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Abstract
The design requirements of modern applications that target embedded systems, such as the need for high performance and 
low energy consumption, impose challenges on developers. Software tools capable of providing performance and energy 
consumption estimations are useful for addressing these challenges. Such tools aim to reduce development time and alleviate 
the time-to-market pressure. In this work, we propose a flexible tool that enables the estimation of performance and energy 
consumption of the application on embedded devices, providing a complete methodology based on which the user can add 
estimation models for various platforms. In contrast to existing tools that either rely on dynamic instrumentation or require 
detailed modeling of the hardware, the proposed tool leverages static analysis techniques applied at instruction level coupled 
with data-driven regression models. The proposed method is tested using a widely used benchmark suite for evaluation.

Keywords Energy consumption · Performance · Static analysis · Estimation

Introduction

The number of battery-driven IoT devices is expected to 
reach 35 billions in 2025.1. Nowadays, connected devices 
are installed in industrial systems for improving productiv-
ity, in healthcare systems and wearables for providing valu-
able feedback, as well as in various others environments. 
AI chips integrated in consumer devices, such as high-end 
smartphones, tablets, smart speakers, and wearables, further 
increase the capabilities of edge devices of IoT networks.2 
Indeed, there are increased expectations on both the research 

community and the industry for delivering advanced techno-
logical achievements that will enable new IoT applications.

However, there are several challenges that IoT application 
developers face. According to a recent IoT-oriented embed-
ded market study,3 application performance and energy effi-
ciency are some of the most critical issues that IoT devel-
opers are expected to address. Indeed, meeting the energy 
requirements of IoT applications, as well as the performance 
and security requirements is often very challenging.

Performance and energy efficiency in embedded devices 
can be addressed at various levels. Improvements at hard-
ware level include the introduction of fast, but ultralow-
power embedded CPUs and application-specific accelerators 
(e.g., neural compute units4), which typically achieve sig-
nificant energy savings in various IoT application scenarios 
and meet performance constraints. Other approaches include 
energy-efficient wireless interfaces, such as the Bluetooth 
Low Energy. Energy harvesting has been proposed for IoT 
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applications in which conventional power sources are not 
available. Finally, improving local computations at the edge 
of IoT networks, so that the amount of data need to wire-
lessly be transmitted to the Cloud is minimized, is a typical 
way to improve both performance and energy efficiency of 
IoT applications.

There are various works in the embedded system domain 
that highlights the importance of energy-efficient applica-
tion software that meets performance constraints. Inefficient 
software can drive low-power hardware to waste the sys-
tem’s energy budget, regardless of the application perfor-
mance [8]. Relevant works in the literature focus on source-
to-source optimizations at application level for increasing 
application performance and energy efficiency by improving 
the data flow and memory utilization [10, 15].

From software engineering perspective, there are several 
works that promote the use of tools and methods to allow 
energy consumption to be an important software design goal, 
by retaining performance requirements. They propose best 
practices and guidelines for all phases of software devel-
opment lifecycle based on empirical evaluation [17]. Other 
works, also based on empirical evaluation, try to determine 
the impact of typical source code refactorings on energy 
consumption [9].

It is widely accepted that performance and energy effi-
ciency are important qualities for software. However, there 
are a limited number of tools available that assist software 
developers on evaluating the software from application 
performance and energy consumption perspective [16, 17]. 
Developers need to monitor the energy consumption of the 
software during the development phase instead of measuring 
energy after deployment [5].

Although measuring performance and energy consump-
tion on the actual hardware is potentially the most accurate 
approach, there are several limitations. Hardware is often 
not accessible, which may involve sophisticated equipment 
and special hardware knowledge. As a result, due to the lack 
of tools in the current state of the art, development costs for 
energy-efficient systems are higher than for energy-wasteful 
systems due to the extra effort required to take energy con-
sumption into account [5].

An alternative approach, which is more accessible to 
application developers, is the program independent and 
hardware-specific performance and energy models. They 
associate basic software constructs (source code blocks and 
basic blocks in the intermediate representation) with energy 
consumption [5]. Such models can be implemented at vari-
ous levels, such as at IR or at instruction level.

This manuscript proposes a holistic design methodology 
(framework) for enabling the estimation of performance 

and energy consumption of applications on various devices 
through static analysis. In contrast to relevant approaches, 
the proposed tool is based on simple features retrieved from 
instruction level but generic enough to support many archi-
tectures and instruction sets. Furthermore, experimental 
results highlight the ability of the proposed mechanism to 
achieve acceptable results, without the necessity of accurate 
hardware modeling, which in turn leads to a plug and play 
solution. Additionally, the work described in this manuscript 
offers a methodology for the user to easily add new embed-
ded devices in the framework.

The method proposed in this manuscript is part of the 
SDK4ED project, funded by the European Union’s Hori-
zon 2020 research and innovation programme. The goal of 
SDK4ED is to minimize the cost and the development time 
of software development processes, by providing tools for 
automatic optimization of multiple quality requirements, 
such as technical debt, energy efficiency, dependability, 
and performance. The SDK4ED project so far has proposed 
numerous research and technical methods either with respect 
to the forecast and optimization of the targeted quality attrib-
utes (Energy, Maintainability, and Dependability) [4, 7, 18, 
21], or by investigating and studying the trade-offs between 
them [14, 19, 20]. The research work presented in this article 
is part of the energy consumption estimation component, 
which is integrated in the energy toolbox of the SDK4ED 
platform. The proposed framework aims at:

– Avoiding the limitations of dynamic instrumentation 
techniques, such as the execution time overhead and ena-
bling an estimation of the consumed energy by applica-
tions in a fast, convenient, and user-friendly way.

– Using static analysis techniques, so that the energy esti-
mation component uses similar approaches with the rest 
of the SDK4ED toolboxes (TD and dependability) that 
rely on static analysis techniques entirely.

– Enabling the estimation of energy consumption on vari-
ous architectures. Apart from the architectures already 
supported in the current version of the framework, the 
proposed methodology offers users the capability of add-
ing estimation models for other devices.

The rest of the manuscript is summarized as follows: Section 
“Related Work” provides an overview of relevant approaches 
found in the literature, while the proposed framework, as 
well as its components, are discussed in detail in Section 
“Proposed Methodology”. The efficiency of the introduced 
solution in well-known embedded devices is evaluated in 
Section “Evaluation”. Finally, Section “Conclusion” con-
cludes the manuscript.
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Related Work

Initial approaches towards performance predictions at 
instruction level include works based on simple machine 
learning algorithms (i.e., regression) [1]. This work adopts 
a measurement-based method and achieves very promising 
results. However, it targets only on microcontrollers and 
it is based on a specific Instruction Set. Furthermore, this 
approach uses a very limited dataset (60 test programs).

More recent approaches that provide increased accuracy 
utilize machine learning techniques for cross-platform per-
formance and power predictions [22, 23]. These approaches 
are based on dynamic instrumentation and include dynamic 
features in the proposed estimation models such as cache 
misses, cycles, etc. Although this procedure leads to very 
accurate estimations, it imposes a lot of problems for being 
a part of a Software Development Toolbox. The dynamic 
instrumentation not only requires application execution, 
but also adds a large time overhead. Furthermore, a lot of 
manual actions are needed by the developer (such as adding 
annotations in the source code).

Mira [13] leverages the ROSE compiler and estimates 
fp operations per block based on user input (i.e., number 
of loop iterations) and an analytical hardware architecture 
description file. This tool does not estimate performance or 
energy consumption, but it is worth referring as it gave us a 
lot of ideas for designing the proposed methodology, such 
as the analysis of the Abstract Syntax Tree, the focus on the 
loops, as well as the requirement of some dynamic informa-
tion (such as the number of loop iterations) by the user.

Another category of estimation tools includes the Worst-
Case execution Time tools (WCT) [6, 11]. These tools aim 
to characterize and estimate the applications worst-case per-
formance based on an iterative approach without having any 
information about the input. The usual criticism to this kind 
of tools includes the following facts: they are estremely slow, 
needing even days for performing the estimations, they are 
not so accurate, and they can support only specific architec-
ture models. Approaches that aim to provide improvements 
are also proposed [2].

Finally, another kind of tools that can be used to predict 
performance, in terms of throughput or number of cycles, 
include Ithemal [12], LLMV-mca5 and Intel Architecture 
Code Analyser (IACA).6 Ithemal is based on machine learn-
ing techniques (an LSTM RNN), while LLMV-mca and Intel 
IACA model x86-64 architectures. These tools are consid-
ered very useful as they give as an output the estimated 
throughput of executing a code basic block on a specific 

architecture. In the work introduced in this manuscript, the 
information retrieved by these tools is also combined with 
additional features, being an input in the proposed perfor-
mance and energy consumption estimation models.

Proposed Methodology

This section describes in detail the proposed methodology 
for estimating performance and energy in embedded plat-
forms through static analysis. The proposed flow is depicted 
in Fig. 1. The input of the methodology is the application 
source code (written in C/C++) and the output is the pre-
dicted execution time, as well as the estimated energy 
consumption.

The introduced mechanism consists of four steps depicted 
in Fig. 1. Initially, the application is compiled. The Abstract 
Syntax tree (AST) produced by the compiler front end (in 
the context of the proposed methodology, CLANG was uti-
lized) is forwarded to the Code blocks identification step. 
This step analyses the AST tree and identifies functions and 
loop statements (e.g., for, while), splitting the application 
source code into corresponding blocks (e.g., loop body, 
function body, etc.).

The object file generated by the compiler is given as an 
input to the next step, which is responsible for extracting the 
features that will be used by the estimation model (next step) 
to predict the performance and energy consumption of run-
ning the application on various embedded systems. This step 
takes as an input the targeted embedded device and estimates 
the time and energy required for executing each application 
code block through the device-specific model. The output 
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of the estimation model, regarding each code block, is pre-
sented by the proposed tool. Results for executing the total 
application are also provided. It is worth mentioning that, 
especially regarding the loops, a dynamic information (e.g., 
the number of iterations) is considered necessary. The pro-
posed framework supports both gathering this information 
as an input from the user to perform only static analysis, or 
executing the application to retrieve this information and to 
combine the individual code blocks information in a proper 
way that corresponds to the actual execution of the total 
application.

Building the Estimation Models

In this subsection, we discuss the proposed procedure to 
build estimation models capable of predicting the perfor-
mance and the energy consumption of the applications being 
executed on various embedded devices. Figure 2 depicts the 
introduced methodology, which is described in a detailed 
manner in the rest of the Section.

Features

As the proposed solution aims to be cross-platform and 
cross-architecture, the introduced solution proposes the 
generation of general features that model and characterize 
the application’s behavior and characteristics that directly 
affect the performance and energy consumption. Features 
have to model the application’s behavior and computational 
requirements. They are based on the application’s assembly 
code as well as the output of the LLVM-mca tool analysis. 
The assembly instructions are categorized, building a small 
number of generalized features in order for the proposed 
method to be generic enough and applicable to different 
architectures and instruction sets. Instructions belonging to 
the same category have similar execution time. The selected 
features are given below. The rest of the section describes in 
detail the methodology followed for selecting these features:

– number of instructions (INS)
– estimated throughput (by LLVM-mca)
– number of LOAD instructions

– number of STORE instructions
– number of OP (operations) instructions
– number of instructions in INS class 1 (add, sub, shift, and 

mul)
– number of instructions in INS class 2 class (conv, arrays, 

div)
– OP, LOAD, and STORE instructions order.

The LOAD and STORE operations have an important impact 
on the program execution in terms of time and energy as 
they require access in the system’s memory (either the 
CPU cache or the main memory). The average time over-
head of these operations as measured on an ARM Cortex-
A57-based device (Nvidia Tegra TX1) is from 2.2 × 10−7 
up to 4.4 × 10−7 ms for STORE and from 1.2 × 10−7 up to 
3.2 × 10−7 ms for LOAD operations. The time variations 
depend on the type of data, the size, as well as the cache 
behavior. The OP (operation) type instructions are classi-
fied into two more categories. The first category includes 
the add, sub, shift, and mul instructions. These instructions 
are the majority of the operations in all the applications that 
have been analyzed in the context of this manuscript. Shift 
operations seem to have similar time overhead with the addi-
tion operations. On the other hand, mul operations seem to 
have lager overhead (as they include multiple additions). 
For example, in ARM-Cortex A57, the add, sub, and shift 
operations time overhead does not exceed 2.2 × 10−7 ms, 
while mul operation execution time is up to 2.4 × 10−7 ms. 
However, the overhead of the mul operations is not consid-
ered significantly larger leading us to include them also in 
the same category.

Most of the applications use array operations. Arrays 
processing is considered very important for the total appli-
cation’s performance and energy consumption. Array 
operations are also coupled with memory operations. 
For example, when an array element if accessed for the 
first time, we have a cache miss and the time and energy 
needed for the transaction of the data from the main mem-
ory is very important. If the specific block is already in 
the cache memory, the overhead is relatively smaller. For 
the purpose of the proposed methodology and due to the 
fact that we focus on static source code analysis only, we 
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assume that the cache memory is ideal and we do not take 
into account any hardware information about the cache 
architecture. However, this impact of array operations is 
measured indirectly by including all the instructions that 
perform array operations into a second category. Usually, 
especially in 64-bit systems, when an array operation is 
performed, the compiler also produces conversion instruc-
tions (conv) (such as cltq, cdqe, and movslq in x86 assem-
bly) to convert the index value from a 32 to 64 bits for the 
pointer to access the 64-bit memory addresses. Div opera-
tions use pipeline and include multiple stages, leading to 
increased time and energy overhead. The array operations 
and the conversion time overhead in ARM-Cortex A-57 
varies from 2 × 10−7 ms up to 1.3 × 10−6 ms, while divi-
sion operations sometimes need up to 1.6 × 10−6 ms to be 
executed.

The most important of the rest of the operations (included 
only in the OP instruction feature) are jmp operations, com-
parison operations cmp, as well as mov instructions. The jmp 
and cmp operations are not present in the basic blocks ana-
lyzed by our tool (loop bodies and function bodies) as they 
are connected with changes in the program flow. As stated 
above, due to the fact that the proposed tool is based on 
static analysis (similarly to the relevant literature, e.g., [12]), 

we focus only on basic blocks, while the total application’s 
time/energy is calculated based on a combination of these 
blocks. As a result, this type of operations is not taken into 
account in a different way and they are treated as part of the 
operations described in the features presented in this section. 
Finally, mov instructions are used both in memory opera-
tions and in arithmetic operations (data exchanges between 
registers); as a result, further classification is not needed.

Figure 3 presents the average execution time of the 
instruction, on two ARM processor-based embedded sys-
tems, namely the Nvidia Jetson TX1 (ARM-Cortex A-57) 
and the Raspberry Pi 4 (ARM-Cortex A-72). The same 
behavior is observed in both processors. These results 
highlight the reasons that led us to select the features 
described above. The same procedure should be followed 
for adding other devices in the proposed tool to determine 
the classification of the assembly instructions in the proper 
way for characterizing the execution overhead in the new 
platform.

Apart from the kind of the assembly instructions, also 
the order highly affects the performance. To model the 
instructions order and to build simple and generic features 
capable of being used to estimate the performance and 
energy for various platforms and architectures, we adopted 
a sliding window approach. More precisely, a window 
”slides” through the assembly instructions of the block 
under analysis and each combination of instructions types 
corresponds to a new feature, as it is depicted schemati-
cally in the illustrative example presented in Fig. 4. One 
may argue that, beyond the type of instruction, further 
information is needed, such as the registers being used 
in each instruction, the location of the data accessed, etc. 
However, we decided to keep the features simple and rela-
tively few to support adding new devices and architec-
tures and retraining models easily, resulting to a generic 
solution that offers flexibility and rapid-prototyping, per-
haps with a slight effect on the quality of the results. The 
number of features grows exponentially depending on the 
window size and the different types of instructions. As 
mentioned before, the basic instruction categories are 3 
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(LOAD, STORE, and OP), as the rest of them are subcat-
egories of the OP instructions. Our final design choice is 
a 3-instruction-size sliding window leading up to 33 = 27 
new features.

In Section “Evaluation”, we highlight the increase of 
the proposed tool efficiency as each of the features pre-
sented in this section is added in the estimation models.

Dataset

First of all, we should describe the way that the dataset is 
structured, which is considered crucial for developing the 
proposed methods of estimating energy and performance on 
different embedded platforms and supporting the proposed 
framework.

The dataset used in the present work includes synthetic 
randomly generated loops. We developed a python script 
that generates C/C++ for loops that perform single numbers, 
matrix, and vector operations. The number of the matrices, 
the data types, and the operations are random. The loops 
include hundreds of millions iterations to measure the execu-
tion time and the energy consumption of one iteration and 
consequently of the basic block as accurately as possible. All 
the synthetic programs are compiled using the same optimi-
zation flags (O0). The reason for this selection is the fact that 
the randomly generated programs usually involve calculation 
insides the body of the loop, that are not affected by the loop, 
which means that their values do not change from one itera-
tion to another. In this case, if we use another optimization 
flag, the compiler will place this functionality out of the loop 
to avoid the meaningless overhead. As a result, this would 
affect our measurements, as we have large loops to repeat 
the execution of the entire loop body (code block) and make 
accurate measurements.

The final training set includes the most representative 
data-points from the generated dataset. This process is 
performed using a k-means clustering for dataset pre-pro-
cessing, selecting one data-point from each cluster. This 
procedure is considered necessary as the inherent random 

characteristics of the generated code can lead to very simi-
lar data-points (source code blocks) which can cause model 
over-fitting.

In this manuscript, we focus on estimating the perfor-
mance and energy of a basic block that does not require any 
dynamic information such as the actual number of instruc-
tions being executed, the number of iterations of a loop, 
etc. Regarding the cache memory behavior, which requires 
a dynamic analysis too, similarly to related approaches found 
in the literature [12], an ideal cache memory is taken into 
account, which means that we assume that only cache hits 
occur in a loop body.

Estimation Models

In this subsection, we present a comparison between alter-
native estimation models. All the tests are based on our 
generated dataset, which is splitted into training and test 
sets, for performing cross-validation. The measurements 
are performed on the Nvidia Tegra TX1 platform, which 
incorporates an ARM-Cortex A57 embedded processor as 
well as an on-board energy sensor. The final accuracy of 
the proposed models is also evaluated on real-life applica-
tions and well-known benchmark suites in Section “Evalu-
ation”. As mentioned in Section “Dataset”, a k-means clus-
tering procedure is adopted for avoiding over-fitting due 
to very similar data-points in the dataset. As a result, the 
number of the clusters is also a design choice that must be 
explored.

To select the regression estimation model, we compare 
the accuracy of different models. The accuracy of the seven 
most suitable models for estimating the execution time and 
energy consumption is depicted in Figs. 5 and 6 respec-
tively. For each model, we present the Mean Absolute Error 
between the actual value that corresponds to the basic blocks 
from the test-set and the predicted values. According to these 
results, we might conclude that the Orthogonal Matching 
Pursuit model can achieve the best results compared with 

Fig. 5  Comparison of alterna-
tive models for estimating 
execution time
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the rest of the models achieving an error less than 1.2 × 10−5 
ms regarding the execution time and less than 6 × 10−8 J with 
regard to the energy consumption.

Figure 7 depicts the impact of choosing the number of 
clusters that will be used in the clustering process and cor-
respondingly the number of data-points that will be included 
in the final dataset. According to these results, we see that 
selecting 600 clusters (the 600 most representative data-
points) improves the execution time prediction, while choos-
ing 200 clusters leads to the best results in terms of energy 
consumption estimation.

The user of the proposed tool can add new devices on the 
framework by executing the random generated dataset in 
the new platform and by giving the results in the proposed 
tool. The estimation models are then re-trained and the new 
platform can be chosen from the list for making perfor-
mance/energy estimations. Although the features are generic 
enough to be applicable on most platforms and different 
architectures, the user can make also changes in the feature 
list to characterize the new architecture better if needed to 
achieve higher accuracy. Finally, making energy consump-
tion estimations requires an energy sensor integrated in the 

new platform; otherwise, only execution time estimations 
will be supported by the tool.

Evaluation

This section presents an experimental evaluation of the 
introduced framework, to highlight the efficiency of the 
proposed mechanism to estimate the performance and the 
energy consumption of applications running on embedded 
devices. For the purposes of the present experiments, appli-
cations (i.e., benchmarks) were retrieved from the Rodinia 
Suite [3]. Rodinia is a popular benchmark suite that provides 
a set of applications for the study of heterogeneous systems. 
The benchmark provides publicly available programs in mul-
tiple versions, coupled with sets of data. Each application 
has different inherent architectural characteristics, which 
affect the performance and energy consumption. Rodinia is 
a widely used suite especially by researchers in the field of 
embedded systems and it is considered as a reliable bench-
mark for demonstrating, testing, and presenting research 
results and comparisons. For this manuscript, only the CPU 
versions are taken into account and more specifically single-
core applications.

Fig. 6  Comparison of alterna-
tive models for estimating 
energy consumption
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Fig. 7  Selecting the number of 
clusters for cleaning the dataset
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Figures 8 and 9 present the execution time and energy 
consumption estimation results, respectively, for running the 
most important basic blocks of the Rodinia applications. The 
code blocks selected to be analyzed are the bodies of the 
most computational intensive loops of the applications that 
have a large impact on the total program performance and 
energy. The applications are executed on the ARM-Cortex 
A57 of the Nvidia Tegra TX1 platform and the energy is 
calculated through the integrated energy sensor. According 

to these results, we might conclude that the estimation accu-
racy can be considered acceptable ( R2 score ≥ 0.92).

Figures 10 and 11 show the time and energy estimation 
(respectively) for executing the loops (after the user sets 
the actual number of iterations). Finally, Fig. 12 depicts 
the performance and energy estimation for executing 
the entire Rodinia applications. Based on these results, 
we might claim that the proposed tool achieves very 

Fig. 8  Execution time estima-
tion for most important basic 
blocks of Rodinia benchmark 
suite
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Fig. 9  Energy estimation for 
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Rodinia benchmark suite
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promising results as it can estimate the execution time and 
energy consumption with an acceptable accuracy, without 
needing to run the application. The average accuracy is 
85.4% for estimating time and 80.4% for estimating energy 
consumption.

Figure 13 highlights the importance of each additional 
feature selection described in Section “Features”. For the 
purposes of this experiment, we build the estimation models 

using different sets of features in the training set and we 
evaluate the efficiency of the tool on estimating the execu-
tion time as well as the energy consumption of the Rodinia 
basic blocks on Nvidia Tegra TX1 (ARM-Cortex A57). 
These results show how the average absolute error decreases 
as more features are added, each of which represent different 
important characteristics of the applications. In the first case, 
only the number of instructions is used as a feature. Then, 

Fig. 11  Energy estimation for 
most important loops of Rodinia 
benchmark suite
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Fig. 12  Performance and energy 
estimation on Rodinia bench-
mark applications (Nvidia TX1)
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Fig. 13  Impact of the selected 
features on the efficiency of 
the tool
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we added the LLVM-mca estimated throughput as well 
as a separate feature for the OP operations (the rest of the 
instructions are loads and stores). Afterwards, we made the 
features more special (LOADS, STORES, OP class 1, and 
OP class 2), and finally, the order of the instructions is added 
in the way described in “Features”. It should be mentioned 
here that the selected features have to be specific enough for 
having better estimation accuracy but also generic enough 
for supporting a large range of architectures (with different 
instruction sets).

Finally, we added two new CPU-based systems follow-
ing the same procedure for including a new platform in 
the proposed tool. The first one is a well-known embedded 
system and more precisely the Raspberry Pi 4 that includes 
an ARM-Cortex A-72. For this platform, we estimated 
only execution time, as an energy sensor was not available. 
Furthermore, to evaluate the capabilities of the proposed 
approach to make acceptable estimations for completely 
different architectures, we decided to add a personal laptop 
with an Intel i5 4210U. The results for estimating the per-
formance of the entire Rodinia applications are presented 
in Fig. 14. According to these results, we might conclude 
that the proposed method can support importing CPU plat-
forms easily and make acceptable estimations. The average 
percentage error for estimating the time and energy for the 
Rodinia applications platforms is below 20% compared to 
the actual values.

Conclusion

In this work, a framework for supporting the estimation 
of performance and energy consumption of applications 
was introduced. The framework is based on static analysis 
and is easily extensible to support many CPU devices. 

For demonstration purposes, each sub-component of the 
proposed tool is evaluated on a widely used ARM-based 
device using a well-known benchmark suite, while the 
extension of the tool for supporting two more CPUs is 
presented. Based on our experimentation, we validate the 
capabilities of the proposed solution as it achieves accept-
able results without the necessity of running the applica-
tions or requiring accurate prior hardware modeling.
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