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Soft-grasping with an anthropomorphic robotic hand
using spiking neurons

J. Camilo Vasquez Tieck1∗, Katharina Secker1∗, Jacques Kaiser1, Arne Roennau1, Rüdiger Dillmann1,2

Abstract—Evolution gave humans advanced grasping capabili-
ties combining an adaptive hand with efficient control. Grasping
motions can quickly be adapted if the object moves or deforms.
Soft-grasping with an anthropomorphic hand is a great capability
for robots interacting with objects shaped for humans. Neverthe-
less, most robotic applications use vacuum, 2-finger or custom
made grippers. We present a biologically inspired spiking neural
network (SNN) for soft-grasping to control a robotic hand. Two
control loops are combined, one from motor primitives and one
from a compliant controller activated by a reflex. The finger
primitives represent synergies between joints and hand primitives
represent different affordances. Contact is detected with a mech-
anism based on inter-neuron circuits in the spinal cord to trigger
reflexes. A Schunk SVH 5-finger hand was used to grasp objects
with different shapes, stiffness and sizes. The SNN adapted the
grasping motions without knowing the exact properties of the
objects. The compliant controller with online learning proved to
be sensitive, allowing even the grasping of balloons. In contrast
to deep learning approaches, our SNN requires one example of
each grasping motion to train the primitives. Computation of
the inverse kinematics or complex contact point planning is not
required. This approach simplifies the control and can be used on
different robots providing similar adaptive features as a human
hand. A physical imitation of a biological system implemented
completely with SNN and a robotic hand can provide new insights
into grasping mechanisms.

I. INTRODUCTION

W ITH evolution humans developed advanced and flex-
ible grasping capabilities thanks to a combination of

an adaptive hand and efficient control. Humans do not plan a
gasping motion and execute it, there is actually a combination
of control loops working together to grasp an object. Based on
sensor feedback, the hand can adapt its motion if the object
moves or deforms. This is called soft-grasping [1], [2]. Soft-
grasping with a anthropomorphic hand (as in Fig. 1) is an
important capability for robots interacting in an environment
with objects shaped for humans. Nevertheless, most robotic
applications use vacuum, 2-finger or custom grippers [3] which
are fine for production applications, but lack adaptability
grasping objects without knowing their exact properties.

There are studies on human motor control providing insights
about the grasping mechanisms. In this work focuses on the

Manuscript received: June, 5, 2020; Revised: October, 2, 2020; Accepted:
October, 23, 2020.

This paper was recommended for publication by Editor Allison Okamura
upon evaluation of the Associate Editor and Reviewers comments.

1 FZI Research Center for Information Technology, Karlsruhe, Germany.
tieck, secker, jkaiser, roennau@fzi.de

2 Karlsruhe Institute of Technology (KIT), Germany.
ruediger.dillmann@kit.edu

∗ Equal contributions.
Digital Object Identifier (DOI): see top of this page.

Fig. 1: General view of the closed-loop architecture with SNN
for soft-grasping using motor primitives and reflexes.

biological principles for motion representation using motor
primitives, adaptive and compliant control, and event-based
computation [4] with spiking neural networks (SNN) [5]. SNN
model closer the characteristics of real neurons, which enables
research on learning mechanisms and information representa-
tion in the brain. An accepted hypothesis is that the central
nervous system uses a small number of muscle synergies that
are combined to produce motions [6], [7]. The activation of
the synergies can change based on sensor feedback. A motion
can be decomposed with neurons sensitive to different parts
of it [8]. These insights have been successfully applied in
robotics, for example with the dynamic movement primitives
[9] and the eigengrasps [10]. Studies show evidence of mus-
cle synergies for grasping [11], the relation between human
responses and the stiffness regulation in the hand [12], the
classification of grasping motions [13], and the generalization
of muscle patterns as building blocks for grasping [14]. An
anthropomorphic robotic hand enables further investigation of
the neural response of grasping motions [15], or evaluation
of the different affordances [16], or the use of synergies
from human demonstration for grasping control [17]. Other
approaches explore human-like grasping using deep learning
(DL) to create representations using autoencoders [18], for
extensive training in simulation for in-hand manipulation [19],
or with a combination of an object classifier with reactive
and anticipatory motor primitives [20]. But despite recent
successes, DL also has some drawbacks. To train a system
based on DL, a lot of data and simulation time is required. In
[21], 800,000 samples were collected to train a robotic arm
to perform reaching and grasping. Compliant control with a
robotic hand can be performed with soft [22] or flexible hard-
ware [2] or with software using sensor feedback [1]. Different
approaches use software compliant control using a torque
sensor with a robust modelling[23], or using online learning
for adaptive control [24], or using cerebellar principles [25],
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or combining reflexes with predictive control [26]. Although,
there are other approaches using SNN for motion control using
force feedback, to the best of our knowledge, there is no
implementation of an SNN for soft grasping with a 5-finger
anthropomorphic hand performing compliant control without
force sensors using the standart joint interface.

We can model a system using SNN for soft-grasping us-
ing an anthropomorphic robotic hand taking inspiration from
biology and using the principles presented in previous work
for a hierarchy of motor primitives with SNN to model the
hand [27], to model finger reflexes [28], to coordinate multiple
primitives [29], and to combine activation modalities [30].

The main components are presented in Fig. 1, from right to
left the layers have an increasing level of abstraction. In motor
control there are the finger primitives, in low-level control
the hand primitives and the reflexes, in high-level control the
affordance activation mechanisms, and in higher brain areas
the activation signals. Two control loops are combined, one is
based on the motor primitives and the other one is a compliant
controller activated by a reflex. The motions are modelled
with motor primitives in a hierarchy with finger primitives
representing synergies between joints and with hand primitives
representing different affordances coordinating the fingers. The
reflex is triggered by a contact detection mechanism mod-
elled as the circuits of inter-neurons in the spinal cord. This
modelling simplifies the control of the hand and generalizes
each grasp for different objects. Objects with different shapes,
stiffness and sizes are graspable without knowing their exact
properties. The hand fits the grasping motions to the different
objects using the compliant controller. It is not necessary to
compute the inverse kinematics or to calculate complex contact
point planning.

II. APPROACH

In this work, we present an approach for soft-grasping
with objects of different shapes, stiffness and sizes using a
SNN to control an anthropomorphic robotic hand. Motions are
represented with a hierarchy of motor primitives that allow a
reduction of the control parameters. The network combines
two control loops to generate a complex grasping behaviour.
The first one is reactive, generated by the trajectory control
from the primitives, to close the hand using human affordances
[13]. The second one is adaptive, generated by the compliant
control triggered with a reflex using the motor currents.

The detailed architecture for the SNN is presented in Fig.
2. There are four main components of the network: finger
primitives, hand primitives, affordance activation and reflexes.
Each oval is a sub-network. The connection between compli-
ance and the joints is simplified, it is also all to all. The finger
primitives represent the joint synergies in a finger for a closing
motion. The hand primitives represent different affordances
coordinating the fingers. The affordance activation mechanism
creates the activation patterns for the hand primitives. There
are two types of reflexes activated by contact, one inhibits the
movement of the fingers and the other activates the compliant
controller. Contact detection is modelled as the circuits of
inter-neurons in the spinal cord. The compliant controller uses

the efforts from the motors to control the force the finger can
apply.

The SNN is developed using the Neural Engineering Frame-
work (NEF) [31] which allows the generation of large-scale
SNN.First, the model is divided into vectors, functions, and
differential equations. The connections between sub-networks
compute the functions. The connection weights for each sub-
network are optimized separately, and then combined together
into one large neural network. By changing the connection
weights, we change the function being computed. Finding
connection weights locally means we can generate large sys-
tems without using the traditional neural network approach of
optimizing over huge amounts of training data. The trade-off
is that we need expert knowledge to define what each sub-part
of the model is doing. This principles are used to implement
a SNN for soft-grasping.

A. Finger primitives and robot kinematics

For each finger there is a motor primitive that represents
the joint synergies between the joints of the finger during a
closing motion. The principles to model the finger primitives
are based on [28], [30]. In addition to the five fingers, we
extended the modelling with two more degrees of freedom –
thumb opposition and finger spread. There are seven finger
primitives – thumb, thumb opposition, index, middle, ring,
pinky and finger spread – as illustrated in Fig. 2.

A finger primitive is defined with the min initial and
max final values of each active joint for one trajectory. It is
modelled as a mapping of an activation parameter u ∈ [0, 1]
to a sequence of joint activations during the execution of the
motion. The activation function f : [0, 1]→ [0, 1] is defined as

f(u) =
sin(u · π − π

2 )

2
+

1

2
. (1)

It is important for f(u) to have smooth initial and final
phases to prevent wear in the motors and transmissions of
the real robot. This type of functions are commonly used in
robotics for interpolation. Then the activation function has to
be mapped to the robot kinematics. A mapping g: [0, 1]→ Rn
is defined as

g(f(u)) = f(u) · (θmax − θmin) + θmin, (2)

to generate appropriate motor commands. Which means, scal-
ing f(u) to the motion interval (θmax−θmin) with offset θmin
of the joint θ.

B. Hand primitives and hierarchy

The motion of the hand is also modelled with a motor prim-
itive, but instead of controlling joints, it controls the activation
parameters of the finger primitives. The hand primitives are
organized in a hierarchy coordinating the finger primitives as
in [27], [29]. The hand primitives represent different grasping
affordances — sphere, cylinder and pinch according to [13]
and rest position. This reflects the muscle synergies of human
grasping [14]. The network does not learn individual objects,
it learns different affordances for different object types. By
using motor primitives for grasping motions, the complexity

https://doi.org/10.1109/LRA.2020.3034067
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Fig. 2: Detailed view of the closed-loop architecture for soft-grasping with SNN. In motor commands, a population of neurons
generate joint positions for each joint. The finger primitives represent joint synergies. The hand primitives represent different
grasping motions. In reflexes, a mechanism for contact detection triggers reflexes to inhibit the motion of the fingers and
activate the compliant controller. The affordance activation provides continuous activation signals for the hand primitives.

of the hand control is reduced to one activation parameter for
each affordance.

A hand primitive is modelled as a mapping of u to a
sequence of activations of the finger primitives during the ex-
ecution of the motion. The initial grasping pose (pre-shaping)
and the final pose with the hand closed, define the primitive
with the min open and max closed activation parameters for
the finger primitives. Each hand primitive is connected to all
finger primitives. There are four hand primitives as illustrated
in Fig. 2. To learn a new affordance, a sub-network in hand
primitives is required, and the initial and final positions of the
joints to define the primitive (see table in Fig. 8). The rest of
the SNN can be reused and the compliant controller adapts
the motions online to the shape of the objects.

C. Affordance activation mechanisms

The affordance activation generate the activation patterns for
the hand primitives. An external activation signal is used to
activate the hand primitives. A population of neurons generates
neural activity for the duration of the grasping motion. This
is an oscillator that oscillates only once ([30], [28]), and the
activity for the activation parameter u is decoded as

u = −1

2
cos(t · 2π

T
) +

1

2
. (3)

D. Reflexes and contact detection

The reflexes and the circuit for contact detection are the
parts that provide the adaptation and flexibility to the grasping
motions, required for soft-grasping. The modelling is taken
from [30], with additions to activate the compliant controller
and to change the activation parameters from the SNN. The
flexion is not being measured, only the currents of the motors

are used to detect contact. The contact detection circuit is
modelled as an alternative selection mechanism as the net-
works with inter-neurons in the spinal cord [32]. It combines
inhibitory and excitatory connections, as illustrated in Fig. 3a.
The proprioception is used to calculate ∆Θ as the change in
time of the joint, using the current joint position Θt and the
previous joint position Θt−1 provided by a delayed recurrent
connection. The interneuron, is excited by the effort feedback
from the motor and inhibited by ∆Θ. This ensures that the
interneuron only detects contact if the effort increases and the
corresponding joint is not moving, and thus ignores changes
in the effort caused by the non linearity of the robot dynamics.
There are two types of reflexes that are triggered with con-
tact. The first type provides inhibition and stops the motion.
When contact is detected in one finger, the reflex inhibits the
respective primitive and the contact joint position is mapped as
the new target position. The second type of reflex mechanism
activates a compliant controller for that finger.

E. Compliant controller and adaptation

The control schema is a cascaded impedance setup of two
controllers, the motor primitives and the compliant controller
(see Fig. 3b). The two controllers are combined based on the
feedback from the motors. With the measurement of the motor
current, an effort of each joint can be estimated. The compliant
controller uses the effort feedback as control parameter to
control the force a finger can apply. It is activated with contact,
and inhibited if no contact is detected or if the hand is opening.
Target efforts can be set to each joint individually to determine
the force and sensibility of the grasp. The target values for the
effort controller can be changed on-the-fly by the network for
each finger, which provides flexibility.

https://doi.org/10.1109/LRA.2020.3034067
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(a)

position control
PID

u

motor 
primitives

reflex
PI

(b)

P control

context

(c)

Fig. 3: (a) Contact detection circuit (adapted from [30]). (b)
Cascaded compliant controller for each finger. (c) Adaptive
part with online learning, reflex PI in (b).

The controller was initially modelled a classical PI con-
troller implemented with SNN. The I part was divided in two
parts with different parameters to reduce oscillation. A fast
reacting I part with an offset to compensate the delayed system
answer. This prevents the system for overshooting while the
system recovers from a delayed response. A slow reacting
I part is adjusted by the system delay and produces less
oscillation. It is worth mentioning, that no D part was used
because the current measurements from the motors are very
noisy. A digital I part can be described as

I(k) = kI ·
∑

ediff,(k·∆t) ·∆t (4)

where kI is the factor of the I part and ediff is the control
error between the target value and the actual measured value.
This can be converted into the difference equation with the
additional P component for the controller output yk as

yk = yk−1 + kI · uk ·∆t. (5)

Due to the interaction between the fingers and the object,
the initial contact points have to change if the object moves or
deforms. Ideally, there is a part in the controller that can learn
online to compensate for these changes without calculating the
exact contact points or the inverse kinematics. For this, we
propose an adaptive control schema (see Fig. 3c). Therefore,
the adaptive part works as an additional I part of the controller
with dynamic parameters. For the online adaptive part (green
connections), the prescribed error sensitivity (PES) rule is used
as implemented in NEF [33]. The number of neurons and the
learning rate determine the factor of the adaptive control, and
define how fast the adjustments are made. PES adjusts the

decoders ∆di of a connection to minimize an error signal. The
change in weights wij , is given by

∆wij = ∆di · ejαj (6)

∆di = −κ
n
· ξai, (7)

where αj is the gain, κ the global learning rate, n the number
of neurons, ξ the error signal, ej the encoder of the postsy-
naptic neuron and ai the presynaptic activity. The pre-synaptic
population is indexed by i and j indexes the post-synaptic
population. The resulting connection ∆u is added to control
signal and it is defined as

∆u(t) =

n∑
i=0

di · ai(x(t)), (8)

where ai(x(t)) is the activity of neuron i given the input x(t).
The error signal ξ is given by the PI part and the correction
by ∆u is affected by the learning rule adapting di.

III. RESULTS

An anthropomorphic Schunk SVH 5-finger hand was used
to evaluate the SNN for soft-grasping. For the experiments,
the hand was mounted in a test base as well as in a robotic
arm. We modelled three types of grasping motions — sphere,
pinch and cylinder. The affordances were activated with an
external signal to trigger the motion. The activation of the
different motor primitives was evaluated to test how the affor-
dances adapted to different objects. Then, the sensibility of the
compliant controller and its activation was evaluated. Finally,
we evaluated how the adaptive controller can learn online and
how it compares to the PI controller.

A. Motor primitives activation and affordance evaluation

A grasping motion showing the activation of the motor
primitives, is presented in Fig. 4a. The plots show the acti-
vation signal and the individual activations of the hand and
finger layers. Observe in output finger layer that the network
generates a smooth trajectory with stable final states for each
parameter. The hierarchy of the primitives is shown on the
right as a tree color coded with the plot lines and the resulting
grasping motion as a frame sequence on the bottom. To evalu-
ate how the affordances adapted, we used objects with different
shapes, stiffness and sizes. Among them: a plastic bottle, a soft
ball, a tennis ball, a sponge, a rubber duck, different balloons,
a pen, and a tissue pack (see Fig. 4b).

B. Compliant controller evaluation

The effort threshold controls the force that a finger can
apply to the object being grasped. The robot drivers have the
option to set a safety maximum value for the allowed effort.
The driver clips the control to protect the robot, which causes
crucial deviations of the control error and results in delays
at the start of the control. But changing this on-the-fly is
problematic as the configuration of driver has to be reloaded.
With our SNN, it is possible to change the effort threshold
on-the-fly, which provides flexibility and another degree of

https://doi.org/10.1109/LRA.2020.3034067
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(a)

(b)

Fig. 4: (a) Affordance activation, network output of the hand
and finger primitives, and a frame sequence of a grasp. (b)
Experiments with different objects.

freedom for the control. The compliant controller proved to
be sensitive and the threshold could be set to be very low
allowing the manipulation of balloons (see Fig. 5). In Fig. 5a
the hand is pressing hard using the maximum effort threshold,
whereas in Fig. 5b it is pressing soft using the effort threshold.
In Fig. 5c the effort plot for the thumb finger for the maximum
and minimum effort. Notice that the maximum is clipped by
the driver. This maximum value is actually as low as the
driver can go, because the effort caused by the non-linearities
of the robot dynamics will be higher and the driver will not
move the robot. The internal driver defines maximum efforts
for each joint as: thumb flexion 6; index proximal 5.5; index
distal 4.1; middle distal 4.1; middle proximal 5.5; ring 2; and
pinky 1.6. Our controller is able to go below these values and
maintain the effort between -0.5 and +0.5 around the target
value. The minimum effort we can achieve depends on the
joint and it is between -1.5 and 1.0 thanks to the contact
detection mechanism (see Sec. II-D).

A detailed grasp with the adjusted parameters is shown
in Fig. 6. The output of the effort control is converted to a
joint position and is added to the finger layer output. When
contact is detected, the switch activates the controller and the
measured position is affected by the effort controller.

(a) (b)

(c)

Fig. 5: Compliant control with (a) high and (b) low effort
thresholds. (c) Effort plot for both cases.

Fig. 6: Activation of the effort controller, output of the reflexes
network and measured effort.

C. Adaptive control with online learning evaluation

The network for the classical PI control is larger than for
the adaptive controller (see Fig. 8). The parameters for the
PI controller are presented in Fig. 8 (bottom). The initial
controller parameters are calculated with the Ziegler Nichols
method [34]. Then they are manually tuned to the system to
avoid noise and oscillations. To compensate the delay between
contact detection and reflex activation, an offset was aded to
the controller. To use the adaptive control loop, the learning
rate and the number of neurons had to be adjusted doing
a manual parameter search. With higher learning rates, the

https://doi.org/10.1109/LRA.2020.3034067
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Fig. 7: The adaptive controller learns after multiple grasps.

system reached the desired efforts a faster but also oscillated.
This effect was caused by the latency of the system, caused
through the filters to reduce the noise of the spiking neurons.
With the addition of an adaptive I part, the controller is reduced
to a P controller, which is easier to parameterize.

With online learning, the controller can adapt and learn over
multiple grasps. In Fig. 7, four consecutive grasps of the same
object are shown. The first diagram shows the activation of the
control triggered by the contact detection. If a contact is de-
tected, the inhibitory neurons are inhibited (selective desinhi-
bition [35]) and the control is activated. The plot u correction
is the signal added by the adaptive control to the PI control.
The plot control error shows the control error of four joints
that are related by synergies – distal and proximal joints of
the index and middle finger. In the fourth attempt, the control
error is controlled faster than at the beginning. The delay is
compensated and the gripping force is maintained to a constant
value. The PI controller needs 5s on average to minimize the
control error into a range of 0.05. With the adaptive controller,
this effect can be minimized to a delay of 3s, after 5 grasps
in average. As the repetition of a grasp with the robot can
not be the same every time, some joints need more grasps to
be adapted. The signal of the middle finger proximal (dark
blue) is overshooting in the second and fourth grasps. This
is caused by the adjustment of the middle finger distal (light
blue), nevertheless, after a period of time it stabilizes.

D. SNN implementation and parameters

The SNN is implemented with the neurosimulator Nengo
[36] with leaky integrate and fire spiking neurons. The opti-
mizer for the network connections is a least squares method
defined in NEF [31]. The motor primitives are represented
with 22 ensembles and 4400 spiking neurons, based on the
modelling of the fingers in [28]. The motor primitives have a
mathematical description that can be reused and parameterized
([30]), which allows further extension of the network. The re-
flexes with the classical PI compliant controller are represented
with 36 ensembles and 20700 neurons, and with the adaptive

compliant controller with 21 ensembles and 7350 neurons.
The number of ensembles depends on the functions being
modelled, and it is not a hyper parameter that was optimized.
It also depends on the amount of inputs and outputs of each
sub-network. The number of neurons is manually adjusted
depending on the noise and the precision. The basic process is
to start with 200 neurons for each ensemble, then depending
on the noise and the required precision we increase the number
of neurons and do a manual binary search. Additionally, to use
the SNN for robot control, it is necessary to filter the network
output to reduce noise from the spikes. This leads to a delay in
the control. To keep this delay small, the number of neurons
has to be increased (better fit of the function and less noise).
Heuristic strategies were used to adjust the number of neurons
to fit the chosen filter.

The Schunk SVH 5-finger hand has 9 active degrees of
freedom – thumb distal, thumb opposition, index distal and
proximal, middle distal and proximal, ring distal, pinky distal,
and finger spread. We use the Robot Operating System (ROS)
[37] as a communication layer with the official ROS driver
for the hand [38]. The selected affordances are based on [13]
with the parameters based on [14]. The primitives are defined
with the presented functions, and the mapping to the robot
is defined by moving the robot to the desired positions once,
and then reading out the joint configuration. We only need one
example motion for each affordance, from which we take the
start and end configuration in joint space. The parameters for
the finger and hand primitives, and for the compliant controller
are presented in Fig. 8. In the (top) the corresponding Θmin

and Θmax of each joint to define the finger primitives. In
the (middle) the corresponding min and max values for the
cylinder, pinch and sphere primitives – for the rest primitive
the min and max values are set to zero. In the (bottom) the
parameters for the PI, offset and adaptive P parts for each
finger.

IV. DISCUSSION

We presented a biologically inspired SNN to perform soft-
grasping with an anthropomorphic robotic hand. Soft-grasping
is mostly made with mechanical features and compliant hard-
ware. Indeed, most of the robots are not hardware compliant
and do not have force sensors, as the hand that was used.
Nevertheless, with the combined control loops and using the
current of the motors, it was possible to perform soft-grasping.
The experiments show that it is possible to grasp objects
with different shapes, stiffness and sizes without calculating
the inverse kinematics or complex contact point planning.
The system is based on motor primitives implemented with
SNN organized in a hierarchy of joints, fingers, reflexes and
grasping affordances representing the hand. Using separate
primitives, it is possible to control different combinations of
joints and activate other primitives with only one activation
signal. The approach is flexible and can be used on different
robot hands and can also be extended to incorporate signals
from other networks. The compliant control is implemented
in the same SNN using a cascaded PI effort controller that
was extended with online learning for adaptive control. The
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Parameters finger primitives:
Finger proximal distal

Θmin Θmax Θmin Θmax

thumb 0,1 0,9
thumb opposition 0,25 0,9
index finger 0,1 0,8 0,1 1,33
middle finger 0,1 0,8 0,1 1,33
ring finger 0,1 0,9
pinky 0,1 0,9
finger spread 0,2 0,5

Parameters hand primitives:
Finger cylinder pinch sphere

min max min max min max
thumb 0 0,4 0 0,6 0 0,4
thumb opposition 0,5 0,5 1 1 0,2 0,8
index finger 0 0,9 0 0,9 0 0,9
middle finger 0 0,9 1 1 0 0,9
ring finger 0 0,9 1 1 0 0,4
pinky 0 0,9 1 1 0 0,9
finger spread 0,4 0,5 0,3 0,3 0,5 0,5

Parameters PI control:
thumb index finger middle finger ring pinky

finger
flexion distal prox prox distal

P part: 0.3 0.6 0.2 0.2 0.6 0.6 0.6
I part: 0.1 5 1.5 1.5 5 4.5 4.5
I part with offset:
factor: 1 1 1 1 1 1 1
offset: -0.1 -1.1 -0.5 -0.5 -1.1 -0.8 -1.1
adaptive P part: 0.2 1.8 1 1 2.5 2.0 1.3

Fig. 8: Parameter tables for the finger primitives, the hand
primitives and the compliant controller.

controller was able to adapt the grasping motions to the
different objects without knowing their exact properties. We
modelled three grasping types – sphere, cylinder and pinch –
but there is no limitation with this number and the SNN can
be extended with more motions. An important characteristic
of our approach is that the SNN requires one example or
mathematical description of each grasping motion to train the
primitives, and after learning, the SNN adapts the motion to
the different objects. This is a real advantage in comparison
to other bio-inspired grasping and manipulation approaches
based on deep learning [18], [19], because training data and
extensive datasets are expensive and not easily generated with
real robots.

The same affordances were tested on objects with different
sizes and stiffness. One of the experiments showed how the
same spherical grasp was adapted for a tennis ball and for a
balloon. The threshold for the effort controller can be changed
on-the-fly by the network for each finger, which provides even
more flexibility and another degree of freedom for the control.
The compliant controller proved to be sensitive, and the thresh-
old could be set as low as to allow even the manipulation of
balloons (see Fig. 5). Even with the intrinsic inaccuracy of the
current measurements and necessary filters, the efforts could
be maintained below the maximum limits, which means that
the compliant controller was actively controlling the joints.
There are still bottlenecks in the control pipeline and the
control signal has a delay. This is due to the different filters
to get the information without noise in and out of the SNN.
As a consequence both controllers present small oscillations.
Parts of this problem could be improved by the online learning
capabilities of the adaptive effort controller. The plot in Fig.
7 shows the online adaption of the controller with every

repetition of the same grasping motion. Additionally, there
are limitations with the internal controller of the robot driver.
The positions are converted into currents that are cut off at
a certain threshold for safety. In case of contact, this has
the consequence that the output of the SNN does not control
directly the joints, and the measured values do not match the
controller output. The controller experiences a kind of wind up
effect and the system oscillates when the threshold value in the
driver-side controller is reached. Due to the damping properties
of soft objects, the controller reacts without exceeding the
threshold of the driver. Nevertheless, it also works with with
stiff objects, as the force is controlled with the same threshold
for soft or hard objects. For example the marker or the bottle
were hard, and it had no problems with them.

The continuation of this work has three main directions:
improve the controller, incorporate visual information and
integrate arm motion. To improve the controller, the network
parameters can be pre-trained with domain randomization in
simulation as in [39], [19] to fine tune the adaptive controller.
To increase the performance of the controller the SNN can
be executed with neuromorphic hardware such as SpiNNaker
[40] or Loihi [41] to take advantage of the efficient real time
execution of SNN [42].Neuromorphic hardware can also be
used to directly use the spike activity of the network to control
the motors [43] or by using event-based touch sensors [44] to
further exploit the characteristics of SNN in terms of energy
consumption and information processing [4]. To incorporate
visual information, we consider event-based cameras a natural
match for SNN. An stereo even-based camera setup [45] can
be used to get the target point is 3D space for pre-grasping [46]
and use micro-saccades [47] to detect the type of object and
identify which grasping affordance to use. To integrate arm
motion, an arm controller as in [48] can be incorporated to do
visual servoing, or as in [35] to have primitives reach different
points on a surface.The combination of visual information and
arm motion, together with soft-grasping can achieve a more
natural grasping process from recognition of the object to po-
sitioning the arm to grasping. The whole system implemented
completely with SNN as physical imitation of a biological
system and an anthropomorphic robotic hand can be compared
to brain neural responses for the grasping process as shown
by [15] and provide new insights into its sub-processes.
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