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ABSTRACT 
 
Graph convolutional networks (GCNs) have been proven to be effective for processing structured data, so 

that it can effectively capture the features of related nodes and improve the performance of model. More 

attention is paid to employing GCN in Skeleton-Based action recognition. But there are some challenges 

with the existing methods based on GCNs. First, the consistency of temporal and spatial features is ignored 

due to extracting features node by node and frame by frame. We design a generic representation of 
skeleton sequences for action recognition and propose a novel model called Temporal Graph Networks 

(TGN), which can obtain spatiotemporal features simultaneously. Secondly, the adjacency matrix of graph 

describing the relation of joints are mostly depended on the physical connection between joints. We 

propose a multi-scale graph strategy to appropriately describe the relations between joints in skeleton 

graph, which adopts a full-scale graph, part-scale graph and core-scale graph to capture the local features 

of each joint and the contour features of important joints. Extensive experiments are conducted on two 

large datasets including NTU RGB+D and Kinetics Skeleton. And the experiments results show that TGN 

with our graph strategy outperforms other state-of-the-art methods. 
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1. INTRODUCTION 
 

Human action recognition is a meaningful and challenging task. It has widespread potential 
applications, including health care, human-computer interaction and autonomous driving. At 

present, skeleton data is more often used for action recognition because skeleton data is robust to 

the noise of background and different view points compared to video data. Skeleton-based action 
recognition are mainly based on deep learning methods like Recurrent Neural Networks (RNNs), 

Convolutional Neural Networks (CNNs) and GCNs [3, 8, 10,12, 13, 15, 17, 18]. RNNs and 

CNNs generally process the skeleton data into vector sequence and image respectively. These 

representing methods cannot fully express the dependencies between correlated joints. With more 
researches on GCN, [12] first employs GCN in skeleton-based action recognition and inspires a 

lot of new researches [7, 10, 15, 17, 18]. 
 

The key of action recognition based on GCN is to obtain the temporal and spatial features of an 
action sequence through graph [7, 10, 18]. In the skeleton graph, skeleton joints transfer into node 

and the relations between joints are represented by edges. As shown in Fig. 1, in most previous 

work, there are more than one graphs, a node only contains spatial features. In this case, GCN 
extracts spatial features frame by frame, then Temporal Convolutional Network (TCN) 

extractstemporal features node by node. But, features of a joint in an action is not only related to 

other joints intra frames but also joints inter frames. As a result, existing methods split this 

consistency of spatiotemporal features. To solve this problem, we propose TGN to capture 
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spatiotemporal features simultaneously, as shown in Fig. 2, each node composes a joint of all 
frames and contains both spatial and temporal feature in the graph, thus TGN obtains 

spatiotemporal features by processing all frames of each joint simultaneously.  

 

Besides, the edges of skeleton graph mainly depend on the adjacency matrix A, which is related 
to the physical connections of joints [12,17,18]. GCN still have no effective adaptive graph 

mechanism to establish a global connection through the physical relations of nodes, such as a 

relation between head and toes. GCN can only obtain local features, such as a relation between 
head and neck. In this paper, a multi-scale graph strategy is proposed, which adopts different 

scale graphs in different network branches, as a result, physically unconnected information is 

added to help network capture the local features of each joint and the contour features of 
important joints. 

 

The main contributions of this paper are summarized in three aspects: 

 
(1) Temporal Graph Network (TGN) proposed in this paper is a feature extractor which has the 

ability to obtain spatiotemporal features simultaneously. Besides, this feature extractor can 

adapt to most skeleton-based action recognition models based on GCN and help to improve 
the performance. 

(2) A multi-scale graph strategy is proposed for optimization of graph, which can extract 

different scale spatial features. This strategy can capture not only the local features but the 
global features.  

(3) Multi-scale Temporal Graph Network (MS-TGN) is proposed based on TGN and the multi-

scale graph strategy. Extensive experiments are conducted on two datasets including NTU 

RGB+D and Kinetics Skeleton, and our MS-TGN out performs state-of-the-art methods on 
these datasets for skeleton-based action recognition. 

 

2. RELATED WORKS 
 

2.1. Skeleton-Based Action Recognition 
 

The handcrafted features are usually used to model the human skeleton data for action 
recognition in conventional methods. However, the performance of these conventional methods is 

barely satisfactory. With the development of deep learning, neural networks have become the 

main methods, including RNNs and CNNs. RNN-based methods, such as LSTM and GRU, are 

usually used to model the skeleton data as a sequence of the coordinate vectors each represents a 
human body joint [3, 9, 11,13]. The 3D coordinates of all joints in a frame are concatenated in 

some order to be the input vector. CNN-based methods model the skeleton data as a image where 

a node can be regarded as a pixel [2, 7, 8]. Some works transform a skeleton sequence to an 
image by treating the joint coordinate (x,y,z) as the R, G, and B channels of a pixel. Because the 

skeleton data are naturally embedded in the form of graphs rather than a sequence or grids, both 

RNNs and CNNs cannot fully represent the structure of the skeleton data. Since ST-GCN [12] 
proposed in 2018, a series of methods for skeleton-based action recognition are based on GCN. 

GCN has been proven to be effective for processing structured data, have also been used to model 

the skeleton data. 

 

2.2. Graph Convolutional Networks 
 

ST-GCN [12] introduces GCN into skeleton-based action recognition, constructs the 

spatiotemporal graph by natural connection of human joints, this method designs three different 

adjacency matrix to extract spatial and temporal features and achieves better performance than 
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previous methods. 2s-AGCN [18] proposes a two-streams method and designs an adaptive 
adjacency matrix. The adaptive adjacency matrix can not only present the information of human 

body structure, but be learned using attention mechanism. DGNN [28] designs a directed graph 

structure which learns the information between the joint and the bone in GCN. SGN [29] 

explicitly introduces the high level semantics of joints, including the joint type and frame index, 
into the network to enhance the feature representation capability. These approaches treat each 

joint as a node of the graph, and the edge denoting the joint relationship is pre-defined by human 

based on prior knowledge. However, the spatial and temporal features of actions are learned by 
GCN and TCN, respectively, which makes the network less efficient. 

 

3. METHODOLOGY 
 

3.1. Temporal Graph Networks 
 

The skeleton data of an action can be described as 𝑋 = {𝑥𝑐,𝑣,𝑡}
𝐶×𝑉×𝑇

, where𝑇is the number 

offrames, 𝑉 is number of joints in a frame, 𝐶 is number of channels in a joint and𝑥𝑐,𝑣,𝑡represents 

the skeleton data of joint 𝑣 in the frame t with 𝑐channels.𝑋𝑖is the sequence 𝑖.Previous methods 

construct 𝑇 graphs and each graph has𝑉 nodes, as shown in Fig. 1, where the node set𝑁 =
{𝑥 𝑣,𝑡|, 𝑣 = 1,2, … 𝑉, 𝑡 = 1,2 … 𝑇}

𝐶
has joint 𝑣in𝑡𝑡ℎ frame. It means a frame is represented as one 

graph and there are totally 𝑇 graphs. The size feature of a nodeis 𝐶. GCN is used to obtain spatial 

features from each graph, then outputs of GCN are fed into TCN to extract temporal features. 

 

 
 

Figure 1.  A node in any graph represents data of a joint in a certain frame. GCN extracts spatial features 

frame by frame, and TCN extracts temporal features node by node. 

 

We redefine graph and propose TGN. Compared to 𝑇 graphs, we only have one graph with 𝑉 

nodes, as seen in Fig. 2.In the graph, the node set𝑁 =  {𝑥𝑣|𝑣 = 1,2 … 𝑇}𝐶×𝑉 has the joint 𝑣in all 

frame. The size of feature of a node is 𝐶 × 𝑉. Compared with series methods using GCN and 
TCN alternately, we only use one GCN block to realize the extraction of spatiotemporal features. 

 

 
 

Figure 2.  Each node represents data of a joint in all frames so temporal information is also contained. 

Compared with Fig1, TGN extracts temporal and spatial features simultaneously. 
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In a basic TGN block, each node already has temporal information and spatial information, 
therefore, in the process of graph convolution, temporal and spatial features can be calculated 

simultaneously. The output value for a single channel at the spatial location 𝑁𝑣 can be written as 

Eq. 2. 

 𝑆𝑣 = {𝑛𝑗|𝑛𝑗 ∈ 𝑆(𝑁𝑣 , ℎ)} （1） 

 𝐹𝑜(𝑁𝑣) = ∑(𝐹𝑖(𝑆𝑣(𝑗)) × 𝑤(𝑗)

𝑘

𝑗=0

)  
（2） 

 

 

Where 𝑁𝑣is node 𝑣. 𝑠(𝑁𝑣 , ℎ)is a sampling functionused to find node set𝑛𝑗  adjacent to the 

node𝑁𝑣,𝐹𝑖 maps nodes to feature vector, 𝑤(ℎ)is weights of CNNwhose kernel size is 

1×t,𝐹𝑜(𝑁𝑣)is output of 𝑁𝑣.Eq.2 is a general formula among most GCN-based models of action 

recognition, as it was used to extract spatial features in a graph. our method can be adapted to 

existing methods by changing graph structure of this methods. 

 

3.2. Multi-Scale Graph Strategy 
 

 
 

                                  (a)                                      (b)                                      (c) 

 
Figure 3.  (a) full-scale graph, (b) part-scale graph, (c) core-scale graph 

 
Dilated convolution can obtain ignored features such as features between unconnected points in 

an image by over step convolution. Inspired of it, we select different expressive joints to form 

different scale graphs for convolution. Temporal features of joints with larger motion space are 

more expressive. Joints in a body generally have different relative motion space. For example, the 
elbow and knee can move in larger space compared to the surrounding joints like shoulder and 

span. In the small-scale graph, there are less but more expressive nodes so there is a larger 

receptive field. In large-scale graph, there are more but less expressive nodes so the receptive 
field is smaller.  

 

We design three different scale graphs based on NTU-RGB+D datasets, as shown in Fig. 3. Full-
scale graph in Fig. 3(a) has all 25 nodes and can obtain local features of each joint for its small 

receptive field. Part-scale graph in Fig. 3(b) is represented by only 11 nodes. In this case, 

receptive field becomes larger so it tends to capture contour information. Fig. 3(c) is core-scale 

graph with only seven nodes. It has largest convolution receptive field, although it ignores the 
internal state of the limbs, it can connect the left and right limbs directly, so the global 

information can be obtained. Through different scale graphs, GCN can capture local features, 

contour features and global features respectively. 
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Based on the former, we combine TGN with a multi-scale graph strategy to get the final model 
MS-TGN, as shown in Fig. 4.The model consists of 10 TGN layers, each layer uses 3 × 1 

convolutional kernel to extract the temporal features of each node, and a fully-connected layer to 

classify based on the extracted feature. 

 

 
 

Figure 4.  The network architecture of MS-TGN.Multi-scale graphs are displayed by different adjacency 

matrices𝐴1, 𝐴2 and 𝐴3. 

 

4. EXPERIMENT 
 

4.1. Datasets and Implementation Details 
 

NTU RGB+D. This dataset is large and widely used. It contains 3D skeleton data collected by 
Microsoft’s kinetics V2 [16] and has 60 classes of actions and 56,000 action sequences, with 40 

subjects are photographed by three cameras fixed at 0◦, 45◦ and 45◦, respectively. Each sequence 

has several frames and each frame is composed of 25 joints. We adopt the same method [16] to 

carry out the cross-view (cv) and cross-subject (cs) experiments. In the cross-view experiments, 
the training data is 37,920 action sequences with the view at 45◦ and 0◦, and the test data is 

18,960 action sequences with the view at 45◦ in the cross-subject experiments, the training data is 

action sequences performed by 28 subjects, and the test data contains 16,560 action sequences 
performed by others. We use the top-1 accuracy for evaluation. 

 

Kinetics Skeleton. Kinetics [6] is a video action recognition dataset obtained from thevideo on 
YouTube. Kinetics Skeleton employs Open Pose [23] estimation toolbox to detect 18 joints of a 

skeleton. It contains 400 kinds of actions and 260,232 sequences. The training data consists of 

240,436 action sequences, and the test data is the remaining 19,796sequences. We use the top-1 

and top-5 accuracies for evaluation. 
 

Unless otherwise stated, all models proposed employ strategies following. The number of 

channels is 64 in the first four layers, 128 in the middle three layers and 256 in the last three 
layers. SGD optimizer with Nesterov accelerated gradient is used for gradient descent and 

different learning rate adjustment strategies are designed for different data. The mini-batch size is 

32 and the momentum is set to 0.9. All skeleton sequences are padded to T = 300 frames by 

replaying the actions. Inputs are processed with normalization and translation as [18]. 
 

4.2. ABLATION EXPERIMENTS  
 

4.2.1. Feature Extractor: TGN  

 

ST-GCN [12] and 2s-AGCN [18] are representative models utilizing GCN and TCN alternatively 

and were chosen as baselines. We replace GCN&TCN with TGN in these two models and keep 
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adjacency matrix construction strategies unchanged. The experimental results on the two datasets 
are listed in Table 1 and Table 2. From Table 1, the original performance of ST-GCN increases to 

82.3% and 90.8% on X-sub and X-view, and the accuracy of 2s-AGCN increases by 0.55% on 

average. From Table 2, accuracies of two models are both improved. In conclusion, TGN is 

sufficiently flexible to be used as a feature extractor and performs better than methods based on 
GCN & TCN. 

 
Table 1.  Effectiveness of our TGN module on NTURGB+D dataset in terms of accuracy. 

 

Model TGN X-sub(%) X-view(%) 

ST-GCN[12] 
 81.6 88.8 

√ 82.3 90.8 

2s-AGCN[18] 
 88.5 95.1 

√ 89.0 95.4 

Js-Ours 
 86.0 93.7 

√ 86.6 94.1 

Bs-Ours 
 86.9 93.2 

√ 87.5 93.9 

 
Table 2.  Effectiveness of our TGN moduleon Kinetics dataset in terms of accuracy. 

 

Model TGN Top-1(%) Top-5(%) 

ST-GCN[12] 
 30.7 52.8 

√ 31.5 54.0 

2s-AGCN[18] 
 36.1 58.7 

√ 36.7 59.5 

Js-Ours 
 35.0 93.7 

√ 35.2 94.1 

Bs-Ours 
 33.0 55.7 

√ 33.3 56.2 

 

4.2.2. Multi-Scale Graph Strategy  

 

Based on section 4.2.1, we construct the full-scale graph containing all joints of the original data, 
and the part-scale graph containing 11 joints in NTU+RGB-D dataset. In Kinetics Skeleton 

dataset, the full-scale graph contains all nodes and the part-scale graph contains 11 joints. We 

evaluate each scale graph, and Table 3 and Table 4 show the experimental results on the two 

datasets. In detail, adding a part-scale graph increases accuracy by 1.5% and 0.45%, respectively, 
adding a core-scale graph increases accuracy by 0.3% and 0.2%, respectively. A core-scale graph 

provides the global features of the whole body, a part-scale graph provides the contour features of 

the body part, and a full-scale graph provides the local features of each joint. By feature fusion, 
the model obtains richer information and performs better. 

 

Table 3.  Effectiveness of Multi-scale Graph on NTU RGB+D dataset in terms of accuracy. 

 

Full-Scale Part-Scale Core-Scale X-sub(%) X-view(%) 

√   89.0 95.2 

 √  86.0 94.0 

  √ 85.6 93.3 

√ √  89.2 95.7 

√ √ √ 89.5 95.9 
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Table 4.  Effectiveness of Multi-scale Graph on Kinetics dataset in terms of accuracy. 

 

Full-Scale Part-Scale Core-Scale Top-1(%) Top-5(%) 

√   36.6 59.5 

 √  35.0 55.9 

  √ 33.8 54.6 

√ √  36.9 59.9 

√ √ √ 37.3 60.2 

 

4.3. Comparison With State-of-the-Art Methods 
 

We compare MS-TGN with the state-of-the-art skeleton-based action recognition methods on 
both the NTU RGB+D dataset and the Kinetics-Skeleton dataset. The results of NTU RGB+D are 

shown in Table 5. Our model performs the best in cross-view experiment on NTU RGB+D, and 

has the highest top-1 accuracy on Kinetics Skeleton dataset as listed in Table 6.  

 
Table 5.  Performance comparisons on NTU RGB+D dataset with the CSand CV settings. 

 

Method Year X-sub(%) X-view(%) 

HBRNN-L[7] 2015 59.1 64.0 

PA LSTM[16] 2016 62.9 70.3 

STA-LSTM[21] 2017 73.4 81.2 

GCA-LSTM[22] 2017 74.4 82.8 

ST-GCN[12] 2018 81.5 88.3 

DPRL+GCNN[25] 2018 83.5 89.8 

SR-TSL[19] 2018 84.8 92.4 

AS-GCN[10] 2019 86.8 94.2 

2s-AGCN[18] 2019 88.5 95.1 

VA-CNN[26] 2019 88.7 94.3 

SGN[27] 2020 89.0 94.5 

MS-TGN(ours) - 89.5 95.9 

 
Table 6.  Performance comparisons on Kinetics dataset with SOTA methods. 

 

Method Year Top-1(%) Top-5(%) 

PA LSTM[16] 2016 16.4 35.3 

TCN[12] 2017 20.3 40.0 

ST-GCN[12] 2018 30.7 52.8 

AS-GCN[10] 2019 34.8 56.6 

2s-AGCN[18] 2019 36.1 58.7 

NAS[15] 2020 37.1 60.1 

MS-TGN(ours) - 37.3 60.2 

 

Besides, our model reduces the computational work and parameters, as listed in Table 7. It means 
our model is simpler and has a better ability for modelling spatial and temporal features. Why 

does our model have fewer parameters and calculation but perform better? In our designed graph, 

each node denotes all frame data of a joint, which brings two advantages: (1) TGN extractor only 
contains GCN without TCN, which reduces the parameters and calculation. (2) Instead of 

extracting alternately, TGN can extract spatial and temporal features at the same time to 

strengthen consistence of the spatial and temporal features. 
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Table 7.  Comparisons of the cost of computing with state-of-the-arts.The #Params and FLOPs are 

calculated by the tools called THOP (PyTorch-OpCounter) [24]. 

 

Method Year X-sub(%) #Params(M) #FLOPs(G) 

ST-GCN[12] 2018 81.6 3.1 15.2 

AS-GCN[10] 2019 86.8 4.3 17.1 

2s-AGCN[18] 2019 88.5 3.5 17.4 

NAS[15] 2020 89.4 6.6 36.6 

MS-TGN(ours) - 89.5 3.0 15.0 

 

5. CONCLUSIONS 
 

The MS-TGN model proposed in this paper mainly has two innovations: one is the TGN model 

which extracts the temporal and spatial features at the same time, and the other is the multi-scale 

graph strategy to obtain local features and contour features simultaneously. TGN designs a novel 
representation of skeleton sequences for action recognition, which can obtain spatiotemporal 

features simultaneously. The multi-scale graph strategy can extract global spatial features.On two 

published datasets, the proposed MS-TGN achieves the SOTA accuracy with the least parameters 
and computation. 
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