
Kwest
A Semantically Tagged Virtual File System

Aseem Gogte, Sahil Gupta, Harshvardhan Pandit, Rohit Sharma
Department of Computer Engineering, RSCOE, University of Pune, Pune, India

Presented at: International Conference on Advanced Computer Engineering and Applications (ICACEA) 2012

Abstract— The limitation of data representation in today’s file
systems is that data representation is bound only in a single way
of hierarchically organizing files. A semantic file system provides
addressing and querying based on the content rather than
storage location. Semantic tagging is a new way to organize files
by using tags in place of directories. In traditional file systems,
symbolic links become non-existent when file paths are changed.
Assigning multiple tags to each file ensures that the file is linked
to several virtual directories based on its content. By providing
semantic access to information, users can organize files in a more
intuitive way. In this way, the same file can be accessed through
more than one virtual directory. The metadata and linkages for
tagging are stored in a relational database which is invisible to
the user. This allows efficient searching based on context rather
than keywords. The classification of files into various ontologies
can be done by the user manually or through automated rules.
For certain files types, tags can be suggested by analyzing the
contents of files. The system would be modular in design to allow
customization while retaining a flexible and stable structure.

Keywords— semantics, indexing, classification, database,
tagging, virtual file system, information access, metadata

I. INTRODUCTION

Traditional file systems are mono-hierarchical and
implement directory trees to categorize and store files. In such
systems, directories are the only means to access particular
files.

The path of a file contains directories, which refer to its
context and categorization. As an example “c:\photos\college\
trip\museum*.jpg” refers to all photos of a museum from a
college trip. In this case, it is not possible to store that photo in
another directory say “c:\photos\museum*.jpg” without
copying the file. This severely limits the searching capabilities
in a file system.

The user is faced with the dilemma of which directory best
represents the context of current file. While storing, the file is
identified by its file name alone, which serves as its identifier.
For searching a particular file, the user has to accurately
remember the path and file name. A file cannot be searched by
any other information relating to its context. Creating the
directory structure is based on the users organizational skills.
Searching or browsing through someone else’s data is tricky as
the organization is different for every user.

Previous approaches [1] to such problems provided
symbolic links and aliases as an incomplete answer. Symbolic
links become redundant when the target file paths are changed.
Similarly, aliases may become redundant or may not function
properly with certain programs. Working with such solutions

requires advanced skills on the user’s part. Keyword based
searches which extract metadata from files were brought to fore
by Apple’s Spotlight [3] and Google’s Desktop Search [2].
Both function only on limited file types and do not allow
manual categorization.

This led to the development of semantic file systems,
containing categorization of files based on context. It provides
access to files by using categories formed from extracting
metadata. It is similar to how music files can be searched by
artist, genre, album etc. However, this presents a limitation on
the amount and capabilities of what metadata can be extracted
from a file. Virtual directories [11] are used to represent data
from the file system. These directories do not have a permanent
listing and the user has to explicitly query for data. There have
been several implementations based on semantic file systems.

However, they have several limitations in usability. Most of
the systems are based only on a few key points, such as
limitations over file types.

Our aim thus is to create a semantic solution to the
problems and shortcomings of traditional file systems while
covering the limitations of other implemented systems.

II. RELATED WORK

Over the years, organizing and retrieving information
accurately and efficiently has attracted lot of attention. While
few have been successful, a number of innovative
implementations [1] have emerged. The idea of using a file’s
semantics as the means to categorize it has been around for
quite some time. This section discusses the various
implementations made in the field of semantic file system. An
efficient implementation of keyword based searching was
brought to the desktop by Google’s Desktop Search [2] and
Apple’s Spotlight [3]. Both allow efficient and quick file
retrieval based on keywords. They support many file types and
have a simple interface which attracts a large number of users.
However, both of them are limited to returning search results
without any way to organizing contents. In addition, they do
not provide any provision to the user for classification of data.
This limitation prevented the user from having a personalized
way to retrieve data stored by them.

Semantic systems depend on data stored inside the files
rather merely relying on an file’s attributes. Most
implementations use common methodologies like content
recognition [4], tagging [5], extracting metadata, etc. to
categorize files by using various algorithms.

”Semantic File System” [6], as developed by O’Toole and
Gittord in 1992, provides access to file contents and metadata

by extracting the attributes using special modules called
”transducers”. It was one of the very first attempts to classify
files by semantics using metadata. Its biggest drawback was the
need for file type specific transducers which were necessary to
extract meta information and content from the file. Also, the
user does not have any say in what kind of category the file is
classified under. This drawback makes it an unattractive option
to the general user. It was decided during designing Kwest, that
it is necessary to involve the end-user in the tagging process.
This allows each user to have their own personal way of
classification and organization of files.

NHFS (Non Hierarchical File System) [7] was a system
developed by Robert Freund in July 2007. It allows the user to
place any file into any number of directories. Likewise, any
directory can be placed into as many directories as required.
NHFS therefore allows one to create a non-hierarchical
structure with poly-hierarchically connected files. This allows
for a powerful metaphor of finding a file in any of the category
(directory) it could be stored under. Therefore, we decided to
retain this feature by using tags in place of actual directories.
Tags are associated with files and other tags as well. Thus, a
tag may be placed under multiple tags allowing a relationship
to be defined between them. This analogy is much more
powerful than restricting files to actual directories. Using tags
prevents duplication and redundancy, making it an efficient
implementation.

A more recent implementation is Tagsistant [8], which is a
semantic file system that also attempts to organize files using
tags. It interacts with the Linux kernel using the FUSE module.
Under Tagsistant, directories are considered to be equivalent to
tags. As a consequence, creating a directory is creating a tag
and putting a file inside a directory means tagging that file.
After you have tagged your files, you can search all of them by
using queries. Queries are just paths where each element is
either a directory or logical operators. The entire system has a
modular design and uses SQLite. However, it suffers from
some speed issues and the lack of SQL indexes. Major flaws of
this design were high consumption of inodes on real file
systems and high computational time which was required to
fulfill each request. Most of the features of Tagsistant were
decided to be included in Kwest. These were modular design,
SQLite repository, tagged structure, etc. which enhance the
semantics of a file system. However, care must be taken to
prevent the occurrence of similar drawbacks.

Another implementation called Tagster [9], is a peer-to-peer
tagging application for organizing desktop data. It is platform
independent and is implemented in JAVA. Multiple files and
also directories can be tagged through its interface. The
selected directories are recursively examined and all files
contained within them are tagged. The GUI for a Linux system
consists of three main areas. Namely - ”Tag view”: which
displays a list of tags, ”Resource view”: which lists resources
that have the currently selected tags assigned and ”User view”:
that displays a list of users that have tagged the currently
selected resource with some selected tag. It also includes GUI
support for Windows with some unresolved issues. However, it
lacks auto classification of data due to which several common
tags may be generated for each user increasing the database
size.

III. PROPOSED SYSTEM

Kwest is a virtual file system that is designed to help users
organize information using the familiar hierarchical
file/directory structure. It aims at providing a feasible solution
towards efficient contextual storage and searching of
information. It implements a semantic file system which
structures data according to their context and intent. This
allows the data to be addressed by their content and makes
relevance in searching an efficient operation.

The system extracts metadata into tags and stores it in a
relational database. These tags can be file attributes such as
size, type, name etc. as well as extracted metadata such as
author, content title, etc. Categorizing files by metadata allows
linking a file in multiple ways while being able to search it
using its context. This enables the users to find relevant
information in as few searches as possible.

Assigning tags can be managed by automated rules and
manual inputs. This makes the semantics mold according to the
user’s perspectives and helps make information relevant to the
person managing it. The modular architecture of the system
allows for plugins which can extend the functionality. For
example a plugin to add more detection capabilities for certain
file types will enhance the metadata extraction on those files.
This makes the system highly customizable to power users.
The automated rules help automate tasks and data
categorization based on user inputs.

Virtual directories are used to display stored files in a
semantic organization. Search results are displayed through
dynamically created listings, which correspond to semantic
segregation. The entire implementation is based on a virtual file
system which manages only the data organization. The
underlying file system takes care of storage. This allows it to be
ported in future to any file system.

Finally, the system is implemented using open source
technologies, which greatly reduce the cost and compromises
associated with paid software. Thus the system aims to address
the current shortcomings of relevant information access and
storage by creating a virtual semantic file system which
manages the data and provides search information based on
semantics. The major design features are described in this
section.

A. Tags

1) Manual Tagging:
Manual tagging is the basis of semantics in Kwest. The user

can assign any tag to the files in Kwest. These tags are then
stored internally in a database. The user can create new tags or
use tags already defined by the system. Total freedom is given
to the user to organize data.

2) Automatic Tagging
Kwest also features automatic tagging of files. The user can

define certain rules under which files will be assigned tags. The
system will implement those rules for all files satisfying the
defined constraints. This would prevent repetitive tagging
operations for the user.

3) Importing tags

Certain popular file formats such as mp3, jpeg etc. have
metadata embedded in them. Kwest supports such popular
format and uses this metadata to automatically assign tags to
the files. This feature enables the user to collectively classify
and store the data under these tags.

B. Database

1) Consistency
Kwest uses an internal database to store and manage data. It

is vital that the database always remains consistent. Kwest uses
logging mechanisms to ensure that operations on the database
always reach an endpoint.

2) Access
The database is included in the same directory as the Kwest

executable. The files are not locked down or are access
restricted. Other applications, modules or tools can access the
database. However, this feature is made available with the
understanding that the integrity of the database will be
maintained always.

C. Relation with existing data

1) Importing semantics
Users already have certain organizational structures in the

way they store data in file systems. Kwest imports these
semantics by converting the storage hierarchy to tag-based
hierarchy. This allows the entire file system to be imported into
Kwest along with the users’ previous organization structure.

2) Reflecting changes to filesystem
When users carry out certain changes in Kwest such as

copying files, deleting files etc., these changes are virtual and
do not affect actual file systems. However, Kwest can enforce
these operations on the real files in certain cases.

D. Exporting semantics

1) Export filesystem
As the entire file system exists as a virtual entity, Kwest

provides the export feature. Where the file system can be
exported to another system where the data can be imported by
another instance of Kwest.

2) Export tagged files
It is also possible for the user to export data under certain

tags to an external location. The semantic organization showed
by tags is converted to actual directories and files are then
copied to these directories. This way the user can export Kwest
semantics and data to outside locations.

E. Modularity

1) Modules as plugins
Kwest is an extendible system. It can use external modules

to increase functionality or to modify existing operations.
Support for using modules is built into Kwest right from the
design stage.

2) Support for developers
Kwest provides support to developers by providing access

to all internal features and database. The API layer allows
developers to easily supplement internal operations with their
modules.

IV. SYSTEM DESIGN

Kwest is implemented using loadable kernel module known
as FUSE. User may interact with kwest like any other file
system via Command line or file managers like Nautilus. Data
is passed on to FUSE through the virtual file system. FUSE
implements the operations of file system. FUSE uses Glibc
and Libfuse for performing its operations. Glibc is the GNU
Project's implementation of the C standard library. It provides
functions for tasks like I/O processing, mathematical
computation, memory allocation, etc. Libfuse contains
functions internally used by fuse to create and manage virtual
file system. SQLite will be used for storing all data relevant
with the file system. To extract metadata, Kwest makes use of
external libraries such as Taglib, EXIF.

Figure 1: Design of Kewst

V. MATHEMATICAL MODEL

The relationship between files and tags can be represented
by using Set theory. Set theory is the branch of mathematics
that studies sets, which are collections of objects. The
following mathematical model represents the working of this
file system.

The following dynamic and variable sets are defined as,

F: Set of Files

T: Set of Tags

S: Set of Tags in query (S⊆ T)

A. Relation between Files (F) and Tags (T)

R = { (f, t) | f has tag t; f ∈ F, t∈ T }

Here R defines the relation between a file f and its tag t
where R ⊆ F × T. This relationship is many-to-many. That is a
file can have many tags, and a tag can describe many files.

http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/C_standard_library

B. Operations

g(f) = { t : f R t }

g is an operation which takes input as files f and returns the
set of tags (t∈ S) related by R to that file.

h(t) = { f : f R t }

h is an operation which takes input as tags t and returns the
set of files (f ∈ FS) related by R to that tag.

C. Storing Tags and Files

The relation R is stored as a set of ordered pairs (f, t), where
R ⊆ F × T. The operations g and h operate on these ordered
pairs and return mapped or matched elements. A relation which
has to be added must be represented in the form of ordered pair
(f, t). Storage of all relations is given by F × T where ordered
pairs exist according to

R = {f ∈ F, t ∈ T | f R t}.

For example, we have the sets and their relations as:

F = {f1, f2, f3}, T = {t1, t2, t3},

R = {f1 R t1, f2 R t2, f3 R t1, f1 R t3}

Then we store this relation by its ordered pairs given by:

R = {(f1, t1), (f2, t2), (f3, t1), (f1, t3)}

D. Queries

A query operation on a single tag is expressed as:

q (t) = FS where { f ∈ FS | h(t) = f }

The general form of a query is a string which contains tags
and operators. For example, we have two tags (t1, t2) and
operator σ. The query Q can be defined in terms of q as:

Q (t1, σ, t2) = q (t1) σ q (t2)

The operation σ can be any one of Union ∪, Intersection
∩, Symmetric difference Ɵ etc. If no operation is explicitly
mentioned, by default Intersection ∩ is performed.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a system for organizing files
using meta information by exploiting semantic information to
provide efficient and scalable architecture. The system handles
complex queries while enhancing functionality. Its novelty lies
in the way it associates tags and derives rules that enables
traversal based on semantics rather than path.

Currently, Kwest is in its initial stage of development. Its
features are limited but its modular architecture allows plugins
to be added which can add additional functionality, and
recognition for more file types. This allows the system to be
extended and modified according to the functionality required.
The current implementation is based on the Linux kernel.
Future implementations can be extended to other platforms
and devices. As the system is a virtual entity, it does not need
extensive modifications to be ported to other file systems and
operating systems.

REFERENCES

[1] Mangold. C, A survey and classification of semantic search approaches,
Int. J. Metadata, Semantics and Ontology, Vol. 2, No. 1, 2007, Page(s):
23-34.

[2] Google Desktop Search, http://googledesktop.blogspot.in

[3] Apple Spotlight, http://developer.apple.com/macosx/spotlight.html

[4] Gopal. S, Yang. Y, Salomatin. K, Carbonell. J, Statistical Learning for
File-Type Identification, 2011 10th International Conference on
Machine Learning and Applications, Page(s): 68-73.

[5] Bloehdorn. S, Grlitz. O, Schenk. S, Vlkel. M, TagFS - Tag Semantics for
Hierarchical File Systems, In Proceedings of the 6th International
Conference on Knowledge Management (I-KNOW 06), Graz, Austria,
September 6-8, 2006.

[6] Gifford. D, Jouvelot. P, Sheldon. M, OToole. J, Sematic File Systems,
13th ACM Symposium on Operating Systems Principles, ACM
Operating Systems Review, Oct. 1991, Page(s): 16-25.

[7] Freund. R, File Systems and Usability the Missing Link, Cognitive
Science, University of Osnabruck July 2007.

[8] Tagsistant, http://www.tagsistant.net

[9] Tagster, http://www.uni-koblenz.de

[10] Chang. K, Perdana. I, Jain. M, Kartasasmita. I, Ramadhana. B,
Sethuraman. K, Le. T, Chachra. N, Tikale. S, Knowledge File System -
A principled approach to personal information management, 2010 IEEE
International Conference on Data Mining Workshops, Page(s): 1037-
1044.

[11] Mohan. P, Venkateswaran. S, Raghuraman, Dr. Siromoney. A, Semantic
File Retrieval in File Systems using Virtual Directories. Proc. Linux
Expo Conference, Raleigh, NC, May 2007, Page(s): 141-151.

[12] Hua. Y, Jiang. H, Zhu. Y, Feng. D, Tian. L, Semantic-Aware Metadata
Organization Paradigm in Next-Generation File Systems, IEEE
Transactions on Parallel And Distributed Systems, Vol. 23, No. 2,
February 2012, Page(s): 337-344.

[13] Schroder. A, Fritzsche. R, Schmidt. S, Mitschick. A, Meiner. K, A
Semantic Extension of a Hierarchical Storage Management System for
Small and Medium-sized Enterprises, Proceedings of the 1st
International Workshop on Semantic Digital Archives (SDA 2011).

[14] Eck. 0, Schaefer. D, A semantic file system for integrated product data
management, 2011 Advanced Engineering Informatics, Page(s): 177-
184.

[15] File system in USERspace (FUSE) homepage and documentation,
http://fuse.sourceforge.net

[16] SQLite database http://www.sqlite.org

	I. Introduction
	II. Related Work
	III. Proposed System
	A. Tags
	1) Manual Tagging:
	2) Automatic Tagging
	3) Importing tags

	B. Database
	1) Consistency
	2) Access

	C. Relation with existing data
	1) Importing semantics
	2) Reflecting changes to filesystem

	D. Exporting semantics
	1) Export filesystem
	2) Export tagged files

	E. Modularity
	1) Modules as plugins
	2) Support for developers

	IV. System Design
	V. Mathematical Model
	A. Relation between Files (F) and Tags (T)
	B. Operations
	C. Storing Tags and Files
	D. Queries

	VI. Conclusion And Future Work
	References

