
https://doi.org/10.1007/s42979-020-00405-7

ORIGINAL RESEARCH

A Flexible Tool for Estimating Applications Performance and Energy
Consumption Through Static Analysis

Charalampos Marantos1 · Konstantinos Salapas1 · Lazaros Papadopoulos1 · Dimitrios Soudris1

Abstract
The design requirements of modern applications that target embedded systems, such as the need for high performance and
low energy consumption, impose challenges on developers. Software tools capable of providing performance and energy
consumption estimations are useful for addressing these challenges. Such tools aim to reduce development time and alleviate
the time-to-market pressure. In this work, we propose a flexible tool that enables the estimation of performance and energy
consumption of the application on embedded devices, providing a complete methodology based on which the user can add
estimation models for various platforms. In contrast to existing tools that either rely on dynamic instrumentation or require
detailed modeling of the hardware, the proposed tool leverages static analysis techniques applied at instruction level coupled
with data-driven regression models. The proposed method is tested using a widely used benchmark suite for evaluation.

Keywords Energy consumption · Performance · Static analysis · Estimation

Introduction

The number of battery-driven IoT devices is expected to
reach 35 billions in 2025.1. Nowadays, connected devices
are installed in industrial systems for improving productiv-
ity, in healthcare systems and wearables for providing valu-
able feedback, as well as in various others environments.
AI chips integrated in consumer devices, such as high-end
smartphones, tablets, smart speakers, and wearables, further
increase the capabilities of edge devices of IoT networks.2
Indeed, there are increased expectations on both the research

community and the industry for delivering advanced techno-
logical achievements that will enable new IoT applications.

However, there are several challenges that IoT application
developers face. According to a recent IoT-oriented embed-
ded market study,3 application performance and energy effi-
ciency are some of the most critical issues that IoT devel-
opers are expected to address. Indeed, meeting the energy
requirements of IoT applications, as well as the performance
and security requirements is often very challenging.

Performance and energy efficiency in embedded devices
can be addressed at various levels. Improvements at hard-
ware level include the introduction of fast, but ultralow-
power embedded CPUs and application-specific accelerators
(e.g., neural compute units4), which typically achieve sig-
nificant energy savings in various IoT application scenarios
and meet performance constraints. Other approaches include
energy-efficient wireless interfaces, such as the Bluetooth
Low Energy. Energy harvesting has been proposed for IoT

This article is part of the topical collection “Interaction between
Energy Consumption, Quality of Service, Reliability and Security,
Maintainability of Computer Systems and Network” guest edited
by Erol Gelenbe.

 * Charalampos Marantos
 hmarantos@microlab.ntua.gr

 Konstantinos Salapas
 ksalapas@microlab.ntua.gr

 Lazaros Papadopoulos
 lpapadop@microlab.ntua.gr

 Dimitrios Soudris
 dsoudris@microlab.ntua.gr

1 School of Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece

1 https ://www.helpn etsec urity .com/2019/05/23/conne cted-devic es-
growt h/.
2 https ://www.eetim es.com/putti ng-ai-into-the-edge-is-a-no-brain er-
and-heres -why/.
3 https ://www.embed ded.com/wp-conte nt/uploa ds/2019/11/EETim
es_Embed ded_2019_Embed ded_Marke ts_Study .pdf.
4 https ://softw are.intel .com/conte nt/www/us/en/devel op/hardw are/
neura l-compu te-stick .html.

https://www.helpnetsecurity.com/2019/05/23/connected-devices-growth/
https://www.helpnetsecurity.com/2019/05/23/connected-devices-growth/
https://www.eetimes.com/putting-ai-into-the-edge-is-a-no-brainer-and-heres-why/
https://www.eetimes.com/putting-ai-into-the-edge-is-a-no-brainer-and-heres-why/
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html

 21 Page 2 of 11

applications in which conventional power sources are not
available. Finally, improving local computations at the edge
of IoT networks, so that the amount of data need to wire-
lessly be transmitted to the Cloud is minimized, is a typical
way to improve both performance and energy efficiency of
IoT applications.

There are various works in the embedded system domain
that highlights the importance of energy-efficient applica-
tion software that meets performance constraints. Inefficient
software can drive low-power hardware to waste the sys-
tem’s energy budget, regardless of the application perfor-
mance [8]. Relevant works in the literature focus on source-
to-source optimizations at application level for increasing
application performance and energy efficiency by improving
the data flow and memory utilization [10, 15].

From software engineering perspective, there are several
works that promote the use of tools and methods to allow
energy consumption to be an important software design goal,
by retaining performance requirements. They propose best
practices and guidelines for all phases of software devel-
opment lifecycle based on empirical evaluation [17]. Other
works, also based on empirical evaluation, try to determine
the impact of typical source code refactorings on energy
consumption [9].

It is widely accepted that performance and energy effi-
ciency are important qualities for software. However, there
are a limited number of tools available that assist software
developers on evaluating the software from application
performance and energy consumption perspective [16, 17].
Developers need to monitor the energy consumption of the
software during the development phase instead of measuring
energy after deployment [5].

Although measuring performance and energy consump-
tion on the actual hardware is potentially the most accurate
approach, there are several limitations. Hardware is often
not accessible, which may involve sophisticated equipment
and special hardware knowledge. As a result, due to the lack
of tools in the current state of the art, development costs for
energy-efficient systems are higher than for energy-wasteful
systems due to the extra effort required to take energy con-
sumption into account [5].

An alternative approach, which is more accessible to
application developers, is the program independent and
hardware-specific performance and energy models. They
associate basic software constructs (source code blocks and
basic blocks in the intermediate representation) with energy
consumption [5]. Such models can be implemented at vari-
ous levels, such as at IR or at instruction level.

This manuscript proposes a holistic design methodology
(framework) for enabling the estimation of performance

and energy consumption of applications on various devices
through static analysis. In contrast to relevant approaches,
the proposed tool is based on simple features retrieved from
instruction level but generic enough to support many archi-
tectures and instruction sets. Furthermore, experimental
results highlight the ability of the proposed mechanism to
achieve acceptable results, without the necessity of accurate
hardware modeling, which in turn leads to a plug and play
solution. Additionally, the work described in this manuscript
offers a methodology for the user to easily add new embed-
ded devices in the framework.

The method proposed in this manuscript is part of the
SDK4ED project, funded by the European Union’s Hori-
zon 2020 research and innovation programme. The goal of
SDK4ED is to minimize the cost and the development time
of software development processes, by providing tools for
automatic optimization of multiple quality requirements,
such as technical debt, energy efficiency, dependability,
and performance. The SDK4ED project so far has proposed
numerous research and technical methods either with respect
to the forecast and optimization of the targeted quality attrib-
utes (Energy, Maintainability, and Dependability) [4, 7, 18,
21], or by investigating and studying the trade-offs between
them [14, 19, 20]. The research work presented in this article
is part of the energy consumption estimation component,
which is integrated in the energy toolbox of the SDK4ED
platform. The proposed framework aims at:

– Avoiding the limitations of dynamic instrumentation
techniques, such as the execution time overhead and ena-
bling an estimation of the consumed energy by applica-
tions in a fast, convenient, and user-friendly way.

– Using static analysis techniques, so that the energy esti-
mation component uses similar approaches with the rest
of the SDK4ED toolboxes (TD and dependability) that
rely on static analysis techniques entirely.

– Enabling the estimation of energy consumption on vari-
ous architectures. Apart from the architectures already
supported in the current version of the framework, the
proposed methodology offers users the capability of add-
ing estimation models for other devices.

The rest of the manuscript is summarized as follows: Section
“Related Work” provides an overview of relevant approaches
found in the literature, while the proposed framework, as
well as its components, are discussed in detail in Section
“Proposed Methodology”. The efficiency of the introduced
solution in well-known embedded devices is evaluated in
Section “Evaluation”. Finally, Section “Conclusion” con-
cludes the manuscript.

 Page 3 of 11 21

Related Work

Initial approaches towards performance predictions at
instruction level include works based on simple machine
learning algorithms (i.e., regression) [1]. This work adopts
a measurement-based method and achieves very promising
results. However, it targets only on microcontrollers and
it is based on a specific Instruction Set. Furthermore, this
approach uses a very limited dataset (60 test programs).

More recent approaches that provide increased accuracy
utilize machine learning techniques for cross-platform per-
formance and power predictions [22, 23]. These approaches
are based on dynamic instrumentation and include dynamic
features in the proposed estimation models such as cache
misses, cycles, etc. Although this procedure leads to very
accurate estimations, it imposes a lot of problems for being
a part of a Software Development Toolbox. The dynamic
instrumentation not only requires application execution,
but also adds a large time overhead. Furthermore, a lot of
manual actions are needed by the developer (such as adding
annotations in the source code).

Mira [13] leverages the ROSE compiler and estimates
fp operations per block based on user input (i.e., number
of loop iterations) and an analytical hardware architecture
description file. This tool does not estimate performance or
energy consumption, but it is worth referring as it gave us a
lot of ideas for designing the proposed methodology, such
as the analysis of the Abstract Syntax Tree, the focus on the
loops, as well as the requirement of some dynamic informa-
tion (such as the number of loop iterations) by the user.

Another category of estimation tools includes the Worst-
Case execution Time tools (WCT) [6, 11]. These tools aim
to characterize and estimate the applications worst-case per-
formance based on an iterative approach without having any
information about the input. The usual criticism to this kind
of tools includes the following facts: they are estremely slow,
needing even days for performing the estimations, they are
not so accurate, and they can support only specific architec-
ture models. Approaches that aim to provide improvements
are also proposed [2].

Finally, another kind of tools that can be used to predict
performance, in terms of throughput or number of cycles,
include Ithemal [12], LLMV-mca5 and Intel Architecture
Code Analyser (IACA).6 Ithemal is based on machine learn-
ing techniques (an LSTM RNN), while LLMV-mca and Intel
IACA model x86-64 architectures. These tools are consid-
ered very useful as they give as an output the estimated
throughput of executing a code basic block on a specific

architecture. In the work introduced in this manuscript, the
information retrieved by these tools is also combined with
additional features, being an input in the proposed perfor-
mance and energy consumption estimation models.

Proposed Methodology

This section describes in detail the proposed methodology
for estimating performance and energy in embedded plat-
forms through static analysis. The proposed flow is depicted
in Fig. 1. The input of the methodology is the application
source code (written in C/C++) and the output is the pre-
dicted execution time, as well as the estimated energy
consumption.

The introduced mechanism consists of four steps depicted
in Fig. 1. Initially, the application is compiled. The Abstract
Syntax tree (AST) produced by the compiler front end (in
the context of the proposed methodology, CLANG was uti-
lized) is forwarded to the Code blocks identification step.
This step analyses the AST tree and identifies functions and
loop statements (e.g., for, while), splitting the application
source code into corresponding blocks (e.g., loop body,
function body, etc.).

The object file generated by the compiler is given as an
input to the next step, which is responsible for extracting the
features that will be used by the estimation model (next step)
to predict the performance and energy consumption of run-
ning the application on various embedded systems. This step
takes as an input the targeted embedded device and estimates
the time and energy required for executing each application
code block through the device-specific model. The output

Application

Compiler

Code blocks identification

Feature extraction

Estimation model

Run application

AST tree
Object

file

Source code files

Static analysis Hybrid analysis

function1, function2, …
loop1, loop2, …

Function2(){
…
for(…){

ins1;
ins2;

}
while(){

ins1;
}
...

}

6ms

3mJ

0.2ms

0.1mJ

0.3ms

0.2mJ

Model 1

Model 2

Model n

…

Source code

Basic blocks

annotation

Time = 2s

Energy = 3J

Total Application

estimation:

Fig. 1 Overview of the proposed methodology

5 https://llvm.org/docs/CommandGuide/llvm-mca.html.
6 https://software.intel.com/content/www/us/en/develop/articles/
intel-architecture-code-analyzer-download.html.

 21 Page 4 of 11

of the estimation model, regarding each code block, is pre-
sented by the proposed tool. Results for executing the total
application are also provided. It is worth mentioning that,
especially regarding the loops, a dynamic information (e.g.,
the number of iterations) is considered necessary. The pro-
posed framework supports both gathering this information
as an input from the user to perform only static analysis, or
executing the application to retrieve this information and to
combine the individual code blocks information in a proper
way that corresponds to the actual execution of the total
application.

Building the Estimation Models

In this subsection, we discuss the proposed procedure to
build estimation models capable of predicting the perfor-
mance and the energy consumption of the applications being
executed on various embedded devices. Figure 2 depicts the
introduced methodology, which is described in a detailed
manner in the rest of the Section.

Features

As the proposed solution aims to be cross-platform and
cross-architecture, the introduced solution proposes the
generation of general features that model and characterize
the application’s behavior and characteristics that directly
affect the performance and energy consumption. Features
have to model the application’s behavior and computational
requirements. They are based on the application’s assembly
code as well as the output of the LLVM-mca tool analysis.
The assembly instructions are categorized, building a small
number of generalized features in order for the proposed
method to be generic enough and applicable to different
architectures and instruction sets. Instructions belonging to
the same category have similar execution time. The selected
features are given below. The rest of the section describes in
detail the methodology followed for selecting these features:

– number of instructions (INS)
– estimated throughput (by LLVM-mca)
– number of LOAD instructions

– number of STORE instructions
– number of OP (operations) instructions
– number of instructions in INS class 1 (add, sub, shift, and

mul)
– number of instructions in INS class 2 class (conv, arrays,

div)
– OP, LOAD, and STORE instructions order.

The LOAD and STORE operations have an important impact
on the program execution in terms of time and energy as
they require access in the system’s memory (either the
CPU cache or the main memory). The average time over-
head of these operations as measured on an ARM Cortex-
A57-based device (Nvidia Tegra TX1) is from 2.2 × 10−7
up to 4.4 × 10−7 ms for STORE and from 1.2 × 10−7 up to
3.2 × 10−7 ms for LOAD operations. The time variations
depend on the type of data, the size, as well as the cache
behavior. The OP (operation) type instructions are classi-
fied into two more categories. The first category includes
the add, sub, shift, and mul instructions. These instructions
are the majority of the operations in all the applications that
have been analyzed in the context of this manuscript. Shift
operations seem to have similar time overhead with the addi-
tion operations. On the other hand, mul operations seem to
have lager overhead (as they include multiple additions).
For example, in ARM-Cortex A57, the add, sub, and shift
operations time overhead does not exceed 2.2 × 10−7 ms,
while mul operation execution time is up to 2.4 × 10−7 ms.
However, the overhead of the mul operations is not consid-
ered significantly larger leading us to include them also in
the same category.

Most of the applications use array operations. Arrays
processing is considered very important for the total appli-
cation’s performance and energy consumption. Array
operations are also coupled with memory operations.
For example, when an array element if accessed for the
first time, we have a cache miss and the time and energy
needed for the transaction of the data from the main mem-
ory is very important. If the specific block is already in
the cache memory, the overhead is relatively smaller. For
the purpose of the proposed methodology and due to the
fact that we focus on static source code analysis only, we

Fig. 2 Proposed procedure
for building device estimation
models

Get features

Generate

random

for loops

Target device

LLVM-mca

Clustering

Data

set
Compile

Features

</>

.Object

file

Exec

Cross-

validation

Estimation

model

Models

Library

Time / Energy

 Page 5 of 11 21

assume that the cache memory is ideal and we do not take
into account any hardware information about the cache
architecture. However, this impact of array operations is
measured indirectly by including all the instructions that
perform array operations into a second category. Usually,
especially in 64-bit systems, when an array operation is
performed, the compiler also produces conversion instruc-
tions (conv) (such as cltq, cdqe, and movslq in x86 assem-
bly) to convert the index value from a 32 to 64 bits for the
pointer to access the 64-bit memory addresses. Div opera-
tions use pipeline and include multiple stages, leading to
increased time and energy overhead. The array operations
and the conversion time overhead in ARM-Cortex A-57
varies from 2 × 10−7 ms up to 1.3 × 10−6 ms, while divi-
sion operations sometimes need up to 1.6 × 10−6 ms to be
executed.

The most important of the rest of the operations (included
only in the OP instruction feature) are jmp operations, com-
parison operations cmp, as well as mov instructions. The jmp
and cmp operations are not present in the basic blocks ana-
lyzed by our tool (loop bodies and function bodies) as they
are connected with changes in the program flow. As stated
above, due to the fact that the proposed tool is based on
static analysis (similarly to the relevant literature, e.g., [12]),

we focus only on basic blocks, while the total application’s
time/energy is calculated based on a combination of these
blocks. As a result, this type of operations is not taken into
account in a different way and they are treated as part of the
operations described in the features presented in this section.
Finally, mov instructions are used both in memory opera-
tions and in arithmetic operations (data exchanges between
registers); as a result, further classification is not needed.

Figure 3 presents the average execution time of the
instruction, on two ARM processor-based embedded sys-
tems, namely the Nvidia Jetson TX1 (ARM-Cortex A-57)
and the Raspberry Pi 4 (ARM-Cortex A-72). The same
behavior is observed in both processors. These results
highlight the reasons that led us to select the features
described above. The same procedure should be followed
for adding other devices in the proposed tool to determine
the classification of the assembly instructions in the proper
way for characterizing the execution overhead in the new
platform.

Apart from the kind of the assembly instructions, also
the order highly affects the performance. To model the
instructions order and to build simple and generic features
capable of being used to estimate the performance and
energy for various platforms and architectures, we adopted
a sliding window approach. More precisely, a window
”slides” through the assembly instructions of the block
under analysis and each combination of instructions types
corresponds to a new feature, as it is depicted schemati-
cally in the illustrative example presented in Fig. 4. One
may argue that, beyond the type of instruction, further
information is needed, such as the registers being used
in each instruction, the location of the data accessed, etc.
However, we decided to keep the features simple and rela-
tively few to support adding new devices and architec-
tures and retraining models easily, resulting to a generic
solution that offers flexibility and rapid-prototyping, per-
haps with a slight effect on the quality of the results. The
number of features grows exponentially depending on the
window size and the different types of instructions. As
mentioned before, the basic instruction categories are 3

0

0.0000005

0.000001

0.0000015

0.000002

0.0000025

0.000003

store load add sub mul shift div conv

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

OP Instructions

INS Class 1

INS Class 2

Fig. 3 Average execution time of instruction classes on two ARM
processors

Fig. 4 Proposed sliding window
method for modeling the order
of the instructions

…

LOAD

OP

OP

STORE

OP

STORE

…

…

LOAD

OP

OP

STORE

OP

STORE

…

…

LOAD

OP

OP

STORE

OP

STORE

…

…

LOAD

OP

OP

STORE

OP

STORE

…

LOAD/OP/OP+1 OP/OP/STORE+1 OP/STORE/OP+1 STORE/OP/STORE+1

 21 Page 6 of 11

(LOAD, STORE, and OP), as the rest of them are subcat-
egories of the OP instructions. Our final design choice is
a 3-instruction-size sliding window leading up to 33 = 27
new features.

In Section “Evaluation”, we highlight the increase of
the proposed tool efficiency as each of the features pre-
sented in this section is added in the estimation models.

Dataset

First of all, we should describe the way that the dataset is
structured, which is considered crucial for developing the
proposed methods of estimating energy and performance on
different embedded platforms and supporting the proposed
framework.

The dataset used in the present work includes synthetic
randomly generated loops. We developed a python script
that generates C/C++ for loops that perform single numbers,
matrix, and vector operations. The number of the matrices,
the data types, and the operations are random. The loops
include hundreds of millions iterations to measure the execu-
tion time and the energy consumption of one iteration and
consequently of the basic block as accurately as possible. All
the synthetic programs are compiled using the same optimi-
zation flags (O0). The reason for this selection is the fact that
the randomly generated programs usually involve calculation
insides the body of the loop, that are not affected by the loop,
which means that their values do not change from one itera-
tion to another. In this case, if we use another optimization
flag, the compiler will place this functionality out of the loop
to avoid the meaningless overhead. As a result, this would
affect our measurements, as we have large loops to repeat
the execution of the entire loop body (code block) and make
accurate measurements.

The final training set includes the most representative
data-points from the generated dataset. This process is
performed using a k-means clustering for dataset pre-pro-
cessing, selecting one data-point from each cluster. This
procedure is considered necessary as the inherent random

characteristics of the generated code can lead to very simi-
lar data-points (source code blocks) which can cause model
over-fitting.

In this manuscript, we focus on estimating the perfor-
mance and energy of a basic block that does not require any
dynamic information such as the actual number of instruc-
tions being executed, the number of iterations of a loop,
etc. Regarding the cache memory behavior, which requires
a dynamic analysis too, similarly to related approaches found
in the literature [12], an ideal cache memory is taken into
account, which means that we assume that only cache hits
occur in a loop body.

Estimation Models

In this subsection, we present a comparison between alter-
native estimation models. All the tests are based on our
generated dataset, which is splitted into training and test
sets, for performing cross-validation. The measurements
are performed on the Nvidia Tegra TX1 platform, which
incorporates an ARM-Cortex A57 embedded processor as
well as an on-board energy sensor. The final accuracy of
the proposed models is also evaluated on real-life applica-
tions and well-known benchmark suites in Section “Evalu-
ation”. As mentioned in Section “Dataset”, a k-means clus-
tering procedure is adopted for avoiding over-fitting due
to very similar data-points in the dataset. As a result, the
number of the clusters is also a design choice that must be
explored.

To select the regression estimation model, we compare
the accuracy of different models. The accuracy of the seven
most suitable models for estimating the execution time and
energy consumption is depicted in Figs. 5 and 6 respec-
tively. For each model, we present the Mean Absolute Error
between the actual value that corresponds to the basic blocks
from the test-set and the predicted values. According to these
results, we might conclude that the Orthogonal Matching
Pursuit model can achieve the best results compared with

Fig. 5 Comparison of alterna-
tive models for estimating
execution time

1
.0

0
E

-0
5

1
.1

0
E

-0
5

1
.2

0
E

-0
5

1
.3

0
E

-0
5

1
.4

0
E

-0
5

1
.5

0
E

-0
5

1
.6

0
E

-0
5

1
.7

0
E

-0
5

1
.8

0
E

-0
5

1
.9

0
E

-0
5

2
.0

0
E

-0
5

Bayesian Ridge

LinearSVR

Ridge

RidgeCV

LassoCV

OrthogonalMatchingPursuit

ElasticNetCV

Average Prediction Absolute Error (ms)

 Page 7 of 11 21

the rest of the models achieving an error less than 1.2 × 10−5
ms regarding the execution time and less than 6 × 10−8 J with
regard to the energy consumption.

Figure 7 depicts the impact of choosing the number of
clusters that will be used in the clustering process and cor-
respondingly the number of data-points that will be included
in the final dataset. According to these results, we see that
selecting 600 clusters (the 600 most representative data-
points) improves the execution time prediction, while choos-
ing 200 clusters leads to the best results in terms of energy
consumption estimation.

The user of the proposed tool can add new devices on the
framework by executing the random generated dataset in
the new platform and by giving the results in the proposed
tool. The estimation models are then re-trained and the new
platform can be chosen from the list for making perfor-
mance/energy estimations. Although the features are generic
enough to be applicable on most platforms and different
architectures, the user can make also changes in the feature
list to characterize the new architecture better if needed to
achieve higher accuracy. Finally, making energy consump-
tion estimations requires an energy sensor integrated in the

new platform; otherwise, only execution time estimations
will be supported by the tool.

Evaluation

This section presents an experimental evaluation of the
introduced framework, to highlight the efficiency of the
proposed mechanism to estimate the performance and the
energy consumption of applications running on embedded
devices. For the purposes of the present experiments, appli-
cations (i.e., benchmarks) were retrieved from the Rodinia
Suite [3]. Rodinia is a popular benchmark suite that provides
a set of applications for the study of heterogeneous systems.
The benchmark provides publicly available programs in mul-
tiple versions, coupled with sets of data. Each application
has different inherent architectural characteristics, which
affect the performance and energy consumption. Rodinia is
a widely used suite especially by researchers in the field of
embedded systems and it is considered as a reliable bench-
mark for demonstrating, testing, and presenting research
results and comparisons. For this manuscript, only the CPU
versions are taken into account and more specifically single-
core applications.

Fig. 6 Comparison of alterna-
tive models for estimating
energy consumption

4
.0

0
E

-0
8

5
.0

0
E

-0
8

6
.0

0
E

-0
8

7
.0

0
E

-0
8

8
.0

0
E

-0
8

9
.0

0
E

-0
8

1
.0

0
E

-0
7

1
.1

0
E

-0
7

1
.2

0
E

-0
7

1
.3

0
E

-0
7

Bayesian Ridge

LinearSVR

Ridge

RidgeCV

LassoCV

OrthogonalMatchingPursuit

ElasticNetCV

Average Prediction Absolute Error (J)

Fig. 7 Selecting the number of
clusters for cleaning the dataset

1.00E-05

1.05E-05

1.10E-05

1.15E-05

1.20E-05

1.25E-05

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0M
ea

n
 P

re
d

ic
ti

o
n
 A

b
so

lu
te

 E
rr

o
r

(m
s)

Number of Clusters

Time Prediction Error

5.40E-08

5.50E-08

5.60E-08

5.70E-08

5.80E-08

5.90E-08

6.00E-08

6.10E-08

6.20E-08

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

0
0M

ea
n

 P
re

d
ic

ti
o

n
 A

b
so

lu
te

 E
rr

o
r

(J
)

Number of Clusters

Energy Prediction Error

 21 Page 8 of 11

Figures 8 and 9 present the execution time and energy
consumption estimation results, respectively, for running the
most important basic blocks of the Rodinia applications. The
code blocks selected to be analyzed are the bodies of the
most computational intensive loops of the applications that
have a large impact on the total program performance and
energy. The applications are executed on the ARM-Cortex
A57 of the Nvidia Tegra TX1 platform and the energy is
calculated through the integrated energy sensor. According

to these results, we might conclude that the estimation accu-
racy can be considered acceptable (R2 score ≥ 0.92).

Figures 10 and 11 show the time and energy estimation
(respectively) for executing the loops (after the user sets
the actual number of iterations). Finally, Fig. 12 depicts
the performance and energy estimation for executing
the entire Rodinia applications. Based on these results,
we might claim that the proposed tool achieves very

Fig. 8 Execution time estima-
tion for most important basic
blocks of Rodinia benchmark
suite

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

L
eu

k
o

cy
te

_
2

N
w

_1
sr

ad
_

v
2

_
1

h
o
ts

p
o
t

C
fd

b
+

tr
ee

_
1

N
w

_2
h

o
ts

p
o

t3
D

sr
ad

_
v
1
_
1

sr
ad

_
v

1
_

2

b
+

tr
ee

_
2

he
ar

tw
al

l
sr

ad
_

v
1

_
3

sr
ad

_
v

2
_

2

la
v
aM

D

B
ac

k
p
ro

p
_
2

b
fs

k
m

ea
n

s

P
ar

ti
cl

ef
il

te
r

B
ac

k
p
ro

p
_
1

L
ud

st
re

am
cl

u
st

er

m
y

o
cy

te

p
at

h
fi

n
d
er

E
x

ec
u

ti
o

n
 t

im
e

(m
s) Actual Predicted

Fig. 9 Energy estimation for
most important basic blocks of
Rodinia benchmark suite

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

L
eu

k
o
cy

te
_
2

N
w

_1
sr

ad
_

v
2
_
1

h
o
ts

p
o
t

C
fd

b
+

tr
ee

_
1

N
w

_2
h
o
ts

p
o
t3

D

sr
ad

_
v
1
_
1

sr
ad

_
v
1
_
2

b
+

tr
ee

_
2

he
ar

tw
al

l
sr

ad
_

v
1
_
3

sr
ad

_
v

2
_

2

la
v
aM

D

B
ac

k
p
ro

p
_
2

b
fs

k
m

ea
n

s

P
ar

ti
cl

ef
il

te
r

B
ac

k
p
ro

p
_
1

L
ud

st
re

am
cl

u
st

er

m
y
o
cy

te

p
at

h
fi

n
d
er

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Actual Predicted

Fig. 10 Execution time estima-
tion for most important loops of
Rodinia benchmark suite

0

5

10

15

20

B
ac

k
p
ro

p
_
1

sr
ad

_
v
1
_
1

L
eu

k
o

cy
te

_
2

b
+

tr
ee

_
2

L
ud

P
ar

ti
cl

ef
il

te
r

C
fd

st
re

am
cl

u
st

er

sr
ad

_
v

2
_

2

B
ac

k
p
ro

p
_
2

h
o
ts

p
o
t

sr
ad

_
v
1
_
3

N
w

_1
sr

ad
_

v
2
_
1

la
v
aM

D

m
y
o
cy

te

p
at

h
fi

n
d
er

b
+

tr
ee

_
1

he
ar

tw
al

l
b

fs

k
m

ea
n
s

h
o
ts

p
o
t3

D

N
w

_2
sr

ad
_

v
1

_
2E

x
ec

u
ti

o
n
 t

im
e

(m
s)

 (
lo

g
2
)

Actual Predicted

 Page 9 of 11 21

promising results as it can estimate the execution time and
energy consumption with an acceptable accuracy, without
needing to run the application. The average accuracy is
85.4% for estimating time and 80.4% for estimating energy
consumption.

Figure 13 highlights the importance of each additional
feature selection described in Section “Features”. For the
purposes of this experiment, we build the estimation models

using different sets of features in the training set and we
evaluate the efficiency of the tool on estimating the execu-
tion time as well as the energy consumption of the Rodinia
basic blocks on Nvidia Tegra TX1 (ARM-Cortex A57).
These results show how the average absolute error decreases
as more features are added, each of which represent different
important characteristics of the applications. In the first case,
only the number of instructions is used as a feature. Then,

Fig. 11 Energy estimation for
most important loops of Rodinia
benchmark suite

-4
-2
0
2
4
6
8

10
12
14

B
ac

k
p

ro
p

_
1

sr
ad

_
v

1
_

1

L
eu

k
o

cy
te

_
2

b
+

tr
ee

_
2

L
ud

P
ar

ti
cl

ef
il

te
r

C
fd

st
re

am
cl

u
st

er

sr
ad

_
v

2
_

2

B
ac

k
p

ro
p

_
2

h
o

ts
p

o
t

sr
ad

_
v

1
_

3

N
w

_1
sr

ad
_

v
2

_
1

la
v

aM
D

m
y

o
cy

te

p
at

h
fi

n
d

er

b
+

tr
ee

_
1

he
ar

tw
al

l
b

fs

k
m

ea
n

s

h
o

ts
p

o
t3

D

N
w

_2
sr

ad
_
v
1
_
2

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)
(l

o
g

2
)

Actual Predicted

Fig. 12 Performance and energy
estimation on Rodinia bench-
mark applications (Nvidia TX1)

0

5

10

15

20
b

fs

n
ee

d
le

h
o
ts

p
o
t3

D

k
m

ea
n

s

p
at

h
fi

n
d

er

b
ac

k
p

ro
p

h
o
ts

p
o
t

la
v
aM

D

lu
d

cf
d

sr
ad

_
v
1

sr
ad

_
v
2

h
ea

rt
w

al
l

E
xe

cu
tio

n
T

im
e

(m
s)

(l
og

2)

Actual Predicted

Performance Prediction

0

2

4

6

8

10

12

14

b
fs

n
ee

d
le

h
o
ts

p
o
t3

D

k
m

ea
n
s

p
at

h
fi

n
d
er

b
ac

k
p
ro

p

h
o
ts

p
o
t

la
v
aM

D

lu
d

cf
d

sr
ad

_
v
1

sr
ad

_
v
2

h
ea

rt
w

al
l

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)
(l

og
2)

Actual Predicted

Energy Prediction

Fig. 13 Impact of the selected
features on the efficiency of
the tool

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(m
s)

Num
of

IN
S

+
Thr

ou
gh

pu
t, O

P

+
LOAD, S

TORE,

OP, I
NS

Clas
s1

/2

+
Ord

er
of

IN
S

Time estimation

1.50E-07

1.70E-07

1.90E-07

2.10E-07

2.30E-07

2.50E-07

2.70E-07

2.90E-07

3.10E-07

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(J
)

Num
of

IN
S

+
Thr

ou
gh

pu
t, O

P

+
LOAD, S

TORE,

OP, I
NS

Clas
s1

/2

+
Ord

er
of

IN
S

Energy estimation

 21 Page 10 of 11

we added the LLVM-mca estimated throughput as well
as a separate feature for the OP operations (the rest of the
instructions are loads and stores). Afterwards, we made the
features more special (LOADS, STORES, OP class 1, and
OP class 2), and finally, the order of the instructions is added
in the way described in “Features”. It should be mentioned
here that the selected features have to be specific enough for
having better estimation accuracy but also generic enough
for supporting a large range of architectures (with different
instruction sets).

Finally, we added two new CPU-based systems follow-
ing the same procedure for including a new platform in
the proposed tool. The first one is a well-known embedded
system and more precisely the Raspberry Pi 4 that includes
an ARM-Cortex A-72. For this platform, we estimated
only execution time, as an energy sensor was not available.
Furthermore, to evaluate the capabilities of the proposed
approach to make acceptable estimations for completely
different architectures, we decided to add a personal laptop
with an Intel i5 4210U. The results for estimating the per-
formance of the entire Rodinia applications are presented
in Fig. 14. According to these results, we might conclude
that the proposed method can support importing CPU plat-
forms easily and make acceptable estimations. The average
percentage error for estimating the time and energy for the
Rodinia applications platforms is below 20% compared to
the actual values.

Conclusion

In this work, a framework for supporting the estimation
of performance and energy consumption of applications
was introduced. The framework is based on static analysis
and is easily extensible to support many CPU devices.

For demonstration purposes, each sub-component of the
proposed tool is evaluated on a widely used ARM-based
device using a well-known benchmark suite, while the
extension of the tool for supporting two more CPUs is
presented. Based on our experimentation, we validate the
capabilities of the proposed solution as it achieves accept-
able results without the necessity of running the applica-
tions or requiring accurate prior hardware modeling.

Acknowledgements This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
Grant agreement No. 780572 SDK4ED (https ://www.sdk4e d.eu)

References

 1. Bazzaz M, Salehi M, Ejlali A. An accurate instruction-level
energy estimation model and tool for embedded systems. IEEE
Trans Instrum Meas. 2013;62(7):1927–34.

 2. Callou G, Maciel P, Tavares E, Andrade E, Nogueira B, Araujo
C, Cunha P. Energy consumption and execution time estima-
tion of embedded system applications. Microprocess Microsyst.
2011;35(4):426–40.

 3. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH,
Skadron K. Rodinia: a benchmark suite for heterogeneous com-
puting. In: 2009 IEEE International Symposium on workload
characterization (IISWC), 2009; pp. 44–54. IEEE.

 4. Digkas G, Lungu M, Avgeriou P, Chatzigeorgiou A, Ampatzo-
glou A. How do developers fix issues and pay back technical
debt in the apache ecosystem? In: 2018 IEEE 25th International
Conference on Software analysis, evolution and reengineering
(SANER), pp. 153–163. IEEE 2018.

 5. Eder K, Gallagher J. Energy-aware software engineering. In:
ICT-energy concepts for energy efficiency and sustainability,
2017; pp. 103–127 2017.

 6. Ferdinand C., Heckmann R. (2004) aiT: Worst-Case execution
time prediction by static program analysis. In: Jacquart R. (eds)
Building the information society. IFIP International Federation
for Information Processing, vol 156. Springer, Boston, MA.
https ://doi.org/10.1007/978-1-4020-8157-6_29.

Fig. 14 Performance estimation
on other CPU-based systems

b
fs

n
ee

d
le

h
o

ts
p

o
t3

D

k
m

ea
n

s

p
at

h
fi

n
d

er

b
ac

k
p

ro
p

h
o

ts
p

o
t

la
v
aM

D

lu
d

cf
d

sr
ad

_
v
1

sr
ad

_
v
2

h
ea

rt
w

al
l0

2
4
6
8

10
12
14
16
18
20

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

 (
lo

g
2
)

Actual Predicted

Intel i5-4210U laptop

b
fs

n
ee

d
le

h
o

ts
p

o
t3

D
k
m

ea
n
s

p
at

h
fi

n
d

er
b

ac
k
p

ro
p

h
o

ts
p

o
t

la
v
aM

D
lu

d
cf

d
sr

ad
_

v
1

sr
ad

_
v
2

h
ea

rt
w

al
l0

2
4
6
8

10
12
14
16
18
20

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

 (
lo

g
2
)

Actual Predicted

ARM Cortex A-72 (Rasp. Pi 4)

https://www.sdk4ed.eu
https://doi.org/10.1007/978-1-4020-8157-6_29

 Page 11 of 11 21

 7. Gelenbe E, Zhang Y. Performance optimization with energy
packets. IEEE Syst J. 2019;13(4):3770–80.

 8. Georgiou K, Xavier-de Souza S, Eder K. The iot energy
challenge: a software perspective. IEEE Embed Syst Lett.
2017;10(3):53–6.

 9. Georgiou S, Rizou S, Spinellis D. Software development life-
cycle for energy efficiency: techniques and tools. ACM Comput
Surv (CSUR). 2019;52(4):1–33.

 10. Jung C, Rus S, Railing BP, Clark N, Pande S. Brainy: effec-
tive selection of data structures. ACM SIGPLAN Not.
2011;46(6):86–97.

 11. Li X, Liang Y, Mitra T, Roychoudhury A. Chronos: a tim-
ing analyzer for embedded software. Sci Comput Program.
2007;69(1–3):56–67.

 12. Mendis C, Renda A, Amarasinghe S, Carbin M. Ithemal: accu-
rate, portable and fast basic block throughput estimation using
deep neural networks. In: International Conference on machine
learning, 2019; pp. 4505–4515.

 13. Meng K, Norris B. Mira: a framework for static performance anal-
ysis. In: 2017 IEEE International Conference on cluster comput-
ing (CLUSTER), 2017; pp. 103–113. IEEE.

 14. Papadopoulos L, Marantos C, Digkas G, Ampatzoglou A, Chatz-
igeorgiou A, Soudris D. Interrelations between software quality
metrics, performance and energy consumption in embedded appli-
cations. In: Proceedings of the 21st International Workshop on
software and compilers for embedded systems, 2018; pp. 62–65.

 15. Papadopoulos L, Soudris D, Walulya I, Tsigas P. Customization
methodology for implementation of streaming aggregation in
embedded systems. J Syst Arch. 2016;66:48–60.

 16. Pinto G, Castor F. Energy efficiency: a new concern for applica-
tion software developers. Commun ACM. 2017;60(12):68–75.

 17. Procaccianti G, Fernández H, Lago P. Empirical evaluation of two
best practices for energy-efficient software development. J Syst
Softw. 2016;117:185–98.

 18. Siavvas M, Gelenbe E, Kehagias D, Tzovaras D. Static analysis-
based approaches for secure software development. In: Interna-
tional ISCIS Security Workshop, 2018; pp. 142–157. Springer,
Cham

 19. Siavvas M, Marantos C, Papadopoulos L, Kehagias D, Soudris
D, Tzovaras D. On the relationship between software security
and energy consumption. In: 15th China-Europe International
Symposium on software engineering education 2019.

 20. Siavvas M, Tsoukalas D, Jankovic M, Kehagias D, Chatzigeorgiou
A, Tzovaras D, Anicic N, Gelenbe E. An empirical evaluation of
the relationship between technical debt and software security. In:
9th International Conference on Information Society and Technol-
ogy (ICIST), 2019; vol. 2019.

 21. Tsoukalas D, Kehagias D, Siavvas M, Chatzigeorgiou A. Techni-
cal debt forecasting: an empirical study on open-source reposito-
ries. J Syst Softw. 2020;170:110777.

 22. Zheng X, John LK, Gerstlauer A. Accurate phase-level cross-
platform power and performance estimation. In: Proceedings of
the 53rd Annual Design Automation Conference, 2016; pp. 1–6.

 23. Zheng X, Vikalo H, Song S, John LK, Gerstlauer A. Sampling-
based binary-level cross-platform performance estimation. In:
Design, Automation & Test in Europe Conference & Exhibition

	A Flexible Tool for Estimating Applications Performance and Energy Consumption Through Static Analysis
	Abstract
	Introduction
	Related Work
	Proposed Methodology
	Building the Estimation Models
	Features
	Dataset

	Estimation Models

	Evaluation
	Conclusion
	Acknowledgements
	References

