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a b s t r a c t

The water mass transformation that takes place in the Iceland Sea during winter is investigated using
historical hydrographic data and atmospheric reanalysis fields. Surface densities exceeding
σθ ¼ 27:8 kg=m3, and hence of sufficient density to contribute to the lower limb of the Atlantic
Meridional Overturning Circulation via the overflows across the Greenland-Scotland Ridge, exist
throughout the interior Iceland Sea east of the Kolbeinsey Ridge at the end of winter. The deepest
and densest mixed layers are found in the northwest Iceland Sea on the outskirts of the basin's cyclonic
gyre, largely determined by stronger atmospheric forcing near the ice edge. Much of the accumulated
wintertime heat loss in that region takes place during a few extreme cold air outbreak events. Only a
small number of hydrographic profiles (2%) recorded mixed layers sufficiently dense to supply the
deepest part of the North Icelandic Jet, a current along the slope off northern Iceland that advects
overflow water into the Denmark Strait. However, low values of potential vorticity at depth indicate that
waters of this density class may be ventilated more regularly than the direct observations of dense mixed
layers in the sparse data set indicate. A sudden increase in the depth of this deep isopycnal around 1995
suggests that the supply of dense water to the North Icelandic Jet, and hence to the densest component
of the Atlantic Meridional Overturning Circulation, may have diminished over the past 20 years.
Concurrent reductions in the turbulent heat fluxes and wind stress curl over the Iceland Sea are
consistent with a decrease in convective activity and a weakening of the cyclonic gyre, both of which
could have caused the increase in depth of these dense waters.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The water mass transformation that takes place within the
Nordic Seas, at the northern extremity of the Atlantic Meridional
Overturning Circulation (AMOC), impacts the world ocean and is of
key importance for the North Atlantic climate system (e.g. Gebbie
and Huybers, 2010; Rhines et al., 2008). Warm, saline Atlantic
waters flow northward across the Greenland-Scotland Ridge into
the Nordic Seas, release heat to the atmosphere, and the resulting
densified waters return southward through gaps in the ridge as
overflow plumes. While the overflow transport is about evenly
divided east and west of Iceland, the largest overflow plume and
the densest contribution to the lower limb of the AMOC passes
through the Denmark Strait between Greenland and Iceland
(Fig. 1, Jochumsen et al., 2013).

The winter mean climate of the subpolar North Atlantic is
dominated by a large-scale pressure dipole known as the North

Atlantic Oscillation (NAO) with the Icelandic Low and Azores
High being its centers of action (Hurrell, 1995; Hurrell and Deser,
2009). The NAO is considered to be in its positive state when the
sea level pressure is anomalously high (low) in the southern
(northern) center of action. In its positive state, there is enhanced
westerly flow across the mid-latitudes of the North Atlantic. The
Iceland Sea is situated in the trailing trough that extends north-
eastwards from the Icelandic Low towards the Barents Sea
(Serreze et al., 1997). Along this trough there is a secondary
low-pressure center known as the Lofoten Low that has a
climatological center to the west of northern Norway near
721N, 141E (Jahnke-Bornemann and Bruemmer, 2009). The pres-
sure dipole consisting of the Icelandic and Lofoten Lows is known
as the Icelandic Lofoten Dipole (ILD). In addition to being
important features in the winter mean flow, these two locations
are also the primary (Icelandic Low) and secondary (Lofoten Low)
maxima in cyclone frequency over the subpolar North Atlantic
(Wernli and Schwierz, 2006). Although the NAO and ILD share a
common center of action, the Icelandic Low, Jahnke-Bornemann
and Bruemmer (2009) have shown that since the 1980s the two
pressure dipoles are only weakly correlated.
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The winter mean atmospheric circulation over the subpolar
North Atlantic is therefore the result of a complex interplay
between these two quasi-independent pressure dipoles. With
regard to the Iceland Sea, it appears that the ILD is the primary
mode of inter-annual variability (Kelly et al., 1987; Jahnke-
Bornemann and Bruemmer, 2009; Moore et al., 2012, 2014).
During periods when the Icelandic Low is anomalously deep,
southerly flow is established over the Iceland Sea resulting in
the advection of warm air and a concomitant reduction in the
magnitude of the air–sea heat fluxes (Moore et al., 2012). In
contrast, when the Lofoten Low is anomalously deep, the Iceland
Sea is under the influence of northerly flow that advects cold air
into the region leading to an increase in the magnitude of the sea
to air heat fluxes. As a result of this sea-level pressure distribution,
the Iceland Sea is situated in a saddle point between the two lows
and this leads to a local minimum in air–sea total turbulent heat
flux (Moore et al., 2012).

Despite relatively weak atmospheric forcing, oceanic convec-
tion takes place in the central Iceland Sea east of the Kolbeinsey
Ridge (Fig. 1) and results in the formation of Arctic Intermediate
Water (Swift and Aagaard, 1981). Doming isopycnals associated
with the presence of a cyclonic gyre (Stefánsson, 1962; Swift and
Aagaard, 1981; Voet et al., 2010) facilitate the water mass trans-
formation. Typical late-winter mixed-layer depths are on the order
of 200 m (Swift and Aagaard, 1981). The remnants of this con-
vective product are observed during the rest of the year as a cold
layer near this depth (e.g. Jónsson, 2007).

The depth of convection in the Iceland Sea is to some extent
regulated by the magnitude of the wind stress curl, which has a
pronounced influence on the surface salinity (Jónsson, 1992). Fresh
conditions during the so-called “ice years” of the late 1960s may
have caused a temporary cessation of convection (Malmberg and
Jónsson, 1997). At that time the East Icelandic Current, usually an
ice free current, transported a larger amount of cold, fresh water of
polar origin as well as a substantial amount of drift ice, perhaps
brought about by a period of northerly winds and reduced wind
stress curl (Dickson et al., 1975; Jónsson, 1992). Over the past three
decades a pronounced decline in sea ice concentration in the
western Nordic Seas has led to a retreat of the ice edge from the

cyclonic gyre in the central Iceland Sea. Simulations with a one-
dimensional mixed-layer model predict that the ensuing trend of
diminished wintertime atmospheric forcing will reduce the depth
and density of the convective product (Moore et al., 2015).

While earlier studies claimed significant contributions from the
Iceland Sea to the Denmark Strait overflow plume (e.g. Swift et al.,
1980; Livingston et al., 1985; Smethie and Swift, 1989), the current
consensus is that the transformation of Atlantic inflow into Den-
mark Strait Overflow Water (DSOW) occurs primarily within the
cyclonic circulation around the margins of the Nordic Seas
(Mauritzen, 1996; Eldevik et al., 2009). In this scenario interior
convection in the western basins contributes only to a minor
extent. It is generally thought that DSOW is mainly advected to the
Denmark Strait by the East Greenland Current (e.g. Rudels et al.,
2002), but that it contains to various extents an admixture of
water formed within the Iceland Sea (Olsson et al., 2005; Tanhua
et al., 2005, 2008; Jeansson et al., 2008). The variability among
these studies may be related in part to a temporal switching
between sources of DSOW (Rudels et al., 2003; Holfort and
Albrecht, 2007; Köhl, 2010).

The emphasis on the Iceland Sea as a source of DSOW was
renewed with the discovery of a current flowing along the slope
north of Iceland in the direction of the Denmark Strait, later called
the North Icelandic Jet (NIJ), by Jónsson (1999) and Jónsson and
Valdimarsson (2004). They found that the NIJ was potentially of
sufficient strength to account for the bulk of the overflow water if
some entrainment of ambient water is assumed. Extensive hydro-
graphic/velocity surveys along the slope west and north of Iceland
indicate that the NIJ advects both the densest overflow water and
a major fraction of the total overflow transport (1.4–1.5 Sv,
1 Sv¼106 m3/s) into the Denmark Strait (Våge et al., 2011, 2013).
Observations and numerical simulations suggest that the NIJ
originates along the northern coast of Iceland (Våge et al., 2011;
Logemann et al., 2013; Yang and Pratt, 2014). In particular, Våge
et al. (2011) hypothesize that it is the deep limb of an overturning
loop that involves the boundary current system north of Iceland
and water mass transformation in the central Iceland Sea.

Several studies indicate that waters ventilated in the Iceland
Sea also take part in the overflows east of Iceland. The Faroe Bank
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Channel overflow contains a small contribution from the Iceland
Sea in the form of Modified East Icelandic Water (Meincke, 1978;
Hansen and Østerhus, 2000; Fogelqvist et al., 2003). Perkins et al.
(1998) found at least 0.7 Sv of Arctic Intermediate Water primarily
originating from the Iceland Sea to participate in the overflow
through the gap in the ridge east of Iceland. There are additional
sporadic overflows through other notches along the Iceland-Faroe
Ridge that likely contain some water originating from the Iceland
Sea (Meincke, 1983). In total the overflow of water ventilated in
the Iceland Sea across the Iceland-Scotland Ridge could amount to
0.5–1 Sv, which is consistent with the fluxes of Arctic waters from
the Iceland Sea toward the east reported by Jónsson (2007).

The potential contribution from the Iceland Sea to the ventilation
of the world ocean via overflows across the Greenland-Scotland
Ridge could then be on the order of 2 Sv. This is a substantial fraction
of the total overflow, which is generally thought to be about 6 Sv
(Østerhus et al., 2008). The motivation for the present study is to
shed light on the wintertime water mass transformation that takes
places in the Iceland Sea and supplies densified water to the Nordic
Seas' overflows. Using a collection of historical hydrographic profiles
and atmospheric reanalysis fields we investigate the coupled ocean–
atmosphere system in the Iceland Sea region. In particular, we show
that waters of sufficient density to contribute to the overflows are
produced throughout the central Iceland Sea, investigate the extent
to which the densest water masses that are transported by the NIJ
and feed the DSOW plume may be formed in this region, and link a
decrease in the supply of this dense water to diminishing levels of
atmospheric forcing.

2. Data and methods

The historical hydrographic data set used in this study is a new
version of that employed by Våge et al. (2013) updated to include
the most recent profiles. The data set covers the period 1980 to
present and was compiled from various data bases and the Argo
global program of profiling floats. Prior to the first deployment of
Argo floats in the Iceland Sea in October 2005, the central and
northern Iceland Sea was, in particular during winter, sparsely
sampled. Additional details about the data set, its quality control,
and the gridding procedure can be found in Våge et al. (2013).

In order to determine mixed-layer depths, each of the hydro-
graphic profiles in the historical data set was visually inspected.
Two automated routines were employed to identify the base of the
mixed layer. The difference criterion method used by Nilsen and
Falck (2006) to investigate mixed-layer properties in the Norwe-
gian Sea was adapted to the more weakly stratified conditions in
the Iceland Sea. In particular, the potential density near the base of
the mixed layer was estimated from the surface properties by
subtracting ΔT ¼ 0:2 1C (Nilsen and Falck, 2006, used a tempera-
ture difference of ΔT ¼ 0:8 1C). By contrast, the method of
Lorbacher et al. (2006) identified the base of the mixed layer as
the shallowest extreme in curvature of the temperature profile. For
more than half (56%) of the profiles the mixed-layer depth was
adequately determined by one or both of these automated
routines as judged by visual inspection. The routines performed
particularly well on summer and early fall profiles, when the
upper ocean was more stratified and there was a pronounced
density difference between the base of the mixed layer and the
lower part of the profile, but were less accurate during periods of
active convection that eroded the stratification. The automated
routines were also unable to identify mixed layers isolated from
the surface, either in the form of multiple vertically stacked mixed
layers or as early stages of restratification, both of which are
prevalent also in the Labrador and Irminger Seas during winter
(Pickart et al., 2002; Våge et al., 2011). For these remaining

profiles (44%) the mixed-layer depth was determined manually
following a robust method developed by Pickart et al. (2002) that
involves a visual estimation of the mixed-layer extent and the
location(s) where the profile permanently crossed outside a two-
standard deviation envelope calculated over that depth range.

The atmospheric reanalysis product employed in this study is
the global Interim Reanalysis (ERA-I) from the European Centre for
Medium Range Weather Forecasts (Dee et al., 2011). We use the
0.751 6-hourly fields of sea-level pressure, 10 mwinds, sea ice, and
the turbulent and momentum fluxes for the period from January
1979 to April 2013. Comparison with aircraft and ship observations
in the southeast Greenland region shows good agreement with
ERA-I (Renfrew et al., 2009; Harden et al., 2011).

The statistical significance of changes in the appearance of time
series of interest, such as a linear trend or a transition in mean
behavior across a given temporal breakpoint, was assessed using a
Monte Carlo significance test that takes into account the temporal
auto-correlation characteristics of geophysical time series (Rud-
nick and Davis, 2003; Moore, 2012). Specifically, 10,000 synthetic
time series were generated that shared the same spectral char-
acteristics as the time series in question. These synthetic time
series were then used to estimate the probability distribution for
the given change in behavior thereby allowing one to estimate the
statistical significance of this change in the underlying time series.

3. Wintertime convection in the Iceland Sea

Maps of near-surface wintertime hydrographic properties in
the Iceland Sea were first presented by Swift and Aagaard (1981)
based on a ship-board survey that took place in late February/early
March 1975. They found water denser than σθ ¼ 27:8 kg=m3,
which is typically used to delimit overflow water (e.g. Dickson
and Brown, 1994), throughout most of the central Iceland Sea. The
densest mixed layers were located in the northern part of the
Iceland Sea. Our late winter (February through April) mixed-layer
potential densities (Fig. 2a) are slightly lower in the southern part
of the Iceland Sea, due to a combination of fresher and warmer
waters, but otherwise in qualitative agreement with Swift and
Aagaard's (1981) near-surface densities. The corresponding map of
mixed-layer depths (Fig. 2b) shows that also the deepest mixed
layers tend to be found in the northern Iceland Sea. Mixed layers
shallower than 25 m, due to early stages of restratification, were
disregarded. While the data nominally span a temporal range of
1980 to present, wintertime observations from the interior Iceland
Sea were scarce prior to the deployment of the first Argo floats in
late 2005. Most (67%) of the data from the north-central Iceland
Sea area outlined in Fig. 2 stem from the period 2005 to present.

It is interesting to note that the deepest and densest mixed layers
are found on the outskirts of the Iceland Sea Gyre (Fig. 2). Open-ocean
convection is normally thought to take placewithin cyclonic gyres (e.g.
Marshall and Schott, 1999). Doming isopycnals within a gyre bring
weakly stratified water closer to the surface resulting in a water
column that is more preconditioned for convection (Fig. 3a illustrates
that this is the case also in the Iceland Sea). As winter sets in, increased
buoyancy loss erodes the near-surface stratification and exposes the
weakly stratified water beneath directly to the atmospheric forcing,
which allows deeper convection to commence. Off the center of a gyre
the water column is less preconditioned, typically resulting in reduced
convective activity. We will demonstrate in Section 6 that stronger
atmospheric forcing in the northern part of the Iceland Sea is primarily
responsible for the deeper and denser mixed layers there, on the
outskirts of the gyre.

More intense convection off the center may alter the density
structure of the gyre and thereby also its circulation. However, the
main seasonal signal in dynamic height of the surface relative to a
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deep reference level was a near-uniform increase in summer (not
shown). This is primarily caused by a change in steric height due to
thermal expansion. The center position and shape of the gyre were
qualitatively similar between the different seasons. These results
are in accordance with Voet et al. (2010), who found a very weak
seasonal signal in the circulation of the Iceland Sea Gyre.

4. Mixed-layer evolution in the north-central Iceland Sea

The densest and deepest late-winter mixed layers were recorded
in the north-central part of the Iceland Sea (the area enclosed by the
black dashed line in Fig. 2, which also contains the northern half of
the gyre). To better understand the seasonal evolution of the upper
part of the water column that actively takes part in wintertime

convection, we examined the month-to-month change in mixed-
layer properties in this region. During more than half of the year,
from November through May, the potential density of the mixed
layer exceeded σθ ¼ 27:8 kg=m3 (Fig. 4a), and had thereby attained
sufficient density to potentially contribute to the overflows from the
Nordic Seas. The mixed-layer potential density and depth mono-
tonically increased from November to March. While the hydro-
graphic properties were largely uniform at the tail end of winter,
the high variability in mixed-layer depth in April indicates that the
onset of restratification tends to take place during that month
(Fig. 4b). With abating levels of buoyancy and wind forcing as well
as increasing insolation in spring, wintertime convection comes to a
halt and a shallow, warm surface layer develops.

The seasonal evolution of the upper water column is evident
also in Fig. 5 by increased near-surface densities and deeper mixed
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layers in winter. While there is a trend of increasingly deep mixed
layers during the course of each winter, it is clearly not as
monotonic as suggested by Fig. 4b. This is due to the non-
uniform spatial and temporal character of convection. In particular,
mixed layers near the northern end of the domain were in general
deeper than those farther south. Inter-annual variability in mixed-
layer depth and potential density is clearly present as well. This is
dominated by changes in the magnitude of the atmospheric
forcing, but the stratification of the upper water column prior to
the onset of wintertime convection also plays a role.

The mixed-layer evolution documented in Figs. 4 and 5 suggests
that the σθ ¼ 28:03 kg=m3 isopycnal is only on occasion ventilated in
the Iceland Sea. In fact, only five of the late-winter profiles contained
mixed layers with greater potential density, all of which came from
Argo floats in the northern Iceland Sea in winter 2013. Våge et al.

(2011) found that a substantial portion of the NIJ transport
(0.670.1 Sv) was of a density class exceeding σθ ¼ 28:03 kg=m3

and hypothesized that it was fed by waters originating from over-
turning in the interior Iceland Sea. This begs the question: to what
extent does the Iceland Sea provide the densest contribution to the NIJ
and hence to the Denmark Strait overflow plume?

Data from one particular Argo float, documented for more than
two years and corrected for drift in the conductivity and pressure
sensors (Wong et al., 2003), may indicate that ventilation of waters
denser than σθ ¼ 28:03 kg=m3 is more prevalent than the few
direct records of such dense mixed layers would suggest. The low
values of potential vorticity in the upper water column in Fig. 6
indicate weak stratification associated with wintertime convection
(e.g. Talley and McCartney, 1982). During its trajectory through the
northern Iceland Sea in winter 2007–2008, the float encountered
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mixed layers deeper than 300 m (isolated from the surface by early
stages of restratification, but clearly formed during the same winter,
see for example Våge et al., 2009). While neither this float nor any
of the other profiles fromwinter 2007–2008 recorded mixed-layers
denser than σθ ¼ 28:03 kg=m3, the lens of weakly stratified water
that was present for most of 2008 between 300 and 450 m and
resulted from convection during that winter contained water that
exceeded this density. This would imply that also waters that may
feed the densest portion of the NIJ were ventilated in the Iceland
Sea in winter 2007–2008. Indeed, a substantial number of the
north-central Iceland Sea profiles (about 6%) had a potential
vorticity of less than 8 (ms)�1�10�12 at the σθ ¼ 28:03 kg=m3

isopycnal, implying that water of this density class may be venti-
lated on a more regular basis than the direct observations suggest.

5. Change in availability of dense water to the NIJ during the
mid-1990s

The sparse amount of wintertime data prior to 2005 in the
north-central Iceland Sea precludes a thorough investigation into
the long-term variability in the ventilation of the densest waters

transported by the NIJ. We examine instead the depth of the
σθ ¼ 28:03 kg=m3 isopycnal in the vicinity of the outermost station
on the Langanes section off the north-east corner of Iceland
(Langanes 6, black cross in Fig. 2) to shed light on the potential
Iceland Sea source of dense water to the NIJ. The station is located
within the southern part of the gyre, outside the region of most
intense convection, and is typically sampled four times per year. It
is very unlikely that this isopycnal was ventilated locally as there
were no observed mixed layers with a potential density exceeding
27:97 kg=m3 and the σθ ¼ 28:03 kg=m3 isopycnal was not
observed at shallower depths than 250 m over the recorded period
(Fig. 7).

The time series of isopycnal depth shown in Fig. 7 indicates that
dense water was found higher in the water column at the
beginning of the record and deeper toward the end. In particular,
it appears that an abrupt change took place over only 2–3 years
around the mid-1990s. Prior to 1995 the mean depth of the
σθ ¼ 28:03 kg=m3 isopycnal was approximately 60 m shallower
than the following years. Such piecewise constant fits separated by
a jump discontinuity across 199571 year were statistically sig-
nificant with confidence intervals exceeding the 99th percentile.
This may be the result of a change in the convective activity in the
Iceland Sea, a persistent change in the circulation of the Iceland
Sea Gyre, or some combination of both, and has implications for
the available supply of dense water to the NIJ.

6. Atmospheric forcing

In the early 1970s the NAO began a period that was character-
ized by a positive trend, i.e. a period during which there was a
tendency for enhanced westerlies across the North Atlantic
(Hurrell, 1995). This period persisted until the early 1990s, when
the NAO entered a period where the trend became negative
(Cohen and Barlow, 2005). The winters of 1994–1995 and 1995–
1996 marked a particularly dramatic transition from a large
positive NAO state to a large negative NAO state (Fig. 8a, Flatau
et al., 2003). However, Cohen and Barlow (2005) note that the
statistical significance of the trend of the NAO during both periods
is generally not robust and highly dependent on the choice of start
and end date. Fig. 8a also shows the linear least squares fit to the
winter mean NAO index. The trend over the entire period is not
statistically significant and, in agreement with Cohen and Barlow
(2005), the trends before and after 1995 are not robust. In contrast,
the transition in winter mean NAO index before and after 1995
from positive conditions to more neutral conditions was statisti-
cally significant at the 99th percentile confidence level using the
aforementioned test that takes into account the temporal auto-
correlation of geophysical time series. The choice of 199571 year
as a breakpoint resulted in a minimum in the root mean square
error of the fit to the data. Regardless of how one characterizes the
changes in NAO, i.e. as a linear trend or a jump discontinuity, this
transition from positive to neutral NAO conditions has had a
number of impacts on the subpolar North Atlantic. These include
a reduction in the magnitude of the wind stress over the North
Atlantic (Flatau et al., 2003) that has resulted in a weakening and
warming of the subpolar gyre (Häkkinen and Rhines, 2004;
Straneo and Heimbach, 2013). The impact of variability in the
ILD on these processes has not been investigated. However, for the
period from 1980 onwards an index of the ILD computed from the
ERA-I indicates a weak negative trend (Fig. 8b), i.e. the Icelandic
Low is becoming shallower at a faster rate than the Lofoten Low.
However, the trend is not statistically significant at the 95th
percentile confidence interval. The transition across 199571 year,
on the other hand, is statistically significant at the 95th percentile
confidence level.
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The winter mean (November through April) ERA-I sea-level
pressure and 10 m wind field for the periods 1980–1995 and
1996–2013 as well as the difference between the winter means for
the two periods (i.e. the mean over 1996–2013 minus the mean
over 1980–1995) across the Nordic Seas are shown in Fig. 9. The
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Fig. 7. Depth of the σθ ¼ 28:03 kg=m3 isopycnal in the vicinity of the repeat station
Langanes 6 indicated by the black cross in Fig. 2. The gray lines represent the means
of the periods 1980–1995 and 1995–present.
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increase in pressure between the two periods is the result of the
weakening of the Icelandic and Lofoten Lows and is consistent
with the behavior of both the NAO and the ILD over this period.
The result is a pronounced reduction in the magnitude of the
winter mean 10 m winds along the Denmark Strait as well as over
the Iceland Sea. The difference between the two periods is there-
fore characterized by an anti-cyclonic circulation anomaly across
the Iceland Sea.

Elevated sea to air heat fluxes over the Iceland Sea (here we
will use the convention that heat fluxes out of the ocean are
positive) are associated with strong northerly flow (Moore et al.,
2012), and hence the change in behavior of the atmospheric
circulation identified in Fig. 9 should result in a decrease in the
magnitude of the sea to air heat fluxes over the region. Time series
of winter mean turbulent sea to air heat flux, the sum of the
sensible and latent heat fluxes, averaged over the north-central
Iceland Sea confirm this decline (Fig. 10a). The curl of the wind
stress is positive over the central Iceland Sea with a narrow band
of anti-cyclonic wind stress along the coast that is the result of
lower wind speeds over the sea ice and near coastal regions
(Malmberg and Jónsson, 1997; Våge et al., 2013). The wind stress
curl also exhibits a considerable amount of inter-annual variability
(Fig. 10b, Malmberg and Jónsson, 1997) that is also most likely
regulated by the ILD. Consistent with Flatau et al. (2003) and
Moore et al. (2012), both the winter mean turbulent heat flux and

the wind stress curl have a negative trend, as determined from a
linear least squares fit, over the period 1980–2013. However, only
the trend in the turbulent heat flux is statistically significant at the
95th percentile confidence interval (Rudnick and Davis, 2003;
Moore, 2012). Also shown in Fig. 10 are piecewise constant fits to
the time series with a breakpoint in 1995. Both time series can also
be characterized by a jump discontinuity across 1995. The statis-
tical significance of the magnitude of the jump was also consid-
ered using an equivalent test. In this case, the magnitude of jump
was statistically significant at the 95th percentile confidence
interval for both time series. The root mean square error for the
jump discontinuity fit to the data was in both cases smaller than
that for the linear least squares fit, suggesting that the former
provides a better fit to the data. The difference in the character-
ization of the low frequency variability of the heat flux time series
in this paper with that in Moore et al. (2015) can be attributed to
averaging over different spatial regions.

The correlations of the winter mean turbulent heat flux and
wind stress curl time series with the corresponding indices of NAO
and ILD as well as the sea-level pressures associated with the
Icelandic and Lofoten Lows were calculated. They are generally
consistent with the idea that the Lofoten Low is an important
contributor to the variability observed in both time series, with the
Icelandic Low also playing an important role only in the variability
observed in the wind stress curl (Table 1).

Moore et al. (2015) attributed the trend in the turbulent heat
flux time series to a reduction in the air–sea temperature differ-
ence over the region as well as to a retreat of the sea ice off the
east coast of Greenland. These previous results do not address the
changes in the occurrence or structure of the extreme heat flux
events that result in this winter mean behavior. This is important
because of the impact that the high heat flux events have on the
total loss of heat from the ocean over a typical winter. For example,
events where the turbulent heat flux exceeds the 90th percentile
value contribute over 35% of the total winter heat loss. Fig. 11
shows the time series of occurrence frequency of extreme turbu-
lent heat fluxes over the north-central Iceland Sea, defined as the
number of times that the turbulent heat flux exceeded the 90th
and 10th percentile values based on all winter values over the
period 1980–2013. These values are 246 and �15 W/m2, respec-
tively. The occurrence of high heat flux events has been decreasing
over this period while the occurrence of events where there was a
net warming of the ocean surface have been increasing. This
behavior is consistent with the changes in the winter mean
circulation (Fig. 9) which indicate a trend towards weaker north-
erly flow into the Iceland Sea since 1980.

The sea to air heat fluxes tend to be highest at the ice edge,
where the cold and dry Arctic air first comes in contact with
relatively warm surface waters (Marshall et al., 1998; Renfrew and
Moore, 1999). As a result, the recent retreat of the sea ice from the
vicinity of the Iceland Sea (Strong, 2012; Moore et al., 2015) is also
expected to result in a reduction of the magnitude of the sea to air
heat fluxes over the Iceland Sea. To confirm this behavior, all
events where the turbulent heat flux exceeded the 90th percentile
value, 246 W/m2, were identified for the first and last 10 years of
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Fig. 10. Winter mean total turbulent heat flux (a) and wind stress curl (b) for the
north-central Iceland Sea region. The red dotted lines represent the linear least
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and after a breakpoint during the winter of 1994–1995. (For interpretation of the
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this paper.)

Table 1
Correlation coefficients of the winter mean turbulent heat flux and wind stress curl
over the north-central Iceland Sea with various indices of the large-scale circulation
over the subpolar North Atlantic. Correlations that are underlined are statistically
significant at the 95th percentile confidence interval, while those that are bold are
statistically significant at the 99th percentile confidence interval.

NAO ILD Icelandic Low Lofoten Low

Turbulent heat flux 0.30 �0.37 �0.27 �0.60
Curl of the wind stress 0.63 �0.08 0.60 0.67
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the period of interest, i.e. 1980–1989 and 2004–2013 (Fig. 12). The
retreat of the sea ice has resulted in a northward shift of the region
of the largest heat fluxes away from the north-central Iceland Sea
and a narrowing of the marginal ice zone (Strong, 2012). The
spatial distribution of the heat fluxes between the two periods
reflects this narrowing. In particular, during the earlier period
when the marginal ice zone was broad, the heat fluxes were
significant over a large region, while during the latter period,
characterized by a narrow marginal ice zone, there was a much
tighter gradient to the heat flux. This northward transition of the
maximum in the heat fluxes would result in a reduction in the
magnitude of the atmospheric forcing of oceanic convection over
the Iceland Sea.

7. Discussion and conclusions

Waters of sufficient potential density to feed the overflows
across the Greenland-Scotland Ridge are formed throughout the
Iceland Sea in winter. Its contribution to the overflows could be on
the order of 2 Sv, a considerable fraction of the total overflow of
about 6 Sv (Østerhus et al., 2008). The densest waters are formed

in the northern part of the Iceland Sea, on the outskirts of the
cyclonic gyre. This is primarily dictated by closer proximity to the
ice edge and stronger atmospheric forcing there, as the water
column is more preconditioned for overturning near the center of
the gyre. Swift and Aagaard (1981) suggested that an inflow of
saline Atlantic Water south of Jan Mayen from the Norwegian Sea
could also play a role.

The wintertime formation of dense water outside the center of
the gyre does not appear to have a lasting impact on its structure,
but could have ramifications on the residence time of this product
and its export from the Iceland Sea. Specifically, dense water
located outside the center of the gyre is more accessible to
boundary currents, such as the NIJ, and can therefore more readily
supply the overflows. This is consistent with the low residence
time north of the Greenland-Scotland Ridge estimated for the
Arctic-origin overflow water (Smethie and Swift, 1989).

The NIJ provides the densest contribution (σθZ28:03 kg=m3)
to the Denmark Strait overflow plume and is hypothesized to be
part of an interior overturning loop that involves water mass
transformation in the central Iceland Sea (Våge et al., 2011).
However, only a minor fraction (2%) of the 1980 to present late-
winter profiles from the north-central Iceland Sea recorded such
dense mixed layers. A lens of weakly stratified water resulting
from overturning in winter 2007–2008 was revealed by an Argo
float transiting through the northern Iceland Sea. The lens
included waters denser than σθ ¼ 28:03 kg=m3, implying that this
isopycnal had been ventilated that winter even though direct
observations are lacking. Low values of potential vorticity at this
deep isopycnal suggest that water of this density class may be
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Fig. 11. Frequency of occurrence of total turbulent heat fluxes greater than the 90th
percentile total turbulent heat flux (a) and less than the 10th percentile total
turbulent heat flux (b) at the middle of the north-central Iceland Sea region.
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ventilated more often than direct observations of dense mixed
layers indicate. Given a large temporal and spatial variability in
convection, it is likely that the data set used in this study is too
sparse to ensure reliable direct detection of the most intense
convective episodes each winter.

It is also possible that convection in the Iceland Sea has become
less intense over the past two decades. A deepening of the
σθ ¼ 28:03 kg=m3 isopycnal in the vicinity of the repeat Langanes
6 station (its location is marked on Fig. 2) may indicate a decrease
in the available supply of the NIJ's densest component. While the
only mixed layers denser than σθ ¼ 28:03 kg=m3 were observed in
early 2013, the very sparse winter measurements prior to the
deployment of Argo floats in 2005 revealed near-surface waters
that had attained similar densities also in early 1981. Swift and
Aagaard (1981) found densities in the near-surface layer exceeding
28 kg=m3 using hydrographic data obtained from late February/
early March in 1975, and surmised that by the end of that winter
the density could have reached 28:05 kg=m3. Such a decline in the
convective activity was hypothesized by Moore et al. (2015). They
documented a trend of diminished wintertime atmospheric for-
cing and conducted simulations with a one-dimensional mixed-
layer model that predicted a concomitant reduction in convection.
Over time, the result would likely lead to a weakening of the
overturning loop that feeds the NIJ and hence result in a decreased
supply of the densest overflow waters to the AMOC.

The time series of winter mean sea to air heat flux and wind
stress curl over the north-central Iceland Sea (Fig. 10) are con-
sistent with this interpretation. Both show a long-term decline
that would lead to a reduction in the buoyancy flux from the ocean
to the atmosphere as well as a reduction in the doming of the
isopycnals of the Iceland Sea Gyre. The diminished occurrence
frequency of high heat flux events over the region (Fig. 11) as well
as a northward shift in the location of the heat flux maximum
(Fig. 12) contribute to the reduction in the buoyancy flux. There is
evidence of a step-like discontinuity in both the turbulent heat
flux and wind stress curl time series around 1995 that is consistent
with the observed long-term behavior of the depth of the
σθ ¼ 28:03 kg=m3 isopycnal (Fig. 7). The timing of these disconti-
nuities is simultaneous with the transition from NAO positive to
NAO neutral conditions (Flatau et al., 2003; Cohen and Barlow,
2005) that resulted in a number of other changes in the oceano-
graphy of the region (e.g. Häkkinen and Rhines, 2004; Pálsson et
al., 2012; Straneo and Heimbach, 2013). However, the muted
dependence of the air–sea forcing over this region on the depth
of the Icelandic Low as compared to the Lofoten Low (Table 1)
suggests that further work is required in order to understand the
relative importance of large-scale atmospheric circulation patterns
like the NAO and ILD to the climate of the Nordic Seas.

Recent studies have placed a renewed emphasis on the Iceland
Sea and strongly suggest that it provides a more important
contribution to the AMOC than previously thought. While the
present hydrographic data set is too sparse to provide a definitive
account of the Iceland Sea's recent convective history, in particular
as regards its potential to supply the densest component of the NIJ,
there is evidence that also these waters can be locally ventilated.
Additional wintertime measurements will continue to shed light
on the water mass transformation in the Iceland Sea as a source of
dense water to the NIJ, which will clarify the importance of the
Iceland Sea in the North Atlantic climate system.
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