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Federated Learning at the Network Edge:
When Not All Nodes are Created Equal
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Abstract—Under the federated learning paradigm, a set
of nodes can cooperatively train a machine learning model
with the help of a centralized server. Such a server is also
tasked with assigning a weight to the information received
from each node, and often also to drop too-slow nodes from
the learning process. Both decisions have major impact
on the resulting learning performance, and can interfere
with each other in counter-intuitive ways. In this paper,
we focus on edge networking scenarios and investigate
existing and novel approaches to such model-weighting
and node-dropping decisions. Leveraging a set of real-
world experiments, we find that popular, straightforward
decision-making approaches may yield poor performance,
and that considering the quality of data in addition to its
quantity can substantially improve learning.

I. INTRODUCTION

Federated learning (FL) is a distributed machine
learning paradigm whereby a set of learning nodes
cooperate in training a model (e.g., a neural net-
work) with the assistance of a centralized model
server and without the need to share their local
data. FL has been introduced [1] in 2015 by Google,
with the goal of leveraging the computational power
of end-user devices – most notably, smartphones –
without the privacy and security concerns arising
from sharing the potentially sensitive information
they own. As discussed in Sec. II, it has since
been widely adopted in edge computing scenarios,
owing to its ability to blend device- and server-based
computation, and to enable cooperation between
devices regardless of their location.

FL includes the following high-level steps, sum-
marized in Fig. 1:
1) learning nodes train a local model based on local,

on-device data;
2) learning nodes send the model parameters – and

nothing else – to the server;
3) the server combines the parameters coming from

different learning nodes;
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Fig. 1. Main steps of each iteration of the federated learning
paradigm: learning nodes train their local model (1) and send the
local parameters to the server (2); the server performs a weighted
averaging of the model (3) and sends the global parameters back to
the learning nodes (4).

4) the server sends the combined, global parameters
back to the learning nodes;

5) the learning nodes replace their local parameters
with the global ones, and move to a new training
iteration (step 1), till the desired accuracy is
achieved.

Step 3 usually takes the form of a weighted av-
eraging of the local parameters [1], [2]. Weights
are assigned to individual learners and reflect the
magnitude of their (expected) contribution to the
learning process; indeed, as discussed next, properly
assigned model weights is one of the main decisions
learning servers can make.

Originally envisioned for homogeneous nodes
dealing with homogeneous datasets (e.g., in a clas-
sification problem, datasets adequately representing
all classes), FL has also the potential to deal with
heterogeneity, both in the capabilities of learning
nodes [2], [3] and in their local data [2], [4]. In
both cases, the key is to endow the model server
with additional responsibilities: the weights given to
different local models in the averaging phase (step
3 in Fig. 1) can account for the quantity of data
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they are trained upon; at the same time, if some
nodes are consistently slower than others, they can
be dropped from the learning process [3], [5].

Our key observation is that these two deci-
sions, model-weighting and node-dropping, are de-
ceptively simple, and their impact on the overall
learning process is often misunderstood and under-
estimated. Many state-of-the-art works take straight-
forward approaches to these decisions, which may
result in poor performance under richer, more com-
plex scenarios. Our contribution is therefore to shed
a light on the model-weighting and node-dropping
decisions, studying how they should account for the
quantity and quality, e.g., variety, of data available
to local nodes, as well as for the data processing
time. In so doing, we focus on an edge network
scenario and leverage a set of experiments using
the popular tensorflow library and the recent
Fashion-MNIST dataset.

In the remainder of the paper, we describe feder-
ated learning in edge scenarios and the associated
challenges in Sec. II, before narrowing the focus
on model-weighting and node-dropping strategies
in Sec. III. We then describe our experiments and
results in Sec. IV, and the main lessons learned in
Sec. V, along with pointers to further promising
research directions. Finally, Sec. VI concludes the
paper.

II. FEDERATED LEARNING IN EDGE SCENARIOS

Edge computing is a distributed paradigm pred-
icated upon performing the computation as close
as possible to the user nodes requesting it, i.e.,
at servers located at the edge of the network in-
frastructure. It also includes scenarios where user
nodes themselves have computational and/or storage
capabilities, and require edge support for coordina-
tion, or to offload the heaviest computation tasks.
FL has long been identified as an excellent match
for edge computing scenarios, and many research
works aim at making it in such scenarios as efficient
as possible. At the same time, communication is a
major issue for FL in edge scenarios. Nodes can
be connected with the edge-based server in many
ways and through different technologies; thus, their
connectivity has a major impact on the latency
incurred when sending model updates – and, indeed,
on whether or not such updates are received in the
first place.

Specifically, as detailed in [6], edge computing
is more effective than fully-distributed, device-to-
device networks at tackling the main factors hin-
dering the performance of FL, namely, the different
node capabilities, available data, and unpredictable
communication delays and shortages. Narrowing its
focus to node capabilities, [5] aims at choosing the
set of learning nodes that results in the shortest
learning time, solving a double-edged conundrum.
On the one hand, more nodes mean that convergence
can be reached in fewer iterations; on the other
hand, the duration of each iteration is determined by
the slowest node [7]. In a similar spirit, [2] addresses
the problem of jointly selecting the learning nodes
to use for the learning process and assigning them
the wireless resources they need to communicate
effectively. Setting in a fully-decentralized fog sce-
nario where no learning server may be present,
[8] tackles many issues relevant to edge computing,
including device mobility and the possibility of
offloading computation from a node to another.

Shifting the focus towards the major issue of
communication between FL nodes and server, the
authors of [9] seek to reduce the communication
overhead of FL by proposing a compression algo-
rithm suited for federated learning settings. Their
algorithm outperforms existing schemes when local
datasets are heterogeneous, thus making the high-
frequency communication required by FL viable
in low-bandwidth scenarios. Heterogeneous datasets
are also identified as a major problem in [4], which
envisions extracting a homogeneous subset from
each local dataset in order to avoid bias and training
errors.

Following an orthogonal, more theoretical ap-
proach, several works [7], [10] aim at characteriz-
ing the learning performance, deriving closed-form
expressions for their (expected) training time. Such
a characterization is then exploited to make opti-
mal or near-optimal decisions on the cooperation
among nodes [7] and the equilibrium between local
learning and global updates [10]. In order to obtain
manageable closed-form expressions, some of these
works make simplifying assumptions (e.g., that lo-
cal datasets be homogeneous), or target specific
parameter optimization algorithms (e.g., stochastic
gradient descent).

One scenario where nontrivial model-weighting
decisions are routinely used is asynchronous
FL [11], where nodes may join the learning process
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at different times and model-weighting serves the
purpose of quickly including newly-arrived nodes
in the learning process. In our case, the purpose
is different, namely, to adapt model weights to
the contribution each node can give to the overall
learning process, and weed out those nodes that may
have a negative impact on the learning performance.

III. MODEL-WEIGHTING AND NODE-DROPPING
STRATEGIES IN FEDERATED LEARNING

Model-weighting and node-dropping are the most
fundamental decisions the learning server can make,
and arguably among the simplest to enact. At the
same time, as discussed in the following, these deci-
sions can be leveraged to address all the main issues
of FL, either in combination with the strategies
reviewed in Sec. II, or as an alternative to them.

Insufficient quantity of data: In many FL sce-
narios, some learning nodes may not have enough
local data, thus being unable to properly train their
local models; in this case, a popular solution is aug-
menting local datasets. As an example, the authors
of [12] propose to combine actual data samples from
other learning nodes in a privacy-preserving way,
and adding them to the local dataset.

In both cases, data augmentation is able to in-
crease the quantity of data available to learning
nodes, without jeopardizing FL’s privacy properties.
On the negative side, it may increase the complex-
ity of the system and its overhead; furthermore,
the augmented samples come from processing of
already-existing ones, hence, do not increase the
total quantity of information.

Model-weighting decisions represent an addi-
tional, simpler way to deal with learning nodes with
small local datasets. The basic idea [1], [2] is that
model weights shall account for the quantity of data
local models are based upon; however, as we will
demonstrate next, also accounting for the variety of
such data yields even better results. In both cases,
relying on model-weighting to tackle insufficient
dataset sizes has the benefit of reducing complexity
and avoid tampering with the nodes’ own data.

Non-homogeneous data: When it comes to
training machine-learning algorithms, the quality of
data is as important as its quantity. There is no
universally-acknowledged definition of data quality,
as it is scenario- and application-dependent. For
classification applications, a high-quality dataset is

expected to adequately represent all existing classes,
so that the classifier can be properly trained. In this
sense, quality can be expressed as the number of
classes existing in a given dataset or, more formally,
through entropy [13].

On the other hand, non-i.i.d. data, where classes
are under- or over-represented, is universally char-
acterized as low-quality, and has immediately been
identified as one of the primary threats to successful
FL. In addition to the augmentation approaches de-
scribed earlier [12], several works propose training
the local model on a subset of the local data [4],
chosen in such a way to be i.i.d. An alternative to
ignoring data is allowing all learning nodes to use
all their data, and then weight their local models
accounting for the quality of such data. Examples
of this approach include entropy [13], but simpler
approaches, e.g., counting the labels observed, can
yield similarly good performance.

Nodes with different capabilities: As with
other distributed learning schemes, in FL it is pos-
sible to proceed from an iteration to the next one
only when all learning nodes have sent their local
models, i.e., have performed step 2 in Fig. 1. It
follows that the pace of the learning process as a
whole is determined by the slowest learning node,
which becomes an issue when different learning
nodes take very different times to perform their iter-
ations [7]. Owing to the limited amount of control
that can be exerted on FL nodes, the most viable
solution is often to exclude overly-slow nodes from
the learning process [2], [5], [7].

However, making such node-dropping decisions
solely on the basis of their response times may
actually hurt the learning process; indeed, longer
response times can be associated with larger, higher-
quality local datasets, hence, with the nodes that
may contribute the most to the learning. A way to
decrease the likelihood of this unwanted outcome
is to consider additional aspects in making node-
dropping decisions, e.g., the quantity and quality or
variety of local data. By so doing, it is possible
to differentiate between nodes that are slow due to
limited capabilities (or poor connectivity [2], [5])
and those that have simply more data to process.

IV. EXPERIMENT DESIGN AND RESULTS

In this section, we demonstrate how model-
weighting and node-dropping decisions can deal



4

2 4 6 8 10 12
Cumulative learning time [s]

0.0

0.2

0.4

0.6

0.8

1.0
G

lo
ba

l a
cc

ur
ac

y

uniform
no. samples
no. classes
entropy

Fig. 2. Relationship between elapsed time and global accuracy for
different model-weighting strategies, when no nodes are dropped
from the learning process. The color of markers corresponds to the
category of the slowest node in that particular iteration (gold: yellow,
bronze: orange, no other category appears).

with heterogeneity in the quality and quantity of
the local datasets at learning nodes. Using the set
of real-world experiments described in Sec. IV-A,
we obtain the results described in Sec. IV-B.

A. Experiment setup

Dataset and neural network structure. Fashion-
MNIST is a dataset released by Zalando research
and aimed at providing a more challenging, drop-
in replacement for the classic MNIST handwrit-
ten digits dataset. Owing to the relative simplic-
ity of the dataset, we use a relatively small neu-
ral network for classification. Specifically, we cre-
ate a dense network with four layers, with sizes
[282, 200, 100, 200] neurons (notice that the size of
the first layer must match the size of the input,
i.e., 28 × 28 pixels). Neurons use the softmax
activation function, and parameters are optimized
using stochastic gradient descent (SGD), with a
learning rate of 10−2. The network is implemented
using the popular tensorflow library, originally
developed by Google.

Network scenario and local datasets. Our ex-
periments feature a typical medium-scale edge sce-
nario [6], with 20 learning nodes connected with,
and coordinated by, an edge-based server. Five out
of 20 nodes belong to each of the following four
categories so that the total amount of data remains
constant:
• gold, having 500 samples each, representing all

10 classes (i.e., articles of clothing) present in
the Fashion-MNIST dataset;

• silver, with 200 samples each, still belonging to
all classes;

• bronze, with 500 samples each, belonging to only
two classes per node;

• garbage, with 200 samples each, belonging to two
classes.

With the exception of “gold” ones, nodes suffer
from either low quantity or low diversity, hence,
low quality, of local data. Our experiments establish
a correlation between the category of each node
and its contribution to the learning process, thus
allowing us to identify the best strategies to decide
whether and how to integrate each node in the
learning process.

Model-weighting and node-dropping strate-
gies. As discussed in Sec. III, the weights assigned
to local models during the averaging phase (step 3
of Fig. 1) can account for the quality and/or quantity
of their local data. Specifically, we consider the
following options:
• uniform: all local models are given equal weight;
• no. samples: weights are proportional to the num-

ber of samples in each local dataset;
• no. classes: weights are proportional to the num-

ber of classes in each local dataset;
• entropy: weights are proportional to the entropy

of local data, an information-theoretic metric ex-
pressing, intuitively, how difficult it is to predict
the class of a randomly-chosen local sample.

The “samples” strategy accounts for the quantity
of local data, the “classes” one for its quality, and
the “entropy” one for both. “Uniform”, where all
weights are equal, is added as a benchmark.

For node-dropping, we assume that five learning
nodes are dropped after iteration 1, and compare
the state-of-the-art strategy of dropping the slowest
nodes [2], [5], [7] against the alternative one of
dropping the nodes with the lowest weight. The
rationale behind the latter strategy is that weights are
linked to how significant the contribution that nodes
can give to the learning process is, thus, dropping
the lowest-weight nodes can reduce learning times
without impairing the learning quality.

B. Experiment results
The first aspect of interest is the progress of the

overall learning, i.e., the accuracy of the global,
averaged model (step 3 of Fig. 1), portrayed in
Fig. 2. Each marker therein represents the state of
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Fig. 3. Relationship between the average per-node learning time and
the local accuracy gain for different categories of nodes (identified
by the color of markers), under different model-weighting strategies
(identified by the shape of markers).

the learning process after an iteration: its position
along the x- and y-axis represent (respectively) the
elapsed time and the global classification accuracy,
while its color corresponds to the category of the
slowest node in that particular iteration. Differ-
ent lines correspond to different model-weighting
strategies.

We can immediately observe that iteration times
do not differ substantially across model-weighting
strategies, and that they are usually determined by
“gold” or “bronze” nodes – which makes intuitive
sense, as those nodes have the largest local datasets.
Even more interestingly, we can observe a clear
difference in the classification accuracy obtained
by different weighting strategies: giving the same
weight to all nodes, or only accounting for the size
of the local datasets, results in a lower accuracy than
accounting for data quality. Furthermore, there is
little difference between the “no. classes” and “en-
tropy” strategies, suggesting that simply counting
the observed classes can be as effective as adopting
more complex metrics.

Next, Fig. 3 displays the relationship between the
time taken by local learning iterations and the local
accuracy gain, i.e., the improvement in classification
accuracy obtained during local training (step 1 in
Fig. 1). The latter metric can be seen as a measure
of how much individual nodes contribute to the
global learning process. In the plot, the color of each
marker represents the category of the corresponding
node, while the shape of each marker represents
the model-weighting strategy. It is clear that, for
all model-weighting strategies, local learning times
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Fig. 4. Relationship between the weight assigned to local models and
the local accuracy gain for different categories of nodes (identified
by the color of markers), under different model-weighting strategies
(identified by the shape of markers). Correlation coefficients for the
“uniform”, “no. samples”, “no. classes” and “entropy” strategies are,
respectively, 0, 0.07, 0.98 and 0.99.

are strongly correlated with the quantity of local
data, while local accuracy gains are more strongly
linked with the number of classes, i.e., the data
quality. These results also suggest that only relying
on local learning times for node-dropping decisions
may result in removing nodes with large, hence,
potentially valuable, datasets.

Fig. 4 shows the relationship between the weight
assigned to each local model and the corresponding
local accuracy gain. Similar to Fig. 3, the color
and shape of markers represent, respectively, the
node category and model-weighting strategy. We
quantify the relationship between weights and ac-
curacy gains, by correlation coefficients, expressing
to which extent changes in one quantity are reflected
by changes in the other: values close to 1 indicate
strong correlation, values close to 0 little to no
correlation.

In our case, it is clear that weights only consid-
ering the quantity of data (i.e., the “no. samples”
strategy) may not be able to identify the nodes that
can contribute the most to the learning process,
e.g., it gives similar weights to the “silver” and
“garbage” nodes. On the other hand, “no. classes”
and “entropy” weights are very well correlated
with accuracy gains, which again suggests how the
quality of data has a high impact on the learning
effectiveness. From both Fig. 3 and Fig. 4, it is
also possible to see how better local accuracy gains
do not necessarily coincide with better global clas-
sification accuracy. Indeed, good model-weighting
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Fig. 5. Relationship between elapsed time and global accuracy for
different node-dropping schemes, under the “no. samples” (top) and
“no. classes” (bottom) model-weighting strategies.

decisions are necessary to consolidate local learning
from different nodes into a consistent, high-quality
global model.

Last, Fig. 5 shows the effect of different node-
dropping strategies on the learning process, for the
“no. samples’ and “no. classes” model-weighting
strategies. Specifically, we wait for the first five iter-
ations, and then drop the five nodes with the lowest
score, computed according to each node-dropping
strategy. We can observe that, when weights only re-
flect the quantity of local data, dropping the slowest
nodes significantly hurts the learning accuracy. On
the other hand, more sophisticate model-weighting
or node-dropping strategies yield virtually the same
accuracy as keeping all nodes. This also highlights
how model-weighting and node-dropping decisions
interact with one another, and can represent differ-
ent, complementary ways to achieve the same goals.

Summary. In conclusion, our results show that
the quantity of data drives the computation time
of local nodes; however, it is the quality of data
that determines its usefulness to the global learning
process. It is thus of paramount importance that

model-weighting decisions do not solely account
for data quantity or computation time, as that may
adversely impact performance.

V. TAKE-AWAY MESSAGES AND CHALLENGES

Based on both the existing works discussed in
Sec. II and Sec. III and the experiments reported
in Sec. IV, we can highlight the following high-
level lessons learned, which also point at interesting
directions for future research.

Model weights matter: Assigning the right
weights to local nodes during the averaging phase
can have a very significant impact on the learning
process, as highlighted in Fig. 2 and Fig. 5. Al-
though few works in the literature have explored this
option, Fig. 4 shows how weights accounting for
the quality of data as well as its quantity are much
more likely to identify the nodes that can contribute
the most to the learning process. Importantly, the
information needed to compute such weights is
either already available or easy to collect for the
learning server, and does not jeopardize the privacy
properties of FL.

Data quality matters: Our experiments
strongly underline the importance of dataset
quality. An example is provided in Fig. 3 and
Fig. 4, showing how nodes with more diverse data
(“gold” and “silver”) are able to offer much greater
contributions to the overall learning process.
Quantifying data quality is not a trivial task,
however, our experiments show that even simple
definitions based on counting the classes present
in a given dataset yield very good results. Further
research can explore additional aspects of data
quality, e.g., its freshness [14].

Check why nodes straggle before dropping
them: The global learning time of FL depends on
the slowest node in each iteration; therefore, it is
often tempting to try and speed learning up by
dropping the slowest nodes [7]. Such a strategy
is appropriate when the slowest nodes are indeed
stragglers, with limited computational capabilities
or poor connectivity [2], [5]; however, this may
result in unduly excluding nodes with valuable, rich
datasets. Privacy concerns often prevent the server
from obtaining additional information on individual
learning nodes; however, already-available data like
the size of local datasets can provide significant
help to tell genuine stragglers apart from nodes that
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simply have a lot of data. If warranted, the latter can
be directed to sample their own datasets, in a similar
spirit to [4], so as to provide good contributions to
the learning process with a smaller latency. This
also points at the exciting research direction of
extending the FL paradigm by allowing additional
interaction between the learning server and learning
nodes, striking the right balance between simplicity,
privacy, and effectiveness.

FL is robust: This is not very surprising,
since FL has been introduced for the very purpose
of exploiting local, potentially heterogeneous, data
from devices that cannot be centrally controlled. It is
however interesting to highlight how the robustness
of FL extends beyond tackling low-quality data, to
tackling suboptimal configurations. An example is
provided in Fig. 5, where it is sufficient to make
high-quality model-weighting or node-dropping de-
cisions to obtain very good learning performance.
This suggests that FL is indeed a viable choice in
those environments and scenarios where there is a
significant likelihood that configuration decisions be
suboptimal. Robustness to incorrect configuration is
a relevant research area in distributed computing
scenarios, and – so far – a neglected one.

VI. CONCLUSION

In the context of federated learning, we have
considered the problems of model-weighting, i.e.,
assigning weights to local models during the aver-
aging phase, and node-dropping, i.e., selecting the
nodes to exclude from the learning process. After
observing how those two decisions can tackle most
of the issues and hurdles of FL, we have reviewed
existing approaches thereto and found them to sel-
dom depart from straightforward solutions based
on the quantity of local data learning nodes have
and their response time. Leveraging a set of real-
world experiments, we have observed how more
comprehensive approaches, accounting for the qual-
ity of local data and for the reasons behind longer
node latency, can yield substantially better learning
performance.
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