
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 1, February 2021, pp. 466~473

ISSN: 2302-9285, DOI: 10.11591/eei.v10i1.2201  466

Journal homepage: http://beei.org

Hardware-software partitioning using three-level hybrid

algorithm for system-on-chip platform

Tiong Reng Xian, Zaini Abdul Halim, Ching Chia Leong, Tan Jiunn Gim
 School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Niboong Tebal, Malaysia

Article Info ABSTRACT

Article history:

Received Feb 7, 2020

Revised May 5, 2020

Accepted Jul 27, 2020

 This study discusses hardware-software partitioning, which is useful for

system-on-chip (SoC) applications. Hardware-software partitioning attempts

to obtain the lowest execution time by combining a hardware processor

system and a field programmable gate array on the SoC platform in

embedded system applications. A three-level hybrid algorithm called

GAGAPSO is proposed in this study. The algorithm consists of two

successive genetic algorithms (GAs) and one particle swarm optimization

(PSO). The drawbacks of these two algorithms are GA has low convergence

speed and PSO has premature convergence because of low diversity. These

algorithms are combined in this study to achieve high-capacity global

convergence and enhanced search efficiency. In this study, three algorithms

are developed, namely, GA, GAPSO and GAGAPSO using MATLAB.

These algorithms are evaluated on the basis of the number of nodes and the

minimum cost that can be achieved. The number of nodes varies from 10 to

1000 nodes. The minimum cost and the number of iterations to achieve the

minimum cost are recorded. Results show that GAGAPSO can converge

faster than GA and GAPSO. Furthermore, GAGAPSO can achieve the

lowest cost for all nodes.

Keywords:

Genetic algorithm

Hardware-software

Hybrid algorithm

Particle swarm optimisation

Partitioning

System on chip

This is an open access article under the CC BY-SA license.

Corresponding Author:

Zaini Abdul Halim,

School of Electrical and Electronic Engineering,

Universiti Sains Malaysia,

Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

Email: zaini@usm.my

1. INTRODUCTION

System on chip (SoC) is one of the platforms in the current embedded system design. Its features,

like low power consumption, light weight and small size, have made it popular in current applications of

embedded system design. SoC consists of a field programmable gate array (FPGA) and a hardware processor

system (HPS). Instead of using only HPS or FPGA, HPS and FPGA are used together in any application of

embedded systems. To use FPGA and HPS, hardware-software partitioning must be implemented to

determine which tasks will be implemented in hardware and which task will be implemented in software.

Hardware refers to the FPGA that runs as parallel circuits, whereas software refers to the HPS that executes

sequential instructions. FPGA tends to improve the execution time through its parallel processing capability

but uses many resources [1], which lead to high power consumption. Hardware-software partitioning is

proposed for the combination of FPGA and HPS in embedded system applications to require few resources

and reduce the power consumption and execution time.

Partitioning is always the key challenge in optimising embedded system efficiency. In the past,

partitioning was performed manually by designers based on their experience. However, embedded system

https://creativecommons.org/licenses/by-sa/4.0/
mailto:zaini@usm.my

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hardware-software partitioning using three-level hybrid algorithm… (Tiong Reng Xian)

467

design has increased in complexity over the years, making manual partitioning tedious because of the large

number of components with different characteristics that must be considered [2-9]. Therefore, many

researches have been conducted to implement the hardware software partitioning automatically [10-15]. The

hardware software partitioning can be categorized as exact algorithm and heuristic algorithm. At first, exact

algorithm like dynamic programming and branch-and-bound, have been introduced [16-17]. However, the

exact algorithm gave poor performance. Hence, the research shifted to heuristic algorithm. Examples of

heuristic algorithm are simulated annealing (SA), particle swarm optimisation (PSO) and genetic algorithm

(GAs) [17-21]. The heuristic algorithms also have their own drawbacks [22]. For instance, low diversity in

PSO causes premature convergence. When the size of the given area is large, the PSO algorithms tends to go

back into its local optimum. GA also has its own drawbacks. One of them is, in order to generate a solution,

GA needs evolutionary processes like selection, crossover and mutation. As a result, GA suffers from low

convergence speed. In addition, it does not guarantee to find a global maximum and it requiresa certain

population size and large number of generations in order to obtain a satisfactory result. Hence, GA needs a

considerable time to get an optimum solution. Nevertheless, PSO and GA still have some merits, such as

PSO has fast convergence speed [23] and GA has capability to easily solve combinatorial optimising

problems.

To improve the performance of PSO and GA, hybrid algorithm has been proposed. Example of

hybrid algorithms included PSO-GA, GA-PSO, PSO-PSO and GA-GA [2]. Results show that successive GA

consumes less time, whereas successive PSO can produce a better graph than GA does and settles at a finite

value. The graph provided in [2] indicates that although successive GA did not provide a slope result instead

of a step, it used fewer iterations to achive the best cost. PSO uses more iterations to settle the graph.

Successive GA can perform fewer iterations to reach the best cost, whereas successive PSO can smoothen the

curve. Hence, adding another PSO after successive GA may result in fewer iteration to reach the best cost

and a smoother curve. Thus, better results might be obtained in the hardware-software partitioning problem

by using the hybrid technique. In the present work, a three-level hybrid model of PSO and GA is constructed

to optimise the performance of an embedded system by deciding the implementation of a specific application

or to function either in software or hardware. A comparison amongst GA, GAPSO and GAGAPSO is

presented. GA is considered a heuristic algorithm. GAPSO is considered a two-level hybrid algorithm and

GAGAPSO is considered a three-level hybrid algorithm. The minimum cost versus the number of nodes is

also discussed.

2. RESEARCH METHOD

Research methods are divided into three phases, which are the development of GA, PSO and hybrid

GAGAPSO. PSO and GA share some similarities. Both begin with a randomised population, and each

population has its own fitness value for evaluation. The algorithms update the population and search for

the optimum using a random technique. Different from GA, PSO does not have the evolution process, like

crossover and mutation. Particles in PSO change themselves through internal velocity, and PSO requires

memory to store the parameters. Thus, PSO is faster and simpler than GA [23]. In this implementation, three

levels are constructed. The first two levels are successive GAs, followed by a PSO model. Figure 1 shows

the implementation architecture. The GA and PSO models are constructed individually before they are

combined into a hybrid model.

Figure 1. Three-level hybrid model architecture

In GA, natural selection involves three main processes, namely, selection, crossover and mutation.

In selection process, the best genes are choosen as parents. These genes are crossed over to produce a better

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 1, February 2021 : 466 – 473

468

gene, and a certain probability exists that the gene will mutate. However, the mutation result is not

guaranteed. GA imitates the process of natural selection [24-27]. The first step in GA is to initialise all

the populations of solutions. The fitness or cost of each solution is evaluated using (1). Once the fitness

evaluation is done, the solutions used to perform crossover and mutation will be selected through a selection

process. The procedure is followed by the crossover and mutation processes. The fitness for each solution

will be re-evaluated after the croosver and mutation processes, which will generate additional solutions. By

sorting all the solutions according to the fitness, the additional solutions with the lowest fitness will be

eliminated [28-29].

𝑜𝑠𝑡 = 100 (
𝐻𝑊𝑐𝑜𝑠𝑡

𝐴𝑙𝑙 𝐻𝑊 𝐶𝑜𝑠𝑡
+

𝑆𝑊𝑐𝑜𝑠𝑡

𝐴𝑙𝑙 𝑆𝑊 𝑐𝑜𝑠𝑡
+

𝑃𝑊𝑐𝑜𝑠𝑡

𝐴𝑙𝑙𝑃𝑊𝑐𝑜𝑠𝑡
) (1)

where

HWcost=hardware implementation cost of particle

SWcost=software implementation cost of particle

PWcost=power implementation cost of particle

All HWcost=total hardware implementation cost of all particles

AllSWcost=total software implementation cost of all particles

AllPWcost=total power implementation cost of all particles in software and hardware

PSO algorithm is inspired by social behaviour of fish schooling or bird flocking. The best way to

illustrate PSO is by considering a group of birds searching for food within an area. The birds know how far

the food is but do not know where it is. The best strategy to reach the food is to follow the nearest bird to

the food. PSO is inspired by this scenario [2]. To demonstrate the PSO model, the population of solutions are

first initialised, and the fitness for each solution is evaluated. The fitness function is the cost function as

shown in (1). The velocity for each solution is initially set to zero. The velocity and the position are then

updated using (2) and (3), respectively [2].

𝑣[𝑖] = (𝑊 × 𝑣[𝑖] + 𝐶_1𝑟_1(𝑝𝐵𝑒𝑠𝑡[𝑖] − 𝑥[𝑖]) + 𝐶_2𝑟_2(𝑔𝐵𝑒𝑠𝑡[𝑖] − 𝑥[𝑖])), (2)

𝑥[𝑖] = 𝑥[𝑖] + 𝑣[𝑖], (3)

where

𝑣[𝑖]=velocity of a particle;

𝑊=damping inertia factor, value from 1 to 0 according to the iteration number (W=W*w_damp);

𝐶_1=self confidence (cognitive) factor;

𝑟_1=random numbers between 0 and 1;

𝐶_2=swarm confidence (social) factor;

𝑟_2=random number between 0 and 1;

𝑥[𝑖]=current position of the particle;

𝑝𝐵𝑒𝑠𝑡[𝑖]=position vector of the best solution that this particle achieved thus far;

𝑔𝐵𝑒𝑠𝑡[𝑖]=best position vector obtained thus far by any particle in the population.

The fitness of each particle is evaluated after changing its velocity and position. gBest and pBest are

updated accordingly. The steps are repeated until it reaches the maximum iteration. Figure 2 shows

the flowchart of three-level hybrid modelling. PSO is implemented after two successive GAs. The first GA

flow is the same as the basic GA flow until excess data are eliminated. After data elimination, the set of data

is sent over to the next GA for another round of crossover and mutation. After the data elimination of

the second GA, the set of data is passed to the PSO algorithm. In this study, a binary solution is expected by

assuming the 1 and 0 values of the hardware and software nodes, respectively. The damping coefficient

decreases in each iteration by a factor of Wdamp, which is set to 0.97. The cost function as shown

in (1) only considers the hardware and software. For simulation purpose, these values are randomly and

uniformly generated in the range of 1 to 99.

For a binary problem, the node value is represented by 1 and 0. 1 means the node value will be

mapped to hardware and 0 means the node value will be mapped to software. Hard decision rounding (HDR)

technique is used to round off the particle. If the node value is larger than 0.5, it will be considered as

hardware. Some parameters are used in GA and PSO algorithms. For GA, Pc. the crossover probability is set

to 0.9, and the Pm, the mutation probability is set to 0.1. In PSO, C1 and C2 for the velocity equation are set

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hardware-software partitioning using three-level hybrid algorithm… (Tiong Reng Xian)

469

to 2, and W is set to 1. In this project, 0.97 is set for the damping value. The number of particles,

the population size and the maximum iterations depend on the application [2]; in this study, the values are

512, 60 and 500 respectively.

\

Figure 2. GAGAPSO flowchart

In GA, many approaches can be considered to perform the operations. Three processes are used in

GA, namely, selection, crossover and mutation. Each has different methods, and the choice of method will

affect the output of the system because GA solely depends on these operators. The selection method in this

study is the fitness proportionate selection because it is simple and fast for large numbers of particles.

The basic operation of the selection is as follows: the fitness for each particle is normalised and

the population is sorted in descending fitness values. Then, the accumulated normalised fitness values are

End

Reach maximum

iteration?

Reach maximum

iteration?

Start

Generate initial population

of solutions

Evaluate fitness for each

solution

Selection of solutions

Crossover

Mutation

Fitness evaluation

Eliminate additional

solutions with lowest

fitness

Selection of

solutions

Crossover

Mutation

Fitness evaluation

Eliminate additional

solutions with lowest

fitness

Update position and

velocity of particle

Check boundary

Evaluate fitness

Update gbest and

pbest

Reach maximum

iteration?

Yes
No

Yes No

No Yes

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 1, February 2021 : 466 – 473

470

computed (the accumulated fitness of the last individual should be 1). A random number R between 0 and 1

is selected. The selected individual is the last one which the accumulated normalised value is smaller than R.

The next process is the crossover. The method used in this study is heuristic crossover. This method creates

one child offspring from two parents. The child gene can be obtained using (4) as follows:

𝑂1 = 𝑃1 + 𝑅(𝑃2 − 𝑃1) (4)

where

O1=child gene

P1 and P2=parent genes

R=random number between 0 and 1

Lastly, uniform mutation is applied in this algorithm for the mutation process. This process replaces

the original value of the selected gene with a uniform value that is randomly generated between the lower and

upper boundaries of the gene. The algorithms are programmed using MATLAB and runs on Intel i7, 2.8 GHz

processor with an 8GB RAM. In the first testing, the algorithms are analysed based on the random value

generated in MATLAB. The number of nodes is set to 500. In the second testing, the algorithms are iterated

using values as tabulated in Table 1 for a 12-nodes application. In both testings, the cost is calculated using

(1). The best cost is determined as the unchanging cost in 50 consecutive iterations. The graph of cost versus

iterations is plotted for 500 iterations.

Table 1. Execution time for each node in hardware and software
Node Hardware execution time (ms) Software execution time (ms)

1 18.432 39

2 12.096 18.827

3 12.096 9.610
4 4.032 5.501

5 4.039 3.614

6 4.032 5.653
7 4.039 3.933

8 4.032 3.629

9 4.046 3.623
10 4.032 5.276

11 4.043 3.949

12 4.032 0.004
TOTAL 78.951 102.619

3. RESULTS AND DISCUSSION

In this section, the results of the proposed method are discussed and analysed. The comparisons of

the execution times of the three algorithms are also discussed. Figure 3 shows the cost versus iterations

graph. The three algorithms, namely, GA, GAPSO and GAGAPSO are plotted in the graph. As expected,

the GAGAPSO has a smooth graph with few iterations to achieve the minimum cost. The number of

iterations to reach the best cost is approximately 12-31 iterations. This algorithm combines the advantages of

successive algorithm into a single model.

Figure 3. Cost versus iteration for 500 nodes

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hardware-software partitioning using three-level hybrid algorithm… (Tiong Reng Xian)

471

The graph is used to show the number of iterations required to achieve the best cost. The best cost

is determined as the unchanging cost in 50 consecutive iterations. The graph shows that the best cost for

GAGAPSO is the lowest amongst the three algorithms. To determine the performance of the algorithms,

the time needed to achieve the minimum cost is calculated as shown in (5):

t = 𝑇𝑡𝑜𝑡𝑎𝑙 ×
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

500
 (5)

For each trial or simulation, the total time needed is slightly different because random particles are

used in the simulation. Hence, 10 simulation or trials are performed and averaged. The results of the 10 trials

are tabulated in Table 2. For the GAPSO and GAGAPSO algorithms, the average time needed to achieve

the best cost is 6.1636 s and 0.7830 s respectively. It shows that GAGAPSO is approximately 8 times faster

than GAPSO.

Table 2. Result from GAPSO and GAGAPSO algorithms
GAPSO algorithm GAGAPSO algorithm

Trial
Number of
iterations

Total time
needed (s)

Trial
Number of
iterations

Total time
needed (s)

1 262 5.3649 1 31 1.1368

2 322 5.5162 2 21 0.7100

3 174 3.8544 3 15 0.6149

4 402 7.8660 4 25 0.9702
5 303 5.0621 5 15 0.5203

6 344 7.2371 6 23 0.9236

7 316 6.6388 7 21 0.8727
8 302 6.2603 8 17 0.6755

9 390 8.2670 9 12 0.4960

10 269 5.5694 10 23 0.9102
Average 6.1636 Average 0.7830

Figure 4 shows the cost versus the number of nodes. The minimum cost increases with the number

of nodes. GAPSO only performs better than GA when the number of nodes is less than 500. If the number of

nodes is more than 500, then GA performs better than GAPSO. The results also show that GAGAPSO

performs better than GA for all nodes. A hybrid model must be used to overcome the problem of

convergence at the optimum point and achieve the properties of high capacity of global convergence and that

the fast, efficient searching. The results indicate that three-level hybrid algorithms can perform better than

two-level hybrid models for higher capacity, which is more than 500 nodes. The GA is quite robust but

suffers from low convergence speed, which can be improved by using two successive GAs. PSO, which

is simpler and faster than GA, can also help the two successive GAs for fast convergence speed. The

drawback of PSO, which is premature convergence, is due to low diversity. The problem can be solved using

two successive GAs as an input of the PSO.

Figure 4. Cost versus number of nodes

Figure 5 presents the percentages of improvement in terms of the minimum cost for GAGAPSO

over GAPSO and GAPSO over GA. For GAGAPSO over GAPSO, the maximum improvement is at 500

nodes, with an improvement of 6.3%. After 500 nodes, the improvement of GAGAPSO slightly decreases.

When the number of nodes continuously increase, the GAGAPSO algorithm can no longer converge at

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 1, February 2021 : 466 – 473

472

the optimum point. The same is true for GAPSO over GA. The maximum improvement achieved by GAPSO

over GA is at the 100th node where the improvement is approximately 3%. When the number of nodes

continuously increase, the performance of GAPSO decreases, and at 500 nodes, it is worth than GA as shown

in Figure 5.

Figure 5. Improvement versus number of nodes

Results from the second simulation show that GAGAPSO and GAPSO algorithms can achieve

the minimum cost of 81.63 ms. For a small number of nodes, the minimum cost that can be achieved by

GAGAPSO is the same as that of GAPSO. It is also found that the optimum solution for node

implementation obtained using GAGAPSO algorithm is 110101000100 as shown in Table 3. The same

optimal solution is also obtained using GA and GAPSO algorithm. The hardware node is assigned as 1,

whereas the software node is assigned as 0. It means that the Node 1 should be implemented in hardware

(FPGA) and node 12 should be implemeneted in software (HPS). By using these combinations, the overall

execution time is 81.63 ms as shown in Table 3. If all nodes are implemented in hardware (FPGA) or all

nodes are implemented in software (HPS), the impelementation time will be 78.95 ms and 102.62 ms

respectively. FPGA can improve the speed but uses more resource that will result in more power

consumption whereas the HPS will require more execution time compared to FPGA. Hence hardware

software partitioning using GAGAPSO algorithm can help in improving the implementation of embedded

system in SoC platform. It will propose an optimal solution for the node implementation in embedded system

in order to optimize the power consumptiton and the execution time.

Table 3. Optimal solution obtained using GAGAPSO algorithm
Node Implementation Hardware

execution time (ms)

Software execution

time (ms)

Overall execution

time (ms) 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0 1 0 1 0 0 0 1 0 0 42.624 28.362 81.63

4. CONCLUSION

A three-level hybrid GAGAPSO algorithm is developed for hardware-software partitioning using

MATLAB. This algorithm exhibits better performance than GAPSO, which is a two-level hybrid algorithm.

GAGAPSO can converge eight times faster than GAPSO. Furthermore, it can achieve the lowest minimum

cost until 1000 nodes. The best performance it can achieve is 6.3% at 500 nodes. The performance of

the hybrid algorithm increases with the number of nodes. However, the performance has its own limitations.

For the two-level hybrid algorithm, GAPSO, the data show a maximum limit of 500 nodes. For more than

500 nodes, GAPSO performs worse than GA. GAGAPSO can achieve good performance until 1000 nodes.

Future works should be conducted to determine the maximum number of nodes for GAGAPSO algorithm.

Other parameters, like crossover rate, mutation rate and population size can also be studied in future works.

ACKNOWLEDGEMENTS

The authors would like to thank the School of Electrical and Electronic Engineering, Universiti

Sains Malaysia for supporting this research under Grant No. 1001/PELECT/8014152.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hardware-software partitioning using three-level hybrid algorithm… (Tiong Reng Xian)

473

REFERENCES
[1] Haresh Pandya, M. Rangapariya, J, Rajput, "Implement Embedded Controlling using FPGA Chip," International

Journal of Reconfigurable and Embedded Systems, vol. 8, no. 2, pp. 130-144, 2019.

[2] M. B. Abdelhalim, A. E. Salama and S. E. -. Habib, "Hardware Software Partitioning using Particle Swarm

Optimization Technique," 2006 6th International Workshop on System on Chip for Real Time Applications, Cairo,

pp. 189-194, 2006.

[3] S. Ismae, O. Tareq, Y. Taher Qassim, "Hardware/software Co-design for a Parallel Three-dimensional Bresenham’s

Algorithm," International Journal of Electrical and Computer Engineering IJECE, vol. 9, no. 1, pp. 148-156, 2019.

[4] A. Iguider, K. Bousselam, A. En-Nouaary, O. Elissati and M. Chami, "A Novel Approach for Hardware Software

Partitioning in Embedded Systems," 2019 International Conference on Wireless Technologies, Embedded and

Intelligent Systems (WITS), Fez, Morocco, pp. 1-5, 2019.

[5] Andrew Tzer-Yeu Chen, et al., "Accelerating SuperBE with Hardware/Software Co-Design," Journal of Imaging,

vol. 4, no. 10, pp. 1-17, 2018.

[6] M. Jemai and B. Ouni, "Hardware Software Partitioning of Control Data Flow Graph on System on Programmable

Chip," Microprocessor and Microsystem, vol. 39, no. 4-5, pp. 259-270, 2015.

[7] M. B. Abdelhalim and S.D. Habib, "An Integrated High-Level Hardware/Software Partitioning Methodology,"

Design Automation for Embedded Systems, vol. 15, pp. 19-50, 2011.

[8] L. An, et al., "Algorithm of Hardware/Software Partitioning Based on Genetic Particle Swarm Optimization

Design," Journal of Computer-Aided Design & Computer Graphics, vol. 22, pp. 927-942, 2010.

[9] Lanying Li, et al., "Hardware/software Partitioning Based on Hybrid Genetic and Tabu Search in the Dynamically

Reconfigurable System," International Journal of Control and Automation, vol. 8, No 1, pp. 29-36, 2015.

[10] I. Bahri, et al., "Optimal Hardware/Software Partitioning of a System on Chip FPGA-based Sensorless AC Drive

Current Controller," Mathematics and Computers in Simulation, vol. 90, pp. 146-161, 2013.

[11] P. Liu, et al., "Hybrid Algorithms for Hardware/Software Partitioning and Scheduling on Reconfigurable Devices,"

Mathematical and Computer Modelling, vol. 58, no. 1-2, pp. 409-420, July 2013.

[12] I. Mhadhbi, et al., "An Efficient Technique for Hardware/Software Partitioning Process in Codesign," Hindawi,

vol. 2016, no. 6382765, pp. 1-11, July 2016.

[13] Y. Jiang et al., "Uncertain Model and Algorithm for Hardware/Software Partitioning," 2012 IEEE Computer

Society Annual Symposium on VLSI, Amherst, MA, pp. 243-248, 2012.

[14] Yiming Jing, et al., "Application of Improved Simulated Annealing Optimization Algorithms in

Hardware/Software Partitioning of the Reconfigurable Systen-on Chip," International Conference on Parallel

Computing in Fluid Dynamics, vol. 405, pp. 532-540, 2013.

[15] Wenzhong Guo, et al., "A Hybrid Multi-obejective PSO Algorithm with Local Search Strategy for VLSI

Partitioning Chip," Frontiers of Computer Science, vol. 8, pp. 203-216, 2016.

[16] Imene Mhadhni, et al., "An Efficient Technique for Hardware Software Partitioning Process in Codesign," Hindawi

Publishing Corperation, Scientific Programming, vol. 2016, no. 6382765, pp. 1-11, 2016.

[17] P.K. Sahu, et al., "Extending Kernighan-Lin Partitioning Heuristic for Application Mapping onto Network-on-

Chip," Journal of Systems Architecure, vol. 60, no. 7, pp. 562-578, 2014.

[18] A.Kacem, et al., "A Hybrid Algorithm to Size the Hospital Resources in the Case of Massive Influx of Victims,"

International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 1006-1016, 2020.

[19] Palak and P.Gullia, "Hybrid Swarm and GA Based Approach for Software Test Case Selection," International

Journal of Electrical and Computer Engineering, vol. 9, no. 6, pp. 4898-4903, 2019.

[20] F.F.Yeng, et al., "The Saturation of Population Fitness as a Stopping Criterion in Genetic Algorithm," International

Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4130-4137, 2019.

[21] A. K.Ariyani, et al., "Hybrid Genetic Algorithm and Simulated Annealing for Multi-trip Vehicle Routing Problem

with Time Windows," International Journal of Electrical and ComputerEngineering, vol. 8, no. 6,

pp. 4713-4723, 2018.

[22] J. Henkel and R. Ernst, "An approach to automated hardware/software partitioning using a flexible granularity that

is driven by high-level estimation techniques," in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 9, no. 2, pp. 273-289, April 2001.

[23] Eberhart and Yuhui Shi, "Particle swarm optimization: developments, applications and resources," Proceedings of

the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, South Korea, vol. 1, pp. 81-86, 2001.

[24] W. Li, et al., "Hardware/Software Partitioning of Cpmbination of Clustering Algorithm and Genetic Algorithm,"

Internation Journal of Control and Automation, vol. 7, no. 1, pp. 347-356, 2014.

[25] E. T. Tan and Z. A. Halim, "Performance evaluation of genetic algorithm to solve hardware-software partitioning

design: A factorial design analysis," TENCON 2017 - 2017 IEEE Region 10 Conference, Penang, pp. 439-442, 2017.

[26] S. Suresh, et al., "Hybrid Real-coded Genetic Algorithm for Data Partitioning in Multi-Round Load Distribution

and Scheduling in Heterogeneous System," Applied Soft Computing, vol. 24, pp. 500-510, Nov 2014.

[27] R. Faraji and H.R.Naji, "An Efficient Crossover Architecture for Hardware Parallel Implementation of Genetic

Algorithm," Neurocomputing, vol. 128, pp. 316-327, March 2014.

[28] Erik D. Goodman, "Introduction to Genetic Algorithm," GECCO’11 Proceeding of the 13th Annual Conference

Companion on Genetic and Evolutionary Computation, pp. 205-226, July 2014.

[29] P. Kora and P.Yadlapalli, "Crossover Operators in Genetic Algorithms: A Review," International Journal of

Computer Applications, vol. 162, no. 10, pp. 34-36, 2017.

