E/W-Band CPW-based Amplifier MMICs Fabricated in a 60 nm GaN-on-Silicon Foundry Process

Robert Malmqvist^{#1}, Rolf Jonsson^{#2}, Anders Bernland^{#3}, Mingquan Bao^{*4}, Rémy LeBlanc^{£5}, Koen Buisman^{€6}, Christian Fager^{€7}, Kristoffer Andersson^{*8}

[#]Swedish Defence Research Agency (FOI), Sweden

*Ericsson Research, Ericsson AB, Sweden

[£]OMMIC S.A.S., France

[€]Chalmers University of Technology, Sweden

{¹rma, ²roljon, ³andbern}@foi.se, {⁴mingquan.bao, ⁸kristoffer.andersson}@ericsson.com, ⁵r.leblanc@ommic.com,

{⁶koen.buisman, ⁷christian.fager}@chalmers.se

Abstract — This paper presents an experimental evaluation of two co-planar waveguide (CPW) based E/W-band amplifier MMICs realised in a 60 nm GaN-on-Si foundry process. A onestage amplifier and a two-stage amplifier realised in this process have a measured maximum gain of 8 dB and 16 dB at 73-74 GHz, respectively. The two amplifiers have a measured gain of 3 dB and 7 dB at 93 GHz when the drain voltage (V_d) is 10 V and the drain current (I_d) is 15 mA per stage. The two-stage amplifier has a measured noise figure (NF) of 2.7-3.8 dB and 2.9-4.1 dB at 90-95 GHz when the I_d is 10 mA and V_d is 5 V and 10 V, respectively. The measured NF of this amplifier is equal to 4-6 dB at 92-95 GHz when an I_d of 10-20 mA is used in each stage with same drain bias. *Keywords* — 60 nm GaN-on-Si MMIC process, W-band

amplifiers, noise characterization, power handling.

I. INTRODUCTION

Gallium Nitride-on-Silicon (GaN-on-Si) semiconductor processes have recently emerged as a viable option for Monolithically Microwave Integrated Circuits (MMICs) targeting wireless communications and radar applications up to the millimetre (mm)-wave range incl. e.g. 5G NR solutions [1-6]. The power handling capabilities of GaN-on-Si transistors are not as high as that of GaN-on-Silicon Carbide (GaN-on-SiC) based active devices but Silicon wafers are cheaper and more easily available on the global market. GaN-on-Si technologies have also the potential to scale the wafer dimensions up to 6-8" and beyond thereby reducing the chip fabrication cost. It can be highly attractive to use the same technology for Transmit and Receive Modules (TRM), especially in the mm-wave range where applications such as e.g. 5G may require compact electronically steerable active antenna arrays [3-6]. Presently, there are few open foundries in Europe and overseas that can offer GaN-on-Si MMICs at 30 GHz and beyond. A 10 W power amplifier (PA) and a single-chip 3W TRM with 3 dB noise figure (NF) at Ka-band were realised by the foundry OMMIC in a 100nm GaN-on-Si process [4]. Recently, OMMIC has developed a 60 nm GaN-on-Si process targeting E-band wireless communication and W-band short-range radar applications (i.e. at 60-110 GHz). A microstrip 60 nm GaN-on-Si PA shows an output power of 28 dBm at 89 GHz and 21 dBm at 94 GHz (i.e. last stage transistors can deliver 14-20 dBm) [5].

OMMIC's 60 nm GaN-on-Si process (D006GH) may be used for high-power and low-noise MMICs up to W-band (75-110 GHz). Here, we present experimental and simulated results of grounded co-planar waveguide (CPW) based E/W-band MMICs fabricated in this advanced foundry process. The results include small-signal s-parameters, noise figure (NF) and large-signal data up to 110 GHz. A two-stage amplifier realised using this process has a measured NF around 3-4 dB at 90-95 GHz when the drain current (I_d) is 5 mA per stage and the drain voltage (V_d) is 5-10 V. This amplifier has a measured NF of 4-6 dB at 92-95 GHz when an I_d of 10-20 mA is used in each stage to obtain a higher gain and linearity. The presented two-stage amplifier has a measured gain of 6.5-7.6 dB at 92-95 GHz when V_d is 10 V and I_d is equal to 15 mA per stage. The measured output 1 dB compression (P1dB) is 9 dBm and 13 dBm when V_d is 10 V and I_d is 14 mA and 28 mA per stage, respectively.

II. 60 NM GAN-ON-SI PASSIVE AND ACTIVE TEST CIRCUITS

Further details on OMMIC's 60 nm GaN-on-Si MMIC process can be found in [4-6]. Microstrip lines made on 100 µm thick GaAs substrates may be used up to 80 GHz as the substrate thickness should be limited to about a tenth of the guided wavelength to prevent undesired higher-order transmission modes from occurring. This explains the use of CPWs in our E/W-band MMIC designs as the GaN-on-Si substrate thickness used here is 100 µm and the dielectric constant of Si is similar to that of GaAs. Passive and active CPW test structures were simulated in ADS/EMPro using the foundry-provided process design kit and on-wafer s-parameter measurements were done with RF probes connected to an HP 8510C/8510XF network analyzer. Fig. 1a shows a micrograph of a 2.3 mm long (50 Ω) CPW line included on the same process run to determine the transmission line properties. Fig. 1b shows that the measured and EM-simulated forward transmission and input reflection coefficients (s_{21} and s_{11}) of this CPW line are in a relatively close agreement. The measured and simulated transmission losses are equal to 0.3-1.4 dB and 0.4-2.1 dB at 2-110 GHz, respectively (i.e. up to 0.6 dB/mm and 0.9 dB/mm). The measured s_{11} is below -18 dB in this frequency range.

Fig. 1. a) Micrograph of a 2.3 mm long CPW line fabricated in a 60 nm GaNon-Si MMIC process and b) measured and simulated forward transmission s_{21} and input reflection s_{11} , respectively.

The active CPW based MMICs that were fabricated on the same 60 nm GaN-on-Si process run included also more fundamental test structures such as HEMT devices with a different number of gate fingers (n) and unit gate width (W_u). Fig. 2a shows a micrograph of a HEMT device with the total gate width (Wg) dimensions equal to 2x22 µm. On-wafer measured and simulated s-parameters of this transistor with an applied drain-to-source voltage (Vds) of 5.5 V and a drain-to source current (I_{ds}) equal to 15.7 mA are shown in Fig. 2b. The measured and simulated s21 are equal to 2.3-9.7 dB and 2.7-10.6 dB at 2-110 GHz, respectively. The measured reverse transmission (s_{12}) is below -13.6 dB (sim. better than -15 dB). The reference planes during these measurements were moved to the gate and drain terminals after calibration was done with dedicated on-wafer TRL standards. The target frequency range of this MMIC component design investigation is E/W-band or more precisely at 92-95 GHz for certain identified dual-use applications (radar, communication). Thus, it is important to specify how the small-signal gain at those frequencies is effected by the chosen transistor dimensions and DC bias point. The measured gain of a device with almost the double gate width size (2x40 μ m) and V_{ds}=8 V, I_{ds}=26.0 mA is 3.0-3.1 dB at 92-95 GHz whereas the 2x22 μ m transistor with V_{ds}=5.5 V, Ids=15.7 mA results in a 0.7-0.8 dB higher gain at 92-95 GHz $(s_{21}=3.8 \text{ dB})$. The current densities of these two devices are similar and the smaller gate width size can obtain a higher gain (lower noise) but inferior linearity.

III. W-BAND GAN-ON-SI CPW-BASED AMPLIFIER MMICS

Figures 3a and 3b show circuit schematic and micrograph of a one-stage CPW E/W-band amplifier MMIC fabricated in a 60 nm GaN-on-Si foundry process (the area is 950x814 μ m²). The gate and drain voltages (V_g and V_d) are applied using the two DC bias lines that each are connected to a tee-junction close to the gate and drain terminals, respectively.

Fig. 2. a) Micrograph of a 60 nm GaN-on-Si HEMT device ($2x22 \ \mu m$ gate width) and b) measured and simulated s-parameters (V_{ds} =5.5 V, I_{ds} =15.7 mA).

The input and output matching networks contain the series and shunt capacitors C_{in1} , C_{in2} , C_{g1} , C_{g2} , C_{d1} and C_{out} connected to the tee-junctions using different transmission lines (TL_i) [7]. On-chip resistors, 50 Ω at the input and in the gate supply as well as 20 Ω at the drain supply are used to ensure the amplifier is unconditionally stable. Figs. 4a and 4b show the corresponding circuit schematic and micrograph of a cascaded two-stage CPW amplifier MMIC in a 60 nm GaN-on-Si process (the area used is 1256x814 μ m²).

b)

a)

Fig. 3. a) Circuit schematic and b) micrograph of a single-stage CPW based E/W-band amplifier MMIC fabricated in a 60 nm GaN-on-Si foundry process.

Fig. 4. a) Circuit schematic and b) micrograph of a cascaded two-stage CPW E/W-band amplifier MMIC fabricated in a 60 nm GaN-on-Si foundry process.

The 1-stage and 2-stage GaN-on-Si E/W-band amplifier MMICs were characterised using RF probes after assembly in a DC bias test fixture with some additional off-chip decoupling capacitors. Measured and simulated s-parameters of those amplifier designs at two different DC bias points are shown in Figs. 5a-d, respectively. The amplifier MMICs were simulated in ADS/EMPro using the EM-simulated results of the passive structures and the foundry transistor model ($W_g=2x22 \mu m$). During characterisation and in the simulations the drain DC bias current (I_d) and V_d of the 1-stage amplifier were initially set to 18 mA and 5.5 V, respectively. The measured maximum s_{21} is then 8.2 dB at 73.8 GHz and s₂₁=2.7-3.1 dB at 91.6-95.4 GHz. Compared with the simulated s_{21} which peaks at 84 GHz (4.3 dB) the measured s₂₁ curve below 70 GHz is shifted 2-5 GHz towards lower frequencies. The measured gain is up to 4.6 dB higher than simulated below 87 GHz while it is 1 dB lower than anticipated above 92 GHz. Whereas the measured and simulated output return losses are in a relatively close over-all agreement (s₂₂<-9 dB above 56 GHz and 58 GHz, respectively) the measured minimum s₁₁ occurs at a much lower frequency than simulated (at 66.3 GHz compared with at 96 GHz). Simulations imply that this discrepancy may be explained by a difference in the measured and simulated s11 data that was found from the on-wafer characterisation of transistors with the same dimensions as used in the two amplifier designs ($2x22 \mu m$).

For the 1-stage amplifier the measured max gain is reduced with 0.8 dB at 74.4 GHz when $V_d =10$ V and $I_d=15$ mA while s_{21} is increased with 0.2-0.4 dB to 3.1-3.3 dB at 91.6-95.4 GHz. Using a higher V_d and lower I_d causes a slightly higher amplifier gain at 92-95 GHz while gain is reduced at lower frequencies. The 2-stage amplifier has a measured gain of 16 dB at 72.7 GHz and $s_{21}=5.3-6.5$ dB at 91.8-95.1 GHz when $V_d =5.5$ V, $I_d=36$ mA while s_{21} is increased with 1.1-1.2 dB to 6.5-7.6 dB at 91.8-95.1 GHz when $V_d =10$ V and $I_d=30$ mA (see Figs. 5c and 5d).

Fig. 5. Measured and simulated s-parameters of two GaN-on-Si E/W-band amplifier MMICs: a) 1-stage (V_d =5.5 V, I_d =18 mA), b) 1-stage (V_d =10 V, I_d =15 mA), c) 2-stage (V_d =5.5 V, I_d =36 mA), b) 2-stage (V_d =10 V, I_d =30 mA).

Fig. 6. Measurement setup for the 90-100 GHz noise figure characterisation (1. noise source, 2. spectrum analyser, 3. Probe station and 4. DC bias connections).

Fig. 7. Measured noise figure data of a two-stage 60 nm GaN-on-Si amplifier MMIC at 90-100 GHz (I_d =10-40 mA and V_d =5V and 10 V, respectively).

Noise figure characterisation was done using a Keysight N9041B UXA spectrum analyser with built in software for noise figure measurements (see Fig. 6). A Millitech 90-100 GHz noise source (NSS-10-R1520) was connected to the input of the Device Under Test (DUT) via an adapter, cable and RF probe (an RF probe and a cable was also used to connect to the 110 GHz spectrum analyzer used). The compensation for the expected losses due to the different interconnects in the noise figure measurement set-up is done in the instrument's noise figure analyser mode. Figure 6 shows the measured NF data of a 2-stage GaN-on-Si amplifier at different values of Id and Vd. This 2-stage amplifier has a measured NF of 2.7-3.8 dB and 2.9-4.1 dB at 90-95 GHz when I_d is 10 mA and V_d is equal to 5V and 10V, respectively. The measured NF is in the range of 4-6 dB at 92-95 GHz when Id is 20-40 mA (10-20 mA per stage) to enable a higher amplifier gain and linearity. Compared with some earlier W-band GaN-on-SiC amplifiers which reported similar noise figures (3-6 dB) [7-8] GaN-on-Si amplifiers used e.g. in single-chip front-ends may be an interesting alternative for applications where a higher level of integration (lower cost) and low noise/high linearity are required.

The large-signal properties were determined using an RF signal generator connected to a W-band up-converter as the power source at the input of the DUT and the calibrated amplifier output power level was then measured with a W-band power sensor. The tested amplifier MMICs were connected to measurement equipment using RF probes, cables and an adapter.

The measured 1 dB compression point (P_{1dB}) is 9 dBm and 13 dBm at 95 GHz when V_d =10 V and I_d is 14 mA and 28 mA per stage, respectively. The measured saturated output power level is 15 dBm at 95 GHz. Compared with a 2-stage amplifier realised in a 50 nm GaN-on-Si process that reached 0.68 W/mm at 94 GHz (using a 2x50 µm device) [2] this result corresponds to a slightly higher power density of 0.72 W/mm even though smaller devices (2x22 µm) are used in the two amplifier designs.

IV. CONCLUSION

We presented an experimental evaluation of two CPW based E/W-band amplifier MMICs realised in a 60 nm GaN-on-Si open foundry process. A one-stage amplifier and a two-stage amplifier realised in this process have a measured maximum gain of 8 dB and 16 dB at 73-74 GHz, respectively. The two amplifiers have a measured gain around 3 dB and 7 dB at 92-95 GHz when V_d is 10 V and the I_d in each stage is 15 mA. The two-stage amplifier has a measured NF of 2.7-3.8 dB and 2.9-4.1 dB at 90-95 GHz when I_d is 5 mA per stage and V_d is 5V and 10 V, respectively. The measured NF is equal to 4-6 dB at 92-95 GHz when the I_d is 10-20 mA per stage. The measured output 1 dB compression occurs at 9 dBm and 13 dBm at 95 GHz when V_d is 10 V and I_d is 14 mA and 28 mA per stage, respectively. The measured saturated output power level is 15 dBm at 95 GHz. This translates to a relatively high power density of 0.72 W/mm for the $2x22 \ \mu m$ gate width devices used in the two amplifier designs. These results indicate extended possibilities of using low noise and high linearity GaN-on-Si amplifiers in highly integrated multifunctional single-chip front-ends as lower cost alternatives to GaN-on-SiC RF modules for E-band communication and W-band radar sensors.

ACKNOWLEDGEMENTS

Stig Leijon is acknowledged for assembly work on the E/Wband amplifier MMICs into DC bias test fixtures. The European Union is acknowledged for the funding and support of the H2020 ICT project SERENA (Grant Agreement no.779305)

REFERENCES

- D. Marti et al., "94-GHz large-signal operation of AlInN/GaN highelectron-mobility transistors on silicon with regrown ohmic contacts," *IEEE Electron Device Lett.*, vol. 36, pp. 17-19, Jan. 2015.
- [2] D. Marti et al., "W-band MMIC amplifiers based on AlInN/GaN HEMTs grown on silicon," *IEEE Electron Device Lett.*, vol. 37, pp. 1025-1028, Aug. 2016.
- [3] T. Boles "GaN-on-Silicon present challenges and future opportunities, in *Proc. EuMIC*'2017, pp. 21-24.
- [4] A. Gasmi et al., "10 W power amplifier and 3W transmit/receive module with 3 dB NF in Ka band using a 100nm GaN/Si process," in *Proc. IEEE CSICS* '2017.
- [5] R. Leblanc et al., "An industrial foundry offer for a 100nm GaN/Si process for applications up to V band," 9th wide band gap semiconductor and components workshop, Oct. 2018.
- [6] W. Ciccognani et al., "Comparative noise investigation of high-performance GaAs and GaN millimetre-wave monolithic technologies," in *Proc. EuMIC*'2019, pp. 192-195.
 [7] I. Kallfass et al., "A highly linear 84 GHz low noise amplifier MMIC in
- [7] I. Kallfass et al., "A highly linear 84 GHz low noise amplifier MMIC in AlGaN/GaN HEMT technology," in *Proc. IEEE MTT-S IMS*'2011, pp. 144-147.
- [8] S. Lardizabal et al., "Wideband W-band GaN LNA MMIC with state-ofthe-art noise figure," in Proc. CSICS'2016, pp. Oct. 2016.