

 

Abstract—This paper presents the implementation and the effect of broadband matching in simultaneous 

information and power transfer. The narrowband characteristic of antennas limited the applications of 

simultaneous information and power transfer. The simplified real frequency technique (SRFT) and the non-

foster matching technique have been presented to improve the performance in terms of channel capacity and 

power delivery. Electromagnetic simulation and multiobjective optimization are performed to analyze the 

tradeoff between the channel capacity and power delivery in different matching conditions. The performance 

gain using the matching networks have been demonstrated and analyzed. 
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I. INTRODUCTION 

ntennas [1] are useful in information transfer [2], [3] as well as power transfer [4] – [6]. In some applications, 

the two functions should be applied simultaneously [7], [8]. Two practical applications are passive radio 

frequency identification (RFID) [9], [10] and wireless sensing system (WSN) [11], [12]. The role of information 

transfer in a RFID system is to detect objects, while its role in a WSN is to monitor the environment. The role of 

power transfer in both RFID system and WSN is powering or charging the tags used in the systems. 

In [7], [8], the tradeoff between the information transfer and power transfer have been analyzed using the Shannon 

channel capacity [13], Gabor channel capacity [14], and Hartley-Nyquist-Tuller (HNT) channel capacity [15], [16]. 

An optimization problem is considered to allocate an average power Pav to M frequency channels for transmission 

such that the channel capacity and power delivery are maximized, formulated as: 

 

Maximize 1 Channel capacity (bits/s)F     (1) 

Maximize 2 Power delivery (W)F       (2) 
 

 
Since the average power available is Pav, the power allocation should satisfy the following condition so that the 

total power allocated equal Pav: 
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where Pi (fm) is the power allocated to the frequency channel fm, for m = 1, 2, …, M. A set of solutions can be found 

showing the tradeoff between the channel capacity and power delivery. Some of the solutions have a larger channel 

capacity while the others have a larger power delivery. Those solutions are referred as the non-dominated solution in 

multi-objective optimization [17]. 

 In the power allocation of information and power transfer in [8], the power efficiency and voltage efficiency of 

different channels are considered in the power allocation process. However, the voltage standing wave ratios 

(VSWR) of the channels were not being considered. It becomes a problem when VSWR of the antenna becomes 

large so that input power to the antenna would reflect back to the generator. The VSWR of the circuit related to the 

amount of reflected power is shown in Table I. When the VSWR is larger than 6.0, more than half power would be 

reflected to the generator. It would be dangerous in some transmitter designs if it heat up and damage the signal 

generator and processor. Also, it is obviously a waste of energy. Therefore, it would be necessary to set a constraint 

such that the transmitter should not provide any input power to the channel with a large VSWR. However, using 

fewer channels in transmission would result in a reduction of channel capacity. Therefore, this paper proposes 

applying a broadband matching circuit in designing the system. By reducing the VSWR at different frequency, more 

channels can be used without worrying about the reflected power. The implementation of the matching network using 

a simplified real frequency technique (SRFT) [18] – [22] and a non-foster matching technique [23] – [27] and their 

effect on the simultaneous information transfer and power transfer would be analyzed in this paper. 

This paper is organized as follows: In Section II, the system model and definitions for simultaneous wireless 

communication and power transfer is considered. In Section III, the method of building the matching network with 

simplified real frequency technique and the non-foster matching network would be presented. In Section IV, the 

performance of the system would be compared in the situations with and without the matching network. Finally, the 

conclusion is given in Section V. 

II. PROBLEM DEFINITIONS 
 Same as the situation in [8], a wireless system with transmitting and receiving dipole antennas is considered for 

simultaneous information and power transfer. The configuration is shown in Fig. 1. The transmitter and receiver are 

separated by 100, where  = 0.3 m is the wavelength at 1 GHz. The system impedance in this paper is chosen as 50 

Ω. The length of the dipole is 140 mm. 

The power transfer efficiency P(f) and the voltage transfer efficiency V(f) can be calculated as:
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To calculate the above efficiency, an EM simulation is carried out. With a voltage excitation at the input, the 

currents on the circuit can then be found. Thus, the frequency response of the power transfer efficiency and voltage 

transfer efficiency can be obtained. 

With the EM simulation [28], the VSWR of the dipole is shown in Fig. 2 (blue dotted line). The impedance 

bandwidth defined by VSWR < 3 and VSWR < 2 are 0.92 – 1.09 GHz and 0.95 – 1.04 GHz, respectively. The power 

transfer efficiency P(f) and the voltage transfer efficiency V(f) of the transmitter are shown in Fig. 3 and Fig. 4 

(blue dotted line), respectively. 

A. Total Channel Capacity 

The concept of channel capacity which focuses on the theoretical maximum data rate is applied to represent the 

performance of information transfer in this paper. Three formulations of capacity are considered: Shannon capacity 

[13], Gabor capacity [14], and Hartley-Nyquist-Tuller (HNT) capacity [15], [16]. The three formations of channel 

capacity have been applied to analyze the information and power transfer in [8]. Authors are referred to [8] and [29] 

for the details of channel capacity formulations, However, the following provides a brief introduction. 

Shannon capacity considers the maximum data rate in the presence of noise and is derived under the assumption 

that both the noise as well as the received signal are Gaussian distributed. This is not the case for Gabor and the HNT 

channel capacity to be presented. When the information is transferred through M channels each with a channel 

bandwidth ΔB, the Shannon capacity is given by 
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, where Pi(fm) and P(fm) are the input power and the power transfer efficiency at the m-th channel, respectively. 

Next, Gabor capacity considers the interaction between the signal and the thermal noise.  With the step size chosen 

to be consistent to the Shannon capacity [14] the Gabor capacity can be represented by
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 Then, HNT capacity accounts for the signal and noise voltage but not the power, which is given by 
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where Vi and VN represent the signal voltage and noise voltage, respectively. Although the Shannon capacity and 

Gabor capacity are both calculated based on the noise power PN, the HNT capacity is calculated based on the noise 

voltage VN. 

In the analysis in this paper, the three capacities will be compared on the same graph. When Shannon capacity and 

Gabor capacity are evaluated with PN, the VN used in HNT capacity would be assigned by 



N N LV P Z
         (9) 

 

Although the signal is transmitted using a channel bandwidth of B, the voltages Vi and VN here are accounted as if 

the signal is transmitted with the center frequency. Nevertheless, the equation (8) accounts for the ratio but not the 

magnitudes of the voltages, so the form of representation does not matter. 

B. Power Delivery 

The power that can be regenerated for powering or charging the receivers depends on the structure of the specific 

RF-DC rectifier circuit in use. The rectifier performance could be frequency dependent and could be nonlinear. This 

paper would not look into the actual power that can be regenerated from the receiver. Instead, for the ease of analysis 

the term “power delivery” Pd is defined as the following: 
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 In the following analysis, an assumption has to be made that the more the power delivery Pd, the more would be 

the power regenerated from the receiver. Therefore, the designers should consider the validity of Eqts. (10), (11), and 

this assumption for their specific rectifier circuits when they work out the same analysis in this paper. However, they 

can derive an accurate representation of the average regenerated power for their specific RF-DC rectifier circuit, and 

use them to replace the Eqts. (10) and (11) for a more accurate analysis. 

C. Limitation on VSWR 

To demonstrate the tradeoff between the total channel capacity and power delivery, for M = 21 channels with 

bandwidth B = 20 MHz, centered at  fm = 0.8 GHz, 0.82 GHz, … , 1.20 GHz are used in this scenario. The 

transmission power of Pav = 5 W, and the noise power of PN = 10-8 W or 10-7 W would be used throughout the paper. 

Since the reflected power may heat up or damage the signal source, it would be preferable to set a constraint on the 

VSWR such that the transmitter will not provide any input power to the channel with a large VSWR. There is a 

common practice in microwave engineering to define the impedance bandwidth of VSWR < 3 or VSWR < 2, which 

implies that the reflected power is limited to 25% and 11%, respectively. Multi-objective optimizations (by genetic 

algorithm [17], [30]) on the total channel capacity and power delivery (equations 1 and 2) are then performed with 

the constraint on the impedance bandwidth. 

The non-dominated solutions showing the tradeoff between the total Shannon channel capacity and power delivery 

are shown in Fig. 5. The achievable maximum capacity decreased from 1.67 Gbit/s to 1.01 Gbit/s and 0.66 Gbit/s 

when the constraints of VSWR < 3 and VSWR < 2 are applied, respectively, in the case of PN = 10-8 W. The 

achievable maximum power delivery is the same in all cases, because the maximum power delivery is achieved by 



the inputting all the power to the one channel with the largest power efficiency. However, it is different out of the 

maximum region. Considering the same capacity of 1 Gbit/s, the power delivery without VSWR constraint is larger 

than the power delivery with the constraint of VSWR < 3 (4.63 μW over 4.48 μW).  The same decrement of 

maximum channel capacity applied when the noise power increased to 10 times (PN = 10-7 W). In short, the sums of 

the capacity formulas are performed only for those frequencies where the VSWR is below the given mark. 

III. MATCHING NETWORK 

From the last section, it is shown that the narrowband characteristic of the dipole antenna limited the channel 

capacity when the channels with large VSWR are given up. This section will introduce the use of a matching network 

to improve the VSWR of the circuitry. 

A. Simplified real frequency technique (SRFT) 

This section introduces the use of the SRFT [18] – [22] to build a broadband matching network. SRFT is a robust 

approach which can match antennas [19 - 21] as well as active amplifier circuits [22]. This method assumes the 

matching network is lossless and the scattering parameters are given by the Belevitch representation [31]: 
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where n is the number of reactive elements in the matching network and k is the integer specifying the order of the 

zero of transmission at the origin. 

The flowchart of SRFT is shown in Fig. 6 which includes an optimization loop driven by least square methods. At 

the start of the algorithm, it initializes the coefficients of h(s), where typical initial values can be chosen in the range 

of hi = [−1, 1]. After that, it goes into an optimization loop. In each iteration, firstly the coefficients of g(s)g(−s) are 

computed by: 
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  Then, by computing the left half plane roots of g(s)g(−s), the polynomial g(s) can be formed. Next, the transducer 

power gain T(ω) of the network is calculated by: 
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and R0 is the normalizing resistance of the S-parameters (R0=50Ω is considered in this paper). ZS(ω) and ZL(ω) are 

the impedance of the source and the load connecting to the matching network, respectively. 

 Finally, at the end of the iteration, the error function δ is computed by: 
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where ω1, ω2, …, ωm are the m frequency points of interest, and T(ωi) and T0(ωi) are the transducer power gain and 

the desired gain at ωi, respectively. This error function δ is to be minimized in this least squares optimization loop. 

 Then, it checks against the termination condition of the least squares algorithm. If it continues the next iteration, 

the coefficients of h(s) are updated according to the least squares algorithm to minimize δ. By continuing the 

iteration, the transducer power gain T(ωi) is converging to the desired gain T0(ωi). 

 After the least squares optimization, the input impedance Z(s) of the matching network is calculated in the case 

when the load is perfectly matched (ZL=50Ω): 
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 Finally, the input impedance of an equivalent matching network with lumped capacitors and inductors element is 

formulated. By comparing the coefficients of the equation (18) and the real circuit, the values of the inductors and the 

capacitors in the real matching network can be found. 

Now this method is applied to match the dipole which is previously considered in Section II using the least squares 

optimization provided in MATLAB function lsqnonlin (Solves non-linear least squares problems) [32]. The 

parameters are chosen as n = 4  and k = 0, so that the design is a n = 4 elements low pass ladder which gives good 

performance in antenna matching [19]. A typical desired gain can be chosen as T0(ωi) ~ 0.95 between 0.9 to 1.0 for 

good broadband performance. 

According to [19], a shunt inductor Lp should be firstly connected to the load before designed the matching 

network to give good performance, so the load impedance ZL(ω) used in equation (16) is given by
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, where ZA(ω) is the input impedance of the dipole which can be obtained by electromagnetic simulation [28]. The 

value of Lp is calculated by resonating this element to the input impedance of the dipole antenna at the lower 

passband edge. 

 After obtaining the optimized Z(s), the coefficients of the input impedance a matching network consisting of two 

series connected inductors L1 and L2 and two shunt connected capacitor C1 and C2 are compared with Z(s) to obtain 

the circuit values. The value of C2 is too small and so it is taken away from the circuit. Finally, the matching circuit is 

given in Fig. 7, where LP = 18.2 nH, L1 = 14.3 nH, L2 = 6.44 nH, and C1 = 2.49 pF. 

The VSWR of the dipole with the broadband matching network is given in Fig. 2 (black solid line). The impedance 

bandwidth defined by VSWR < 3 and VSWR < 2 are 0.84 – 1.14 GHz and 0.88 – 1.11 GHz, respectively. The 

impedance bandwidth is greatly improved compared with the case of without matching network. The power transfer 

efficiency P(f) and the voltage transfer efficiency V(f) of the transmitter are shown in Fig. 3 and Fig. 4 (black solid 

line), respectively. Although the impedance bandwidth has been improved, the power efficiency is not better than the 

case of without impedance matching. Nevertheless, the objective of reducing the reflected power and improve the 

impedance bandwidth has been achieved. 

B. Non-Foster matching 

The idea of non-foster matching [23] – [27] is to use negative capacitance and negative inductance to cancel the 

internal capacitance and inductance of an antenna [23]. Hence, the input reactance can be minimized over broadband. 

The negative capacitance and reactance can be realized by negative impedance converters (NICs) or negative 

impedance inverters (NIIs or NIVs) [23]. This approach is widely applied to extend the impedance bandwidth of 

dipoles antennas [23], VHF monopole antennas [24], and microstrip antennas [25], [26]. 



 The non-foster matching circuit used in this paper is shown as Fig. 8, where Ln=53.9 nH, Cn = 0.48 pF. Since there 

are only two elements, the circuit values can be easily obtained by optimization. The VSWR of the dipole with the 

non-foster matching network is given in Fig. 2 (red dotted line). The impedance bandwidth defined by VSWR < 3 

and VSWR < 2 are 0.70 – 1.20 GHz and 0.76 – 1.11 GHz, respectively. The impedance bandwidth is significantly 

larger with the case of without matching network as well as the case of broadband matching using the SRFT 

technique. 

The power transfer efficiency P(f) and the voltage transfer efficiency V(f) of the transmitter are shown in Fig. 3 

and Fig. 4 (red dotted line), respectively. The power efficiency and voltage efficiency are both better than the case of 

without matching network and the case of broadband matching using the SRFT technique. 

IV. PERFORMANCE GAIN WITH THE MATCHING NETWORK 

In this section, the performance of simultaneously information and power transfer is evaluated through the three 

circuit matching conditions: (i) without matching, (ii) broadband matching using the SRFT, and (iii) non-foster 

matching. The settings of the communication scenario and the constraint on the VSWR used in this section are the 

same as that described in Section IIC. The performances concerning different constraints on VSWR are presented in 

the following sub-sections. The frequency range in use for different circuit matching conditions in the presence of 

VSWR constraint is tabulated in Table II. 

C. Constraint of VSWR < 2 

When the constraint on VSWR is smaller than 2 in the power allocation, the non-dominated solutions showing the 

tradeoff between the total Shannon, Gabor, and HNT channel capacity versus power delivery are shown in Fig. 9, 

Fig. 10, and Fig. 11, respectively. 

The achievable maximum Shannon capacity increased from 0.66 Gbit/s to 1.22 Gbit/s and 1.57 Gbit/s when the 

SRFT broadband matching and the non-foster matching are applied, respectively, in the case of PN = 10-8 W. The 

achievable maximum power delivery is slightly better than the other two matching condition, because it has larger 

maximum power efficiency across the frequency axis as previously shown in Fig. 3 (9.8510-7 over 9.5410-7). It 

should be noticed that the maximum power delivery is achieved by the inputting all the power to the one channel 

with the largest power efficiency. 

Although the achievable maximum power delivery only differs by a little, the different would be larger out of the 

maximum region. Considering the same Shannon capacity of 1.21 Gbit/s, the power delivery with non-foster 

matching network is larger than the power delivery with SRFT broadband matching (4.89 μW over 4.00 μW). 

The same conclusions from the above observations can be applied when the noise power increased to 10 times (PN 

= 10-7 W). Also, observing Fig, 10 and Fig. 11, it is found that the same conclusions also apply to Gabor capacity and 

HNT capacity. 

It is interesting to notice that the achievable maximum Shannon capacity with non-foster matching when PN = 10-7 

W is about the same as that of without any matching when the noise is ten times smaller PN = 10-8 W (0.63 Gbit/s and 

0.65 Gbit/s). 



D. Constraint of VSWR < 3 

When the constraint on VSWR is smaller than 3 in the power allocation, the non-dominated solutions showing the 

tradeoff between the total Shannon, Gabor, and HNT channel capacity versus power delivery are shown in Fig. 12, 

Fig. 13, and Fig. 14, respectively. 

Comparing the case with the constraint of VSWR < 2, now the different between the three matching conditions 

becomes smaller. The achievable maximum Shannon capacity increased from 1.01 Gbit/s to 1.42 Gbit/s and 1.87 

Gbit/s when the SRFT broadband matching and the non-foster matching are applied, respectively, in the case of PN = 

10-8 W. Again, the achievable maximum power delivery is slightly better than the other two matching condition (4.92 

μW over 4.77 μW), and the different becomes larger out of the maximum region. Considering the same Shannon 

capacity of 1.42 Gbit/s, the power delivery with non-foster matching network is larger than the power delivery with 

SRFT broadband matching (4.86 μW over 3.65 μW). 

Again, the same conclusions from the above observations can be applied when the noise power increased to 10 

times (PN = 10-7 W), or using the Gabor capacity or HNT capacity instead of Shannon capacity. 

It is interesting to notice that the achievable maximum HNT capacity with non-foster matching when PN = 10-7 W 

is slightly larger than that of without any matching when the noise is ten times smaller PN = 10-8 W (1.09 Gbit/s over 

1.08 Gbit/s). 

E. Without VSWR constraint 

When there is no VSWR constraint on the power allocation, the non-dominated solutions showing the tradeoff 

between the total Shannon, Gabor, and HNT channel capacity versus power delivery are shown in Fig. 15, Fig. 16, 

and Fig. 17, respectively. 

Comparing the case with the constraints of VSWR, now the different between the three matching conditions 

becomes much smaller. It should be noticed that the maximum Shannon capacity decreased from 1.68 Gbit/s to 1.56 

Gbit/s when the SRFT broadband matching is applied in the case of PN = 10-8 W, which is because the power 

efficiency does not improve with the SRFT broadband matching by observing Fig. 3. 

However, there are improvements with the non-foster matching. The achievable maximum Shannon capacity 

increased from 1.68 Gbit/s to 1.87 Gbit/s when the non-foster matching is applied in the case of PN = 10-8 W. Again, 

the achievable maximum power delivery is slightly better than the other two matching condition (4.92 μW over 4.77 

μW), and the different becomes larger out of the maximum region. Considering the same Shannon capacity of 1.68 

Gbit/s, the power delivery with non-foster matching network is larger than the power delivery without any matching 

(4.79 μW over 3.44 μW). 

Again, the same conclusions from the above observations can be applied when the noise power increased to 10 

times (PN = 10-7 W), or using the Gabor capacity or HNT capacity instead of Shannon capacity. 

II. CONCLUSION 

The reasons, the implementation, and the results of broadband matching in simultaneously information and power 

transfer have been presented. Electromagnetic simulation has been performed to calculate the power efficiency and 

voltage efficiency for power allocation in utilizing a number of frequency channels. It has been demonstrated that the 

narrow bandwidth of the antenna would limit the performance in information and power transfer. Two methods for 



broadband matching have been proposed and presented: SRFT and non-foster matching. From the analysis, it is 

demonstrated that the non-foster matching perform the best, which can improve the performance in terms of channel 

capacity and power delivery. However, the drawbacks of non-foster matching are the inclusion of negative 

impedance converters or negative impedance inverters which would increase the complexity of the circuit as well as 

power consumption. The broadband matching a relatively simple approach only includes some lumped components 

which can also be implemented by microstrip line [19]. 
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TABLE I 

THE RELATIONSHIP BETWEEN VSWR AND THE REFLECTED POWER 
 

VSWR 
Reflected 

Power 
(%) 

Reflected 
Power 
(dB) 

1.0 0.0 - ∞ 
1.5 4.0 -14.00 
2.0 11.1 -9.55 
3.0 25.0 -6.00 
4.0 36.0 -4.44 
5.0 44.0 -6.02 
6.0 51.0 -2.92 
7.0 56.3 -2.50 
8.0 60.5 -2.18 
9.0 64.0 -1.94 

10.0 66.9 -1.74 
20.0 81.9 -0.87 
50.0 92.3 -0.35 

 



Fig. 1. Antenna configuration considered for simultaneous information and power transfer.
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Fig. 2. VSWR of the dipole antenna with different matching schemes. 
 

 
 



Fig. 3. Power efficiency of the dipole antenna with different matching schemes. 
 
 

 
 



Fig. 4. Voltage efficiency of the dipole antenna with different matching schemes. 
 

 
 



Fig. 5. Shannon capacity versus power delivery in the case without any impedance matching. 
 

 
 



 

Fig. 6. Flowchart of SRFT for broadband matching. 
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Fig. 7. Matching network designed with SRFT. 

 

Lp

L1 L2

C1



Fig. 8. Non-Foster matching network. 
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TABLE II 

FREQUENCY RANGE IN USE IN THE PRESENCE OF VSWR CONSTRAINT 
 
 

VSWR 
constraint 

Frequency Range (GHz) 

Without 
Matching 

Broadband
Matching 

Non-
Foster 

Matching
Unconstraine

d 
0.80 – 1.20 0.80 – 1.20 0.80 – 1.20

VSWR < 3 0.92 – 1.09 0.84 – 1.14 0.80 – 1.20

VSWR < 2 0.95 – 1.04 0.88 – 1.11 0.80 – 1.11
 
 



Fig. 9. Shannon capacity versus power delivery with a constraint of VSWR < 2. 
 

 
 
 



Fig. 10. Gabor capacity versus power delivery with a constraint of VSWR < 2. 
 

 
 
 
 



Fig. 11. HNT capacity versus power delivery with a constraint of VSWR < 2. 
 
 

 
 
 



Fig. 12. Shannon capacity versus power delivery with a constraint of VSWR < 3. 
 

 
 
 



Fig. 13. Gabor capacity versus power delivery with a constraint of VSWR < 3. 
 
 

 
 
 



Fig. 14. HNT capacity versus power delivery with a constraint of VSWR <3 
 

 
 



Fig. 15. Shannon capacity versus power delivery without constraint on VSWR. 
 
 

 
 
 



Fig. 16. Gabor capacity versus power delivery without constraint on VSWR. 
 

 
 
 



Fig. 17. HNT capacity versus power delivery without constraint on VSWR. 
 

 
 
 



 


