Operational data-driven energy efficiency and effectiveness assessment of a hybrid propulsion equipped naval vessel
Creators
- 1. Department of Maritime & Transport Technology Delft University of Technology
Description
Ship designers hardly ever receive feedback from the actual operation of their designs apart from sea acceptance trials. This results in decisions based on assumptions that lack accounting for the diversity of actual operational conditions. Similarly, crews operating the vessels do not receive a clear picture on the energy efficiency, effectiveness and environmental footprint of different options. This paper proposes an energy assessment method using operational data from continuous monitoring, in order to provide insight on the impact of design and operational decisions and assist in taking better advised and weighted ones.
Files
INEC_2020_Paper_102.pdf
Files
(3.4 MB)
Name | Size | Download all |
---|---|---|
md5:86e189629ed668c523378aa12d16ca35
|
3.4 MB | Preview Download |
Additional details
References
- Aldous, L., Smith, T., Bucknall, R., Thompson, P., 2015. Uncertainty analysis in ship performance monitoring. Ocean Engineering 110, 29–38. doi:10.1016/j.oceaneng.2015.05.043.
- Baldi, F., Larsen, U., Gabrielii, C., 2015. Comparison of different procedures for the optimisation of a combined Diesel engine and organic Rankine cycle system based on ship operational profile. Ocean Engineering 110, 85–93. doi:10.1016/j.oceaneng.2015.09.037
- Bicer, Y., Dincer, I., 2018. Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: A comparative evaluation. International Journal of Hydrogen Energy 43, 4583–4596. doi:10.1016/j.ijhydene.2017.07.110.
- Coraddu, A., Oneto, L., Baldi, F., Anguita, D., 2017. Vessels fuel consumption forecast and trim optimisation: A data analytics perspective. Ocean Engineering 130, 351–370. doi:10.1016/j.oceaneng.2016.11.058.
- Dedes, E.K., Hudson, D.A., Turnock, S.R., 2012. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy Policy 40, 204–218. doi:10.1016/j.enpol.2011.09. 046.
- Geertsma, R.D., Negeborn, R.R., Visser, K., Loonstijn, M.A., Hopman, J.J., 2017a. Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification. Applied Energy 206, 1609–1631. doi:10.1016/j.apenergy.2017.09.103.
- Geertsma, R.D., Negenborn, R.R., Visser, K., Hopman, J.J., 2017b. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Applied Energy 194, 30–54. doi:10.1016/ j.apenergy.2017.02.060.
- Geertsma, R.D., Visser, K., Negeborn, R.R., 2018. Adaptive pitch control for ships with diesel mechanical and hybrid propulsion. Applied Energy 228, 2490–2509. doi:10.1016/j.apenergy.2018.07.080.
- Georgescu, I., Godjevac, M., Visser, K., 2018. Efficiency constraints of energy storage for on-board power systems. Ocean Engineering 162, 239–247. doi:10.1016/j.oceaneng.2018.05.004.
- Hinnenthal, J., Clauss, G., 2010. Robust Pareto-optimum routing of ships utilising deterministic and ensemble weather forecasts. Ships and Offshore Structures 5, 105–114. doi:10.1080/17445300903210988.
- Horvath, S., Fasihi, M., Breyer, C., 2018. Techno-economic analysis of a decarbonized shipping sector: Technology suggestions for a fleet in 2030 and 2040. Energy Conversion and Management 164, 230–241. doi:10.1016/j.enconman.2018.02.098.
- IMO, 2000. Study of Greenhouse Gas Emissions from Ships. Technical Report. International Maritime Organization.
- IMO, 2009. Second IMO GHG Study 2009. Technical Report. International Maritime Organization.
- IMO, 2014. Third IMO GHG study 2014. Technical Report. International Maritime Organization.
- IPCC, 2014. Climate change 2014. Technical Report. Intergovernmental Panel for Climate Change.
- Jafarzadeh, S., Schjølberg, I., 2018. Operational profiles of ships in Norwegian waters: An activity-based approach to assess the benefits of hybrid and electric propulsion. Transportation Research Part D: Transport and Environment 65, 500–523. doi:10.1016/j.trd.2018.09.021
- Klein Woud, H., Stapersma, D., 2002. Design of Propulsion and Electric Power Generation Systems. IMarEST, The Institute of Marine Engineering, Science and Technology.
- Kotas, T.J., 1985. The Exergy Method of Thermal Plant Analysis. Butterworths.
- Kutscher, C.F., 1994. Heat Exchange Effectiveness and Pressure Drop for Air Flow Through Perforated Plates With and Without Crosswind. Journal of Heat Transfer 116, 391–399.
- Narayan, G.P., Mistry, K.H., Sharqawy, M.H., Zubair, S.M., John H. Lienhard, V., 2010. Energy effectiveness of simultaneous heat and mass exchange devices. Frontiers in Heat and Mass Transfer 1. doi:10.5098/hmt. v1.2.3001.
- Papanikolaou, A., 2014. Ship Design Methodologies of Preliminary Design. Springer, Zografou - Athens, Attiki, Greece. doi:10.1007/978-94-017-8751-2.
- Psaraftis, H.N., 2012. Market-based measures for greenhouse gas emissions from ships: a review. WMU Journal of Maritime Affairs 11, 211–232. doi:10.1007/s13437-012-0030-5.
- Sofras, E., Prousalidis, J., 2014. Developing a new methodology for evaluating diesel-electric propulsion. Journal of Marine Engineering & Technology 13, 63–92. doi:10.1080/20464177.2014.11658123.
- van Straten, O.F.A., de Boer, M.J., 2012. Optimum propulsion engine configuration from fuel economic point of view, in: Proceedings of the 11th International Naval Engineering Conference and Exhibition (INEC), Edinburgh.
- Sui, C., Stapersma, D., Visser, K., de Vos, P., Ding, Y., 2019. Energy effectiveness of ocean-going cargo ship under various operating conditions. Ocean Engineering 190. doi:10.1016/j.oceaneng.2019.106473.
- Vassalos, D., Cichowicz, J., Theotokatos, G., 2014. Performance-based ship energy efficiency - The way forward, in: Royal Institution of Naval Architects, T. (Ed.), Influence of EEDI on Ship Design, London, UK.
- Vrijdag, A., 2014. Estimation of uncertainty in ship performance predictions. Journal of Marine Engineering and Technology 13, 45–55.
- Vrijdag, A., Boonen, E.J., Lehne, M., 2018. Effect of uncertainty on techno-economic trade-off studies: ship power and propulsion concepts. Journal of Marine Engineering & Technology 18, 122–133. doi:10.1080/ 20464177.2018.1507430.