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      The “time-independent” Schrodinger equation appears to be directly related to stochastic 
motion, we argue. If there is no potential, the wavefunction exp(ipx) is statistical, indicating 
periodic motion with a norm of one for all x. If a time-independent potential is added, it may be 
decomposed as V(x)=Sum over k Vk exp(ikx). Thus, time is present not just in exp(-iEt), but in 
the stochastic behaviour of the potential which is only V(x) on average. At each time, one does 
not know which Vk acts. Thus, the time-independent Schrodinger equation could perhaps be 
called the purely stochastic Schrodinger equation. 
    It is possible to have a time dependent Schrodinger equation with a time dependent potential.  
Sometimes the time in the potential is hidden by a variable change as the equation involves 
partial derivatives. We try to argue that this potential contributes to collective motion. Time is 
already present in V(x), but in a stochastic manner. Explicit time (or a time related variable 
change) means a lack of stochasticity as one follows the potential in a predictable manner in 
time. It is possible that collective motion may be associated with a reference frame. For 
example, one may remove center-of-mass motion and consider only internal motion i.e. the 
quantum stochastic internal behaviour. 
   In this note, we briefly examine two examples. The first is a free quantum particle viewed from 
a constantly accelerating frame as discussed in (1). In such a frame, the free particle appears 
as a particle in a gravitational potential +mgx1, but x1= x-X(t) so X(t) suggests collective motion. 
One may argue that x represents stochastic motion, but this is not necessarily the case because 
one may have collective potential energy linked to collective kinetic energy. In other words, id/dt 
partial W may yield a term which cancels  mgx indicating that it does not act as Sum Vk 
exp(ikx). 
  The second example involves a quantum oscillator with an extra xf(t) potential. We argue that 
this leads to collective motion as the problem may be recast in terms of a variable y=x- b(t) and 
solved as a “time-independent oscillator” in y as discussed in (2). Again, there exists the notion 
of a kind of collective motion or extra frame which leads to a phase factor exp(iy d/dt partial b(t)) 
as the stochastic quantum behaviour defines the physical density and the phase term exp(i 
phase) disappears from the density). 
 In such a case, W(y) the time-independent oscillator solution may be written as:  Sum over p 
a(p) exp(ipy), but y contains t so the statistical nature of exp(ipy) is somewhat altered frome 
exp(ipx) i.e. there is an extra time related phase exp(i p f(t)) which has the appearance of a kind 
of collective motion as all p values are in synch with the same f(t) which may be sin(wt) for 
example. 
 
Time Independent Schrodinger Equation and Stochasticity 
 
     It seems the time-independent Schrodinger equation is based on stochastic motion as 
W(x,t)=exp(-iEt)W(x) and id/dt W = EW. Thus, id/dt W may not be used to cancel time related 
terms on the RHS of the Schrodinger equation as in the time-dependent case. It is perhaps 



somewhat unusual that the time-independent equation is named in terms of an “absence of 
time” because we argue that time is present at least in two ways. First, there is exp(-iEt) 
indicating a statistical cyclic motion in time. Secondly, we argue that V(x)=Sum over k V(k) 
exp(ikx) and that only one Vk acts at a time. Thus, there is stochastic potential behaviour. At a 
given t, one does not know which virtual photon Vk yields  a hit. On average, Kinetic energy 
average (at x) + V(x) = E, but otherwise W(x)=Sum over k a(k) exp(ikx) indicating a momentum 
distribution of a statistical object exp(ikx).  
   The time-dependent Schrodinger equation is more complicated because it may contain both 
stochastic and collective pieces. The collective pieces may involve both kinetic and potential 
energy and so potential energy is not automatically stochastic as in the time-independent case. 
On the other hand, the time-dependent Schrodinger equation may be purely statistical as in the 
case of a free quantum particle. There is a constant velocity frame associated with exp(ipx), but 
there is still pure statistical motion contained in exp(ipx) i.e. a kind of periodic behavioiur. 
 
Time-Dependent Schrodinger Equation 
 
    At first, one might consider the time-dependent Schrodinger equation to be “just as 
stochastic” as the time independent one, with the exception that one does not have a bound 
state. For example, one may have a free particle moving in one direction exp(ipx-iEt). For the 
bound state, one combines exp(ipx-iEt) and exp(-ipx-iEt). (Actually, for a particle in a box with 
infinite walls, exp(ipx) really represents exp(i pave x). Many exp(ipx) terms are stirred up to 
create exp(i pave x).) 
     The time-dependent Schrodinger equation, however, may describe stochastic motion as 
viewed from an accelerating frame. In such a case, a free particle Schrodinger equation 
transforms into one with a potential. One may expect that such a potential represents physical 
stochastic motion, but that is not the case. It is rather a fictitious potential associated with the 
accelerating frame and not a physical stochastic potential. To see this, consider the example 
(1): 
 
id/dt(partial) W = -1/2m d/dx d/dx W   t1=t  and  x1= x- X(t)   where d/dt d/dt X = g  ((1)) 
 
Transforming to t,x1 yields: 
 
id/dt partial W1(x1,t) = -1/2m d/dx1 d/dx1 W1 + mg x1 W1   ((2)) 
 
((2)) has the form of a free particle in a gravitationao potential and one may find a solution such 
that  W(x,t)=exp(-iEt)W(x) with W(x) having a changing density (W*W) with x. That is not, 
however, the solution appropriate for transformation of ((1)). X(t) depends on time which 
suggests a frame of reference. One might think that given  x1=x-X(t), one may retain mgx which 
would then represent stochastic motion, but that is also not the case as time-dependent terms 
are affected by id/dt W which may cancel potential terms. In such a case, the potential is not 
related to stochastic motion we argue. For example, a solution to ((2)) appropriate for the 
accelerating frame is: 
 



W1(x1,t)= exp(-iEt) exp[ipx1] exp(imx1 dX/dt) exp[i .5mIntegral (0,t) dt1 dX(t1)/dt1  dX(t1)/dt1] 
((3)) 
 
In other words, one wants the original W(x,t)=exp(-ipx-iEt) multiplied by exp(-i phase(x,t)) 
because the physical density at x= W*(x,t)W(x,t) cannot change. The free particle density is very 
different from the Airy function solution of a quantum particle in a gravitational potential. 
 
id/dt (partial) exp(imx dX/dt) = imx d/dt dX/dt  which cancels the potential term mgx. Thus, the 
gravitational potential is an artifact of the accelerating frame used to view the free quantum 
particle in the rest frame. Thus, for a time-dependent Schrodinger equation, one must be careful 
in interpreting the physical effects of a potential as it may be linked to a moving frame. 
 
A second example is that of a time dependent potential added to a V(x). V(x) as we have 
argued usually represents stochastic motion (although part or all of it may be associated with a 
moving frame i..e collective motion). The time dependent piece xf(t) is not fully stochastic in that 
it is predictable in time whereas V(x) is not. Thus, it represents a kind of collective motion or 
frame. It may thus be possible to change variables to incorporate xf(t) in y=x-b(t) in order to 
analyse the purely stochastic quantum motion, albeit in terms of a new variable y which includes 
time or in other words a kind of collective motion. In such a case, one may expect a phase in the 
solution of W(x,t) which does not affect spatial density. Spatial density should be a physical 
observable and thus a result of the stochastic features of quantum mechanics which create a 
hump behaviour. This is, however, affected by the variable y=x-b(t) which explicitly contains 
time (as if one were viewing the stochastic quantum system from a different frame i.e. one 
connected with some kind of collective motion). 
 
The Schrodinger equation for the problem (2) is: 
 
id/dt (partial) W = -1/2m d/dx d/dx W + .5kxx W - xf(t) W  ((3)) 
 
The time dependent potential portion already looks like it could be associated with a new 
“spatial” variable y=x-b(t) which suggests a different frame or some kind of collective motion. 
Following (2), we suggest: 
 
W= Wa(y,t)exp(iEt) exp(iydb(t)/dt)   ((4)) 
 
This is of the form of a product wavefunction:  W=Wo W1 where Wo = Wa(y,t)exp(-iEt) and 
W1=exp(iydb/dt). Thus, one may write two equations as in the case where W=WoW1 and Wo is 
a ground state energy.  Note: .5kxx = .5k (y-b(t))(y-b(t)) = .5kyy + b(t)b(t).5k -kb(t)y. W1 may be 
associated with the potential portions -kb(t)y and xf(t). 
 
The first equation is: 
 
-1/2m d/dy d/dy Wa(y,t) + .5kyy Wa(y,t) + c(t)Wa(y,t) = id/dt[ exp(-iEt)Wa(y,t) ]  ((5)) 
 



Let Wa(y,t)=Wa(y)exp(-id(t)) such that:  d/dt d(t) = c(t)  
Then, ((5)) becomes a time-independent oscillator equation in the variable y=x-b(t) which is like 
a view from a different frame or collective motion.  
 
The second equation is of the form:  
 
-1/2m d/dx d/dx W1 -1/m dW1/dx dWo/dx + extra potential terms = id/dt W1(x)  ((6))  but with 
W1=exp(iydb/dt) or: 
 
-m[y d/dt db/dt] - i db/dt dWo/dy = -½ 2i db/dt dW/dy - f(t)y + .5kb(2y) 
 
The LHS represents id/dt partial W1. 
 
my d/dt db/t = yf(t) - kb(t)y   ((7))    with y cancelling 
 
Let id/dt exp(ig(t)) = c(t)  where g(t) = Integral (0,t) dt1 c(t1) 
 
Thus, one may solve for b(t) as a differential equation containing the original f(t) i.e. the original 
time dependent piece of the potential. 
 
  The point we wish to make is that the stochastic quantum behaviour seems to be associated 
with an oscillator as the density humps at a given t=ta are entirely due to the quantum oscillator 
solution. The time dependent potential xf(t) is related, we argue, to a frame or collective type of 
motion (the two are equivalent as the frame may accelerate). This leads to exp(i phase(x,t)) 
terms appearing which do not affect the density and hence are not part of the underlying 
stochastic nature of quantum mechanics. The problem is a little more complicated as the one 
uses y=x-b(t) so the origin of the oscillator changes in time (i.e. collective motion). 
 
Conclusion 
 
   In conclusion, we argue that the time-independent Schrodinger equation describes stochastic 
and statistical behaviour in a quantum system. exp(ipx) which is part of W(x)=Sum over p 
a(p)exp(ipx) is already statistical we argue (with the norm being 1 everywhere). Furthermore, 
the potential V(x) =Sum over k Vk exp(ikx) and so is stochastic and also time dependent except 
for the fact that one cannot predict which Vk acts at a particular time. Thus, the time 
independent Schrodinger equation seems to be more of a “stochastic time equation”. Time does 
not appear because one does not predict any behaviour in time except exp(-iEt) a kind of 
periodic cycling. 
   The time -dependent Schrodinger equation may incorporate both stochastic and collective 
behaviours related to a different frame. For example, one may transform  a free particle 
Hamiltonian using x1=x-X(t) t1=t  into a time dependent Schrodinger equation with the 
appearance of a particle in a gravitational potential. It, however, does not represent the same 
physics. id/dt W = -1/2m d/dx d/dx W + mgx W  may be solved for a physical gravitational 
problem using W=exp(-iEt)W(x) where the density of W(x) (related to Airy functions) changes 



with x. For the frame transformation, the stochastic physics of the free quantum particle i.e. its 
density profile cannot change. Thus, even though the transformed equation has the appearance 
of a particle in a gravitational potential, its solution should be of the form: exp(-iEt)exp(-ipx) 
exp(-iphase(x,t)). Thus, a potential in a time dependent Schrodinger equation which contains 
time may represent collective-new frame motion. 
    It is possible to have an x dependent potential added to a time dependent one, e.g. .5kxx 
-xf(t). The second term contains time explicitly and suggests a lack of stochasticity. Rather, it is 
predictable in time and is more related to collective motion or a new frame. We show (using 
arguments from (2)), that one may transform to y=x-b(t) (i.e. a new frame or collective motion) 
and solve to find a quantum oscillator solution at each t (although y keeps changing origin). 
Thus, the stochastic quantum behaviour is that of an oscillator while f(t)x seems to bring in 
collective motion (which may involve acceleration) and is similar to viewing the problem in a new 
frame. Thus, one has exp(i phase(x,t)) as a main part of the solution, although this contributes 
nothing to the spatial density which is based on quantum stochastic (statistical behaviour) it 
seems. 
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