𝐴𝑘∆𝑡)𝑃𝑘−1(𝐼 + 𝐴𝑘∆𝑡)

𝑇 + 𝑄𝑘 (14) 
   

 𝐾𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇 ∗ (𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇+ 𝑅𝑘)
𝑇  (15) 

   

e. State estimate update 
 

 𝑥𝑘
+ = 𝑥𝑘

− + 𝐾𝑘𝑒𝑘  (16) 
   

f. Update state covariance  
 

 𝑄𝑘 = 𝐾𝑘
−𝐻𝑘𝐾𝑘  (17) 

   

 𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘

−(𝐼 − 𝐾𝑘𝐶𝑘)
𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇  (18) 

 

In the final step, error covariance is estimated and updated. The computing is then repeating again from (b) to 

(f) until reach all the collected data sampling [30]. 
 

 

4.  RESULTS AND SIMULATION  

In this practical test, the actual battery’s capacity is ranging in the level of 10%-95%, to protect  

it from damage. The data were used for simulation area, were chosen in order to get the constant discharge 

curve illustrated in Figure 4. Thus, From Figure 4, it appears that The OCV-SOC relationship drawn  

is a nonlinear function. In order to investigate the nonlinear behaviour, 4 different functions [17,31] for  

the OCV proposed to fit the OCV-SOC curve. The functions descriptive are shown in Table 1.  

Moreover, their parameters were obtained from the curve fitting toolbox in Matlab and evaluated their  

goodness of fitting. 
 

 

Table 1. Candidates’ functions fitting 
Function  Function descriptive 

Func1 𝑂𝐶𝑉=  𝑎1𝑆𝑂𝐶
6 +𝑎2𝑆𝑂𝐶

5 +𝑎3𝑆𝑂𝐶
4 +𝑎4𝑆𝑂𝐶

3 +𝑎5𝑆𝑂𝐶
2 +𝑎6𝑆𝑂𝐶 +𝑎7  

Func2 𝑂𝐶𝑉=  𝑎1𝑆𝑂𝐶
5 +𝑎2𝑆𝑂𝐶

4 +𝑎3𝑆𝑂𝐶
3+ 𝑎4𝑆𝑂𝐶

2 + 𝑎5𝑆𝑂𝐶
1 +𝑎6  

Func3 𝑂𝐶𝑉 = 𝑎1 +
𝑎2
𝑆𝑂𝐶

+ 𝑎3𝑆𝑂𝐶 + 𝑎4 ln(𝑆𝑂𝐶)+𝑎5 ln ( 1−𝑆𝑂𝐶) 

Func4 𝑂𝐶𝑉 = 𝑎1 +
𝑎2
𝑆𝑂𝐶

+𝑎3𝑆𝑂𝐶
2 +𝑎4e

−a5(1+SOC) 

 
 

The obtained parameters after fitting the curve with each candidate function are shown in Table 2. 

Followed by the root mean of the sum error (RMSE) for each candidate function, the results  

are shown in Table 3. 
 

 

Table 2. Parameters of the selected functions  
OCV function 𝑎1 𝑎2  𝑎3  𝑎4  𝑎5  𝑎6  𝑎7  

Func1 142 -439.3 528.7 -308.7 86.69 -8.2 11.45 
Func2 24.88 -62.01 60.09 -30.04 9.076 10.54 - 
Func3 13.7 0.1009 -2.098 1.428 -0.1778 - - 

Func4 6.406 0.02342 -12.69 0.8754 -1.532 - - 
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Table 3. RMSE after fitting  
OCVfunction Func1 Func2 Func3 Func4 

RMSE 0.0225 0.0377 0.0203 0.044 

 
 

The test was settled first to test the performance of the model-based proposed with discharging of 

the battery under a constant current. The results obtained are shown in Figure 6(a) and Figure 6(b),  

in comparison with the terminal voltage obtained from the model. Choosing the right OCV function  

is the key to better estimation the SOC of the battery. Better estimation results were getting whe n using 

logarithm, exponential and polynomial functions. The better performance of the higher polynomial function, 

it is much better than that other OCV functions in the model-based on the first order Thevenin model  

as shown in Figure 7(a). In Figure 8(a), it can be seen that the SOC error less than the previous  

shown in Figure7(b). The highest polynomial function fits better than the other functions, and the result 

become better on tracking by using the second order Thevenin model. 
 

 

  

  

(a) (b) 
  

Figure 6. The terminal voltage modelled: (a) the modelling voltage; (b) the modelling error 
 

 

  
  

(a) (b) 
  

Figure 7. The SOC estimation with initial value of 60%, (a) SOC estimation for first order Thevenin model, 

(b) The SOC estimation error 
 
 

In Figure 8(b), it shows the SOC tracking become well than the previous results seen  

in Figure 8(a) and Figure 7(b). Also the initial SOC given is corrected; thus, it took some period of time to 

get the correction .in addition, the RMSE for each function with the third ECM model. Although the Kalman 

filter suffered from the initialization error. However, the EKF perform better with the third order model  

and the high polynomial function of the OCV even when the model was affected by the noise.The RMSE for  

the SOC estimated are tabulated in Table 4. 
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(a) (b) 
  

Figure 8. The SOC estimation error, (a) For second-order model, (b) For third-order model 
 
 

Table 4. The RMSE of SOC estimated for third model-based 
Function Func1 Func2 Func3 Func4 

RMSE 0.0144 0.0168 0.0193 0.0201 

 
 

The state of charge of the battery can be estimated with sliding mode observer (SMO) algorithm. 

This solution is simple and optimal for estimating the SOC. So, considering the battery system with  

the sliding variable Vt and the error defined as the sliding surface e(t) = Vt − V̂t, where Vt and V̂t  
are the terminal voltage and the terminal voltage estimate. The SMO is modeled as:  

           

 {
𝑥̇̂ = 𝑓(𝑥, 𝑢) + 𝑘 ∗ 𝑠𝑔𝑛(𝑦 − 𝑦̂)

𝑦 = 𝐶(𝑥)
 

(19) 
 

   

where 𝑠𝑔𝑛 is signum function. 𝑘 is the switching gain. 𝑦 and 𝑦 denote the true terminal voltage and 

estimated terminal voltage 𝑉𝑡 ,𝑉𝑡 , respectively. 𝑢 is the input control, which represent the current 𝐼𝐿 . 

 𝑥  is the estimated states. 𝐶  is the matrix of control. 

Therefore, the AEKF has shown better tracking capability to the real SOC against conventional 

SMO, also has a smooth error during the estimation, which means suitable and robustness technique  

as shown in Figure 9. Moreover, the RMSE of AEKF equal 0.018 and SMO 0.021, but the SMO is the speed 

one by computationale time under 0.2 S.  

 

 

 
 

Figure 9. Comparison between AEKF and SMO 
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5. CONCLUSION  

This paper lies in development and testing of an algorithm of SOC estimation for a wide range  

of operational scenarios. There exists a difficulty in limitation of the performance of the Kalman filtering 

algorithm because of the nonlinearity in such systems. Thus, It is hard to acquiring suitable battery system 

data for several profiles . In this paper, an experimental data has been simulated for the model of a Lead-Acid 

battery to test the algorithm with different drive cycles and compared to simulated ones. The state space 

model of the battery and its parameters firstly determined and followed by ap plying the AEKF. The SOC 

estimation with four different candidate functions was settled. The combination of the EKF with the highest 

polynomial function and the third order model performed better in limitation of the error. The EKF proved to 

be more effective and accurate.  
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