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ABSTRACT 
We investigate light-weight techniques for detecting common 
SYN atttacks on devices that are attachd to the Internet, such as 
IoT devices and gateways, Fog servers or edge devices which may  
have low processing capacity.  In particular we examine the 
Random Neural Network with Deep Learning, trained with 
"normal" non-attack traffic, and a Long-Short-Term-Memory 
(LSTM) neural network. Using the same traffic traces for attack 
traffic, our experiments show that the Random Neurla Network 
provides substantially better attack detection and significantly 
lower false alarm rates as compared to the LSTM network. 

KEYWORDS 
Neural networks, cybersecurity, classifiers of IoT flows, 
Lightweight attack detection 

1 Introduction 
Network security has always been in the forefront of 

networking-related research. The focus has previously been on the 
security aspects of traditional TCP/IP networks, but the rise of IoT 
(Internet of Things) networks results in the emerging of a new 
landscape in terms of security. 

The category of attacks, most typical in traditional TCP/IP 
networks, is the one related to the interception of valuable 
information. On the other hand, in IoT networks, the attacks that 
are most common and least explored, are those labeled as Denial of 
Service (DoS) attacks. In that particular type of attacks, the attacker 
attempts to inhibit the target’s ability to function seamlessly. 

In this paper, we exploit the immense modelling capabilities of 
two different types of deep neural networks: The Long-Short-
Term-Memory (LSTM) and the Random Neural Network, for 

detecting a common type of DoS attack, the SYN flood attack. The 
two neural network architectures represent two different 
formulations. The LSTM is a recurrent formulation and the 
Random Neural Network is implemented as feed forward (even 
though the Random Neural Network architectures can also be 
recurrent). 

1.1 Previous Work  
The immense capabilities of neural networks to extract 

complex patterns from given data intuitively seems a great tool to 
use for detecting malicious activities in the context of an IoT 
network. LSTMs are renowned for applications of handling 
multivariate time series [8] and in general cases where the data 
intrinsically show some temporal dependencies. On the other hand, 
Random Neural Networks [1][2][3] seem to have a broader 
spectrum of possible applications.  

The SYN flood attack has been described in [4] and is a basic 
type of Denial of Service attack. The attacker exploits the SYN 
TCP 3-WAY handshake and initiates many connections with the 
same port of the target but establishes none. So, the attacker renders 
the target’s ability to handle new requests. 

Deep learning has been used before for the detection of SYN 
flood attacks in [4] where a Random Neural Network was 
implemented as a classifier to distinguish between non-malicious 
network packet captures and captures constituting SYN attacks. 

The LSTM neural network architecture has also been 
previously implemented for detecting DoS attacks on networked 
infrastructures[6], using a Bayesian inference approach rather than 
via direct learning based on the traffic patterns. The intersection 
between deep learning and detection of Distributed Denial of 
Service (DDoS) attacks was  also investigated in [5] and showed 
the effectiveness of deep neural networks in modelling the 
attackers' patterns in attempting to perform DoS attacks. Deep 
learning has also been employed in security for its ability to extract 
the patterns in attack sequences, and is reviewed in [7]. 

Deep learning and deep neural networks have been 
implemented not only for attack detection, but in the whole 
spectrum of assisting the task of securing IoT systems. In [8] a 
secure routing method using Random Neural Network architectures 
for decision making in SDN Controllers has been presented, and 
[18] discusses similar schemes for task allocation in Cloud servers. 
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1.2 Our Contribution  
In this paper we simulate SYN TCP flood attacks in IoT 

systems. We use this simulation to train machine learning modules, 
as time series predictive models to be used in detecting these 
particular types of attacks and differentiate them from normal, 
“malign” traffic flows. We compare the performance of different 
neural network architectures in their ability to track the distribution 
of normal traffic. 

2 Neural Network Structure 
 
2.1    Random Neural Network   
      The Random Neuron is a unit that receives two types of 

input signals, the excitatory and the inhibitory and is also 
characterized by its rate that is always positive. If we denote as x 
the excitatory input, as y the inhibitory input and as r the rate, the 
output of the Random Neuron is 𝑧 = min& '

()*
+1- 𝑟  

 

 
Figure 1: Structure of a Random Neuron 
 

In the feedforward formulation of the Random Neural Network 
there are no circuits in the connection graph. There are three distinct 
categories of layers, the input layer, the hidden layers and the output 
layer. Every unit is connected to other units that belong to the 
hierarchically consecutive layer (from the input layer to the output 
layer passing through the hidden layers). This formulation results 
to a non-linear system of equations that can be formally solved [9].  

 
Figure 2: Single Layer RNN 

        Let I be the number of neurons in the input layer, H is the 
number of neurons in the hidden layer (assuming there is only one 
hidden layer in the topology) and O is the number of neurons in the 
output layer. We provide index for every neuron in the feedforward 
formulation with the following methodology. We index the neurons 
of the input layer from 1 to I, the hidden neurons from I+1 to I+H 
and the output neurons from I+H+1 to I+H+O = N. Assuming that 
the input neurons are the only ones receiving signals from the 
outside we can compute the rates of activity for all the neurons: 

• ρₖ = /ₖ⁺
(ₖ)/ₖ⁻    0   ≤ κ ≤  I 

• ρₕ = ∑ 3ₖ4ₖₕ⁺5
678

(ₕ)∑ 3ₖ4ₖₕ⁻5
678

 I+1≤h≤H+I 

• ρₒ = ∑ 9ₕ:ₕₒ⁺5<=
>75<8

(ₒ)	∑ 3ₕ4ₕₒ⁻5<=
>75<8

   I+H+1≤o≤N 

As it has been shown in [2], the original gradient descent iterative 
optimization scheme can be tweaked and implemented for training 
feed forward neural network architectures both as regressor and as 
classifiers. 

2.2     Long-Short-Term-Memory (LSTM)   
Long Short-Term Memory (LSTM) networks, as a special 

structure of Recurrent Neural Networks, have proven to be stable 
and powerful for modeling long-range dependencies in general-
purpose sequence modeling ([25]-[27]). In LSTMs, each node in 
the hidden layer is replaced by a memory cell, instead of a single 
neuron [25]. The structure of a single memory cell is depicted in 
the figure below. 

 
Figure 3: Structure of an LSTM Memory Cell 

The memory cell contains the following components: the forget 
gate, the input node, the input gate, and the output gate. Each 
component applies a non-linear relation on the inner product 
between the input vectors and respective weights (altered 
iteratively through a training process). Some of the components 
have the sigmoid function, σ(·)  and others the  tanh(·) 

As discussed in [10] Recurrent neural networks and LSTMs in 
particular, have shown great success in predicting time series 
online.  Especially in [11] LSTMs have been used to tested, 
particularly on predicting traffic flows. 

The goal of the forget gate is to decide what information should 
be discarded out of the memory cell [12]. The output, denoted as 
f(n) ranges between 0 and 1, according to the sigmoid activation 
function. The forget gate learns whether a previous or future vector 
state is necessary for the estimation of the current value state. The 
input node performs the same operation with that of a hidden 
neuron of a typical recurrent regression model. The goal of this 
node is to estimate the way in which each latent state variable 
contributes to the final model.   

 As far as the input gate is concerned, its role is to regulate 
whether the respective hidden state is sufficiently important. It has 
the sigmoid function, therefore its response ranges between 0 and 
1. This gate addresses problems related to the vanishing of the 



 

 

gradient slope of a tanh(·) operator. Finally, the output gate 
regulates whether the response of the current memory cell is 
sufficiently significant to contribute to the next cell. Therefore, this 
gate actually models the long-range dependency together with the 
forget gate.   

The recurrent nature of the LSTM presents many intricacies in 
terms of the iterative training process for adjusting the weights of 
the multiple gates. The adaptation of the backpropagation 
algorithm for accommodating the LSTM training is called 
Backpropagation Through Time [13]. The backpropagation 
variation for training recurrent neural network architectures 
presents the problem of vanishing or exploding gradients. So the 
number of time steps that the gradient is propagated is another 
hyperparameter of training that needs to be monitored. This 
adaptation is called truncated backpropagation through time and is 
thoroughly explained in [14]. 

 
Figure 4: LSTM Architecture 

3 System Architecture 
The basic premise of the methodology for detection is 

described below. The Communication in the context of a network 
is captured in a pcap file using Wireshark [15]. The communication 
contains both non malicious traffic and SYN flood attacks targeted 
towards the port of a specific node. 

The pcap file is used for creating an annotated dataset and being 
made into a univariate time series. Specifically, the pcap is being 
dissected into time windows of 5 seconds. During the period of 5 
seconds, special Wireshark filters were used to count the number 
of half opened TCP connections established with a specific port of 
a particular IP during the time frame. In that way the final dataset 
is a univariate list of the number of unestablished TCP connections. 

The basic idea is to use a deep neural network as a regressor 
and train it with a part of the time series that corresponds to normal 
non malicious communication. Then the a priori trained neural 
network regressor attempts to predict the number of half-open TCP 
connections for the consecutive time window. If this number 
deviates from the actual value of the metric by a predefined 
threshold then the inspected node is considered to be under attack. 

 
Figure 5: Workflow of the proposed method 
 

LSTM architecture: 

The LSTM neural network architecture is comprised by one 
input layer, one output layer and two hidden layers with 50 neurons 
each (dense formulation). The Loss function used for adapting the 
weights is the Mean Square Error (MSE) which is the most typical 

loss function used for training in regression problems [16] and the 
optimization scheme is the ADAM optimizer [17]. The 
Backpropagation Through Time (BPTT) was stopped at three 
consecutive steps going back so the truncated version of the 
Backpropagation scheme was implemented for avoiding vanishing 
gradients. 
Random Neural Network architecture: 

The Random Neural Network was in feedforward formulation 
so no recursive element. Other than the input and output layers, 
there was one hidden layer with 50 neurons. The nature of the 
Gelenbe Networks entails no choice for the activation function. The 
loss function was again the Mean Square Error function and for the 
iterative optimization scheme, the adaptation of the 
backpropagation scheme as described in [2] was implemented from 
scratch (without using any high-level API implementation) 

4 Performance Evaluation 
4.1 Dataset Description  

A bot network was created in lab environment. Every Virtual 
Machine (VM) simulated a node in the IoT network. Scapy (a 
python package for packet crafting and manipulation) was used to 
create a script that runs on every VM and creates TCP connections 
with the targeted node (simulates a possible server under attack). 

Scapy was also used to create a script that manifests a SYN 
TCP attack towards the server. The script initiates multiple TCP 
connections from multiple ports of the attacker with a particular 
port of the destination. The connections are never fully established. 

The whole communication is captured in pcap files using 
Wireshark which is a tool for network traffic monitoring. Even 
though, the communication in the context of the network, is non-
malicious, for the most part, the attack is being launched at specific 
instances of the duration of the experiment. 

The pcap files are annotated with the methodology described in 
the previous section. 

 

4.3. Experimental Validation 
We have conducted experiments to: 1) validate the efficacy of 

the deep learning predictive model idea for SYN TCP attack 
detection and 2) compare the two architectures of deep neural 
networks in terms of accuracy. 

We train each of the formulations of deep neural networks 
(always as a regressor) with the same dataset that has been derived 
from the annotation process of a pcap file that contains only non-
malicious communication. 

Then we test the accuracy of the models by using the previously 
described methodology on a dataset that combines non malicious 
and malicious communication. We present the results 

 
Table 1: Performance metrics for deep learning predictive 

models. The proposed Random Neural Network approach 
outperforms the LSTM 
Table 2: Comparative Performance of the model 

Neural Network 
architecture Accuracy False 

Positives 
Gelenbe-

Network 80.7% 
 
19.3% 

LSTM 62.7% 37.3% 
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Here we should note that the formulation of the model 
architecture intuitively excludes the presence of False negatives 
and that is also prevalent in the results presented. 

5 Conclusion 
In this paper we propose that a deep neural network formulated 

as a time series predictive model, that is trained under normal non-
attack conditions, be used as a detection method for SYN TCP 
flood attacks in IoT systems (especially on lightweight IoT 
devices). Especially we propose the implementation of a Random 
Neural Network (Gelenbe Network) as the architecture for the deep 
neural network for the predictive model (especially on a feed 
forward formulation).  

The Random Neural Network was observed to be better at 
capturing the boundaries between the different modes of the 
distribution of normal traffic, and its architecture appears to be 
more effective in detecting attacks, rather than at finding outliers, 
as compared to in comparison to a conventional sigmoidal deep 
neural network. In future work, the Random Neural Network's 
recurrent structure may also be used to improve its effectiveness 
even more as compared to a conventional deep learning approach 
based on  feedforward neural architectures.   
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