Python packaging
and science

If you've ever run pip install
python™ e serve you

“> Package
I0® " Index

Video!

pIp overview

pip

Distribution

pip

Working Software

pip resolver & UX work
in 2020

* A stricter, more robust dependency resolver
* COULD have been a catastrophe

* More sustainable maintainership

* Better UX (yes, on the command line)

* Better UX design skills

The most significant changes to the resolver are:

e |t will reduce inconsistency: it will no longer install a combination of packages that is mutually
inconsistent. In older versions of pip, it is possible for pip to install a package which does not satisfy
the declared requirements of another installed package. For example, in pip 20.0, pip install
"six<1.12" "virtualenv==20.0.2" does the wrong thing, “successfully” installing six==1.11, even
though virtualenv==20.08.2 requires six>=1.12.0,<2 (defined here). The new resolver, instead,
outright rejects installing anything if it gets that input.

e |t will be stricter - if you ask pip to install two packages with incompatible requirements, it will refuse
(rather than installing a broken combination, like it did in previous versions).

So, if you have been using workarounds to force pip to deal with incompatible or inconsistent
requirements combinations, now’s a good time to fix the underlying problem in the packages, because

pip will be stricter from here on out.

resolver example!

pip install "hacking>=1.1.0,<1.2.0"
"pycodestyle>=2.0.0"

Legacy resolver misbehaves; new resolver behaves
properly

resolver example!

$ pip install --use-deprecated=legacy-
resolver 'pyrax==1.9.8'

— Errors out with a wall of text.
$ pip install 'pyrax==1.9.8'
- Errors out with a more informative wall of text!

File Edit / g Terminal

= -

uirement ":ul' étisfied:
satisfied:

I:étlsfied:

atisfied:

quirement alr _I'I::tisfied:

ireme X ¢ satisfied:

yrax=

uirement ready satisfied:

iremer i f tisfied:

irement r r satisfied:

ytt aclient==2.27.

uirement i atisfied:

uiremer

uiremer
yra
uiremer

.afisfied:
I:étlsfied:
atisfied:
Isé%lsfied:

atisfied:

q
s

satisfied:

atisfied:

sumanah@asking: ~

nfig to determine

which

ython3

ckages (from pyrax==1.9.

kages (from python

(from pyra
pytt
"om pyra
(from pyth
ges (from py
ges (from

ible with other re

.7/site kages (from os

python3.7/site- ges (from pythor

rthon3. 7/

3.7/site-

3.7/site

3.7/site

n3.7/site-

site-packages (from pyra
ckages (from pyrax==1.9.
ckages (from pyr
ges (from
ckages (from pyr
ges (from
kages (from pyr
kages (from python-no
ckages (from pyrax==1.9.
kages (from pytho
ckages (from pyrax==1.9

es (from pytl

sumanah@asking: ~
File Edit

sumanah@a

satisfied: six<2 .9 ir alenvs/czi-test ib, thon3.7/site-packages (from
satisfied: 1.3 in ./ . / thon3.7/site-f ELLE pyt
satisfied: six<2 1.9 n ./.vir envs,/czi-test J thon3.7/site ckages (from py
tisfied: 3 in ./.virt Ny /)ython3.7/site ages (from pyt
/thon3.7/site-packages (from
thon3.7/site-| ages (from
INFO: is <ing longer thar You might need to provide the dependency resolver with stricter constraints to reduce
time. If yo nt t t this run, 1 ess Ctrl + C to do so. To improve how pip performs, tell us L ened here:
N i)
(from pyr
ent alr 4 : debt =t 1.2.0 in ./.virt envs/czi-test-1/ ython3.7/site kages (from
ent already ¢ requests 2.2.1 Sovirtus /il thon3.7/site C es (from pyrax==1
(from
Nt already satisfied: ,>=1.9 n ./.virt envs/czi-test-1/141 hon3.7/site ckages (from pyra
ges (from pyr
atisfied: 3 in ./.virt s / ython3.7/site ages (from pyt
irement already satisfied: six<2 1.9 n ./.vir envs/czi-test-1/14 thon3.7/site ckages (from pyr
ement alr satisfied: ==1.3 in ./.virt /i) . ages (from python
“ax= 9.
ement already satisfied: .9 in ./.\ envs/czi-test-1/1ib/python3.7/site-packages (from pyra
irement alr ¢ satisfied: >=1.3 in ./.virt /i thon3.7/site-| ages (from
-ement already satisfied: =>=1.9 n ./ envs/czi-test i thon3.7/site ckages (from py

irement alr satisfied: Babe 3 in ./.vir Ny /)ython3.7/site ges (from pyt

ement already satisfied: 2,>=1.9.0 in ./.virt envs/c test-1 b 3.7/site ckages (from pyr

“emer g ¢ satisfied: 3 in ./.vir thon3.7/site-| ges (from

-ement 5 - : >=1.9 n. ir o i-test-1/11 3.7/site ges {(from

Helpful output

INFO: pip is looking at multiple versions of REDACTEDPACKAGE to determine which version is
compatible with other requirements. This could take a while.

Downloading REDACTEDPACKAGE-0.3.2.tar.gz (21 kB)
Downloading REDACTEDPACKAGE-0.3.1.tar.gz (20 kB)
Downloading REDACTEDPACKAGE-0.3.0.tar.gz (20 kB)
Downloading REDACTEDPACKAGE-0.2.0.tar.gz (19 kB)
Downloading REDACTEDPACKAGE-0.1.0.tar.gz (18 kB)

INFO: This is taking longer than usual. You might need to provide the dependency resolver with
stricter constraints to reduce runtime. If you want to abort this run, you can press Ctrl + C to do so.
To improve how pip performs, tell us what happened here: https://pip.pypa.io/surveys/backtracking

Helpful output

Collecting git+https://github.com/fiendish/xIrd

Cloning https://github.com/fiendish/xIrd to /private/var/folders/7r/zzgsf_917vn98xy97_274d24z3zxz5/T/pip-reg-build-z3za5_mk
Collecting git+https://***@github.com/fiendish/xIrd

Cloning https://****@github.com/fiendish/xIrd to /private/var/folders/7r/zzgsf 917vn98xy97 274d24z3zxz5/T/pip-req-build-6x7m6gbw

ERROR: Cannot install xIrd 1.2.0 (from git+https://***@github.com/fiendish/xIrd) and xIrd 1.2.0 (from git+https://github.com/fiendish/xIrd) because these
package versions have conflicting dependencies.

The conflict is caused by:
The user requested xIrd 1.2.0 (from git+https://github.com/fiendish/xIrd)
The user requested xIrd 1.2.0 (from git+https://****@github.com/fiendish/xIrd)

To fix this you could try to:
1. loosen the range of package versions you've specified

2. remove package versions to allow pip attempt to solve the dependency conflict

ERROR: Resolutionimpossible: for help visit https://pip.pypa.io/en/latest/user_guide/#fixing-conflicting-dependencies

This also means that, when you run a pip install command, pip only considers the packages you are
installing in that command, and may break already-installed packages. It will not guarantee that your
environment will be consistent all the time. If you pip install x and then pip install y, it's possible
that the version of y you get will be different than it would be if you had run pip install x y in a single
command. We are considering changing this behavior (per #7744) and would like your thoughts on what
pip’s behavior should be; please answer our survey on upgrades that create conflicts.

We are also changing our support for Constraints Files, editable installs, and related functionality. We
did a fairly comprehensive overhaul and stripped constraints files down to being purely a way to specify
global (version) limits for packages, and so some combinations that used to be allowed will now cause
errors. Specifically:

¢ Constraints don't override the existing requirements; they simply constrain what versions are visible
as input to the resolver (see #9020)

® Providing an editable requirement (-e .) does not cause pip to ignore version specifiers or
constraints (see #8076), and if you have a conflict between a pinned requirement and a local
directory then pip will indicate that it cannot find a version satisfying both (see #8307)

® Hash-checking mode requires that all requirements are specified as a == match on a version and
may not work well in combination with constraints (see #9020 and #8792)

® |f necessary to satisfy constraints, pip will happily reinstall packages, upgrading or downgrading,
without needing any additional command-line options (see #8115 and Options that control the
installation process)

® Unnamed requirements are not allowed as constraints (see #6628 and #8210)

® Links are not allowed as constraints (see #8253)

e Consiraints cannot have extras (see #6628)

Per our Python 2 Support policy, pip 20.3 users who are using Python 2 will use the legacy resolver by
default. Python 2 users should upgrade to Python 3 as soon as possible, since in pip 21.0 in January
2021, pip will drop support for Python 2 altogether.

Colleagues who are here

Georgia and Bernard:
UX testing/research

Pradyun:
Python package mgmt

Sumana:
Project mgmt

Rollout schedule

t 0 SOFTWARE
e FOUNDATION

News from the Python Software Foundation

New pip resolver to roll out this year

The developers of pip are in the process of developing a new resolver for pip (as
we announced on the PSF blog last year). We aim to roll it out later this year.
(Updated 29 September to add: see our migration guide.) As part of that work,
there will be some major changes to how pip determines what to install, based on

package requirements. In this post we share:

What will change
What you can do to help
When this will be happening

To understand what pip does and why we're working on it, please read our earlier
overview post.

What will change

bl P IR R I i S NUNR (RN SR B ——— p—— [A

Since we did know ahead of time that it is hard to get users' attention about infrastructure that they depend on, and we
recognized that many people assume that they do not need to keep apprised of changes coming in pip, we did publicity and
outreach (some of which is catalogued in #8511 or this wiki page), such as:

e A message in pip output saying:

ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will
change the way that it resolves dependency conflicts.

We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes
the default.

e Emails to PyCon, PSF, and PyPI sponsors from their PSF sponsorship contact, asking them to tell their engineering
departments about coming changes

e Email to pypi-announce, python-announce, and similar lists
e Podcasts: Podcast.__init__, Test & Code, FLOSS Weekly, Software Developers Journey, Real Python
e A bunch of tweets, many of which were retweeted by the @ ThePSF (Python Software Foundation) account

e New GitHub issues and comments on existing issues for some projects that had already linked to #988 when mentioning
their problems, plus a few new issues for projects that | chose by looking at some lists of popular/widely used packages

e A short YouTube video about the changes
e Blog posts like this one, on the Python blog and on the PSF blog

e Emails, Slack and Discord posts to NumFOCUS's mailing list, Python user groups, civic tech and similar groups

(The announcements of future changes also attracted comment on Hacker News, on the r/python and related subreddits, and
elsewhere on news websites in Japanese, Chinese, Russian, and other languages that | can only read via translation services.)

But of course there is room to improve. which is whv | ask: what information sources do vou pav attention to about software

User research (examples)

Getting support with pip

Most participants sald they needed to get support with pip at some point. The mechanisms used
were all very similar - there was a lot of overlap.

By popularity support mechanisms were:

1.
2.
3.
4.

Search for It, and land on a Stack Overflow article
Search for It and land on a blogpost, article written by someone who had the Issue previously
Go to plp documentation

Ask thelr colleagues, friends, In person or via online communication platforms

A very small number of participants said they never had Issues with pip, and so wouldn't know
where to look.

® Providing the operators in the documentation was helpful

© some felt they were "in the way" of the solution

® Experienced Python users saw recommendation for forking package (solution 2) seen as:

© unnecessary by experienced Python users

© unhelpful and possibly dangerous for unexperienced users
® The error causes were verbose but helpful
® Experienced participants thought link for Dependency Hell was useful (and funny)
® Force install information seen as confusing

© Why can't | do it?
© This might be something | wanted to try

o If | can't do it, why tell me about it?

Findings

Error message

® high-level findings
® detailed findings

Documentation
® high-level findings
® detailed findings
Error message
High-level findings

1. Users did not understand the meaning of ~=

2. The possible solution documentation link was lost in the error message

3. Most users had no understanding of Error: no distribution found message

4. Format of constraints was difficult to read

5. Some experienced users asked for concrete actions to be displayed in the error message

6. Use of red text made error message reduced readability
Detailed findings
1. Users did not understand the meaning of ~=

® 15 of 17 did not understand this
o This clouds understanding of the issue meaning they could not identify the right troubleshooting path

© This was across all-levels of Python experience and profession

What's next?

* When do we rip out legacy resolver?
« UX training for packaging tools maintainers
 We COULD work on cool features

- pip upgrade --all

— Better support for reproducible environments

e but we are out of money
* https://github.com/psf/fundable-packaging-improvements/

Thanks
Thanks, CZI & Mozilla

Contact us:
https://discuss.python.org/c/packaging

https://github.com/pypa/pip/

	packaging-and-science
	Slide 2
	what-is-pip
	goals-for-2020
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	learn-from-you-share-our-expertise
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

