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1. General introduction:  

In the agricultural sector, antimicrobial drugs are widely used as curative or metaphylactic treatment 

in food producing animals. One side effect of these usages concerns the development of resistance 

among the commensal bacteria of animals, mainly within guts, and their potential spread between 

animals. Then, the resistant bacteria could spread in all the food chain, from the animal towards the 

food and finally towards the consumers intestines. The risk could be worrying when looking at the 

plasmid-mediated resistance, like Extended-spectrum β-lactamases (ESBL) for beta-

lactamin/cephalosporin or mcr for colistin, due to the possibility that a resistant bacteria originating 

from animals could transmit its plasmid to human commensal bacteria or pathogen bacteria that are 

present within guts (Madec, et al., 2017; Nordmann, Poirel, 2016). 

 

The link between antimicrobial drug (AMD) use and the development of antimicrobial resistance 

(AMR) in bacterial strains has been mainly studied in vitro experiments and sometimes modelled 

thanks to pharmacokinetics-pharmacodynamics (PKPD) approaches. Many within‐host models of 

antibiotic resistance are based on this pharmacokinetics/pharmacodynamics (PK/PD) approach as 

opposite to the between-host models, which are mainly epidemiological models.  Within‐host models 

are useful for understanding bacteria dynamics and response to an AMD treatment, within a single 

individual (Tetteh, et al., 2020). PKPD models are a good basis to explore mechanistically the 

relationship between drug concentrations and the development/selection of resistant bacteria and 

may be extrapolated to in vivo situations (Nielsen, Friberg, 2013). However, there are only few PKPD 

models that describe the impact of AMD within the gut for several reasons: (i) these mechanisms occur 

in a complex environment (intestinal microbiota) with various interactions and external factors (ii) we 

face a lack of observed data to inform the PKPD model (need of longitudinal data); (iii) this could be 

time and computer-intensive. 

Hence, the goal of this work was to refine and develop a “within-host PKPD model” (hereafter 

simplified as PKPD model) to assess and predict the impact of an AMD treatment (as an input of the 

model) on the emergence/selection of resistant bacteria within guts and excretion towards faeces 

(output of the model) for pig, at the individual level and population level (taking into account the inter-

individual variability).  
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2. Objectives:  

 Develop a “generic” PKPD model to assess the impact of targeted AMD on the development 

of AMR in the intestinal microbiota of pigs (especially in E. coli) that will be linked with an 

epidemiological model at a farm level (APHA). 

 Use different case scenario with 2 drugs having different properties, amoxicillin (bacteriostatic, 

absorbable) and colistin (bactericidal, non-absorbable) to illustrate the predictive ability of the 

PKPD model 

 Explore the impact of clone properties in the clonal dissemination  

 

3. PKPD model to assess relationship between animal exposure and 
change in antimicrobial resistance:  

3.1. PKPD model development 

3.1.1. Literature review  

 

The Scopus research databased was used with the following keywords to get a general overview :   

(((( TITLE-ABS-KEY (model))  OR  (TITLE-ABS-KEY (mathematic*)))  AND  (TITLE-ABS-KEY (antimicrobial*  

OR  antibiotic*))  AND  (TITLE-ABS-KEY (resistance)))  OR  (((TITLE-ABS-KEY (model))  OR  (TITLE-ABS-

KEY (mathematic*))) AND( (TITLE-ABS-KEY (pharmacolog*)) OR ((TITLE-ABS-KEY 

("pharmacokinetic/pharmacodynamic*"  OR  pharmacokinetic*  OR  pharmacodynamic*  OR  kinetic*))  

OR  (TITLE-ABS-KEY (pk/pd))))  AND  (TITLE-ABS-KEY (antimicrobial*  OR  antibiotic*))))  AND  ORIG-

LOAD-DATE  AFT  1605501975  AND  ORIG-LOAD-DATE  BEF  1606107181  AND  PUBYEAR  AFT  2018   

Relevant articles selection was made based on the title, then the abstracts. By adding the term “swine” 

OR “pig* OR “porcine”, we focused the search to find PKPD models relevant to our target specie. We 

found only 5 PKPD models focusing on the intestinal microbiota that have been published but 4 of 

them being developed by the same team (ANNEXE 1). In all these models, only E.coli strains were 

considered as it will be the case in this work. However, they are somehow biased because they use the 

plasma concentrations of antimicrobials as a surrogate for PK part of the model instead of a more 

mechanistic modelling of the antibiotic PK within guts. Only one study used the faecal data of antibiotic 

as the PK surrogate (Nguyen, et al., 2014) and this was this only study with a full data-driven PKPD 

model, but an empirical one. The others studies used more mechanistic PKPD model but did not assess 

the predictive ability of their model by comparison with observed data. 
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Due to the lack of mechanistic PKPD model in pigs, the previous works from Volkova et al (Cazer, et al., 

2014; Volkova, et al., 2016; Volkova, et al., 2017; Volkova, et al., 2012) that were done with cattle were 

also considered as important references. These models are based on a semi-mechanistic PK model: a 

compartmental approach to describe plasma/tissues and physiological compartment for the digestive 

tract with physiological volume/rate of digesta flow. Regarding the PD model, it often involves one or 

several sensitive (S) and resistant (R) strains (from the same species, mainly E. coli) located within the 

large intestine compartment. 

 

3.1.2. Model construction 

 

The model should be balanced between complexity and willing of reality. Different levels were 

considered as shown in Figure 1 and detailed below: 

 

 

 

- Bacteria level: Only E. coli will be considered in this work, as a sentinel of the resistant spread. 

Concerning the structural model, different mechanisms could be used with different level of 

complexity, with the presence of several sub-populations (persisters, for instance (Nielsen, 

Friberg, 2013). Some PKPD models may include intermediary sensitive strains (Cazer, et al., 

2017) or resting/persisters sub-populations (Nielsen, Friberg, 2013). 

COMPLEXITY

Bacteria
level

• Model structure

• Number of 
bacterial types

• Modelling
method

Host level

• Model 
structure

Population 
level

• Modelling
method

DETERMINIST STOCHASTICHYBRID

Compartmental
(empirical) 

PBPKHYBRID

Within-host 
model

(PKPD model)

Between-host 
model

(epidemiological
model)

One sensitive and 
one resistant strains

multiple sensitive and/or 
multiple resistant strains



This meeting is part of the European Joint Programme One Health EJP. 

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under Grant Agreement No 773830. 

 

  Page 10 

Resistance mechanism: We considered the plasmid-mediated resistance mechanism as the 

main driver of resistance spread and therefore neglect the chromosomal mutations. We also 

didn’t take into account the transduction and transformation due to the lack of data/model 

exploring these possible mechanisms (Leclerc, et al., 2019). 

Modelling method: Usually for PKPD models, a determinist approach is used and the model is 

described by ordinary differential equations (ODE). However, some events occurs randomly 

when we consider a microbial population therefore a stochastic approach could also be a 

suitable approach (Coates, et al., 2018). A mix between both method seems a good balance, 

as we could define some events to be a probability of occurrence, e.g. the disappearance of 

the R strain when its population decreases under a defined threshold, and the other 

mechanisms (drug effect,…) to be deterministic. Moreover, it was shown that deterministic 

approach could be similar to stochastic one when the number of simulated individuals is 

sufficiently large for SIR models dealing with antimicrobial resistance (Boëlle, Thomas, 2016).  

 

- Host level: This deals with the description of the PK of the antibiotic after administration. 

Different structural models could be used, typically divided in empirical ones (compartmental 

approach) or (semi) mechanistic ones, based on real physiology (with realists volumes and 

transit rates).  As the PK of the drug within the digestive tract is of great importance in our 

PKPD model, a hybrid model between compartmental (for plasma and tissue) and PBPK 

approach may be the best choice. PKPD model usually used ODE, considering the environment 

space as homogenous. For the digestive tract, partial differential equations (PDE) should be 

more suitable; however the modelling of several compartments of the digestive tract (e.g. 

stomach/small intestines/large intestines) with their own ODE somewhat mimic the PDE  (ref). 

Moreover there is also a lack of data to describe properly the space dimension within guts of 

pigs. 

 

- Population level: At the population level, we must take into account the population 

variabilities. We can consider either the between-host model to study the transmission of AMR 

or the within-host model, i.e. PKPD models, that describe the individual outcome of AMR.  In 

this work, we only focused on PKPD models and used Monte Carlo simulations, based on the 

probability distributions of each parameters to simulate a virtual pig population and its 

associated biological variabilities. The epidemiological model was developed by other partners 

from this WP. 
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The choice for each level depends on the existing data in literature. Therefore, a review of literature 

has been done (see below for construction of the generic model).  

 

3.1.3. Structure of the PKPD model 

 

The generic structural model is presented in Figure 2.  

 

Figure 2: diagram of the PKPD model of any antimicrobial administered either orally or via intra 
muscular route to pigs. 
ATB : antibiotic drug; PK : pharmacokinetics; PD ; pharmacodynamic 

3.1.3.1. Concerning the PK model:  

- Oral treatment was considered as it represents the main route of antibiotic administration for 

metaphylactic antimicrobial treatment for piglets. We only considered the water medication in this 

work because it is easier to model as a (temporary) infusion process compared to food medication; 

moreover EMA strongly advised to use water medication compared to treatment via feed when other 

routes of administration are not possible (EMA, 2019) . As an alternative to oral treatment, the IM 

route was also modelled. Depending on the PK properties of the drug, the drug can: (i) be absorbed 

and distributed within the body (represented by central and peripheral compartments) before being 
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excreted through urine and/or through faeces via the bile and/or eliminated through metabolism 

processes(ii) or only transits within the digestive tract without being absorbed and be only excreted 

through faeces. In the digestive tract, the drug may be degraded by biological process (e.g., Beta-

lactamase) or abiotic process (chemical hydrolysis, pH, etc…). 

 

3.1.3.2. Concerning the PD model:  

 

This model involves one Sensitive (S) and one Resistant (R) sub-population of E.coli within the colon, 

the latter harbouring resistance genes within a plasmid. Each bacteria population grows following a 

logistic model until they reach the (shared) maximal capacity of bacteria load within intestines, 

meaning that they compete for the same ecological niche (nutrients, space, etc…). This competition 

process has been shown to be a key factor that should be included within models of antibiotic 

resistance (Blanquart, 2019; Davies, et al., 2019). Bacteria are also affected by a natural death 

constant. Moreover, there is an income of bacteria from the environment (via feeding/coprophagia) 

and an outcome by fecal excretion. The AMD concentrations within colon impacts the bacteria with 

either a decrease of the growth rate or an increase of the death of bacteria (or both). This effect is 

assessed by the variation of concentrations of each bacterial sub-population. Finally, a transmission of 

plasmid from R to S by conjugation process is also considered.  

 

For parameters distributions; log-Normal distribution was preferentially chosen for physiological 

parameters (transit rates, clearance,…). When the literature values were heterogeneous, a uniform 

distribution was considered with the minimal and maximal value found. For PD parameters, only 

uniform distribution was considered due to the wide range of values that were usually found in 

literature. 

 

3.2. Case scenario: use of amoxicillin 

 

Amoxicillin was chosen to illustrate the PKPD approach for several reasons : (i) it is  widely used in pig 

production, especially against several systemic (e.g. Streptococcus suis), respiratory (Pasteurella 

multocida) and enteric bacterial infections (E.coli) (Burch, Sperling, 2018) ; (ii) there are a lot of 

literature data about beta-lactamin ; (iii) ESBL E.coli are a major public health concern and amoxicillin 

(and overall beta-lactamin drug) contribute to the selection of ESBL in pig production (Bergšpica, et al., 

2020). 
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3.2.1. Simulated dosing regimens 

 

Piglets of 17kg at post-weaning phase were considered for simulation purposes and they received 

either an IM treatment of 15 mg/kg/day of AMOX for 5 days or a water treatment also based on 

15mg/kg/day but associated a variability of exposure. It was assumed that the IM treatment was 

correctly given, meaning that all pigs received the same correct dose. For the oral treatment, we 

simulated the drinking pattern behaviour of weaned piglets (Rousseliere, et al., 2016; Rousselière, et 

al.) that showed 2 peaks of consumption over 24h. We thus simulated 2 periods of drinking as a 6h-

infusion process. The total quantity of water consumed per day was also variable, and followed a 

normal distribution (mean = 10.7% of BW, sd = 31% x mean) (Rousseliere, et al., 2016) 

 A population of 5000 virtual piglets was simulated thanks to Monte Carlo simulations based on the 

probability distribution of each parameter (Tableau 2,Tableau 2: Values and probability distribution of 

PK parameters from the AMOX modelTableau 4) 

3.2.2. Parametrization of the PK model 

 

All equations related to the PK model are presented in Tableau 1 and parameters values in Tableau 2. 

Two case-study were considered for AMOX treatment: either IM treatment (referred as IMexp) or via 

water medication (referred as POexp). It is anticipated that the oral treatment will lead to higher 

exposure variability for pigs compared to IM treatment, as already seen with other drugs in pigs  

(Soraci, et al., 2014) and sheep (Ferran, et al., 2020) .  

Concerning the administered dose, we considered no variability for the IM treatment, i.e. 100% of the 

nominal dose was effectively injected within the pig body. However, an IM bioavailability was 

considered that would reduce the amount of drug reaching the plasma.  

As the main interest was the intestinal AMOX concentrations, the digestive tract was mechanistically 

described. We also modelled the unbound fraction of AMOX within colon, i.e. the pharmacological 

active fraction of this antibiotic which acts on the bacteria. Values were found based on experiments 

with human faecal solutions (fu=0.3-0.5) (Jansen, et al., 1992)  but due to the paucity of these data, 

we extend the range of the upper bound limit to the plasma protein binding found in pigs (fu=0.75) 

(Agersø, Friis, 1998a).  The AMOX unbound fraction and could be degraded by beta-lactamase enzyme 

(BL) produced by the resistant bacteria (see 3.1.3.2) whereas we assumed that the bound fraction was 

still subject to abiotic degradation (chemical hydrolysis) (Hirte, et al., 2016; Kaeseberg, et al., 2018).
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Equation 

number 

Equation Description 

1 d𝐴𝑑𝑒𝑝_𝑖𝑚

dt
 = − (𝐾𝑖𝑚1 × 𝐹𝑟𝑎𝑐𝑘𝑖𝑚1 +  𝐾𝑖𝑚2 × (1 − 𝐹𝑟𝑎𝑐𝑘𝑖𝑚1)) × 𝐴𝑑𝑒𝑝_𝑖𝑚  

Change in IM depot AMOX amount due to 2 different absorption rate 

constants (Kim1, Kim2) 

2 a)   
dAc

dt
 = ( 𝐾𝑖𝑚1 ×  𝐹𝑟𝑎𝑐𝑘𝑖𝑚1 + 𝐾𝑖𝑚2 × (1 − 𝐹𝑟𝑎𝑐𝑘𝑖𝑚1)) ×  𝐴𝑑𝑒𝑝𝑖𝑚

 + 𝑘𝑎 ×

  𝐴𝑖𝑛𝑡 − 𝑘𝑒𝑙 × 𝐴𝑐 

b) 𝐶𝑐 =  
𝐴𝑐 

𝑉𝑐
 

a) Change in plasma AMOX amount due to the absorption through 

either IM route (Kim1, Kim2) or oral route (ka) and the elimination 

process (kel); 

b) Plasma AMOX concentration 

3 d𝐴𝑠𝑡𝑜

dt
 =  −𝐾𝑠𝑡𝑜  × 𝐴𝑠𝑡𝑜  

 

Change in stomach AMOX amount due to outflow transit rate (Ksto)  

Degradation considered as negligible (Erah, et al., 1997) 

4 d𝐴𝑖𝑛𝑡

dt
 =  𝐾𝑠𝑡𝑜 ×  𝐴𝑠𝑡𝑜 − (𝐾𝑖𝑛𝑡 + 𝑘𝑎 + 𝐾𝑑𝑒𝑔) × 𝐴𝑖𝑛𝑡 + 𝐹𝑏𝑖𝑙𝑒 × 𝑘𝑒𝑙 × 𝐴𝑐 

Change in intestines AMOX amount due to inflow transit rate from 

stomach (Ksto), oral absorption (ka), non-specific degradation (Kdeg) 

and outflow transit rate from small intestines, as well as  

inflow from bile of the excreted AMOX (Fbile * kel). 

5 a) 𝐴𝑐𝑜𝑙 =  𝐴𝑐𝑜𝑙_𝑢𝑏 +  𝐴𝑐𝑜𝑙_𝑏 =   𝑓𝑢 ×  𝐴𝑐𝑜𝑙 + (1 − 𝑓𝑢) × 𝐴𝑐𝑜𝑙 

 

b) 
d𝐴𝑐𝑜𝑙_𝑢𝑏

dt
 =  𝑓𝑢 ×  𝐾𝑖𝑛𝑡  ×  𝐴𝑖𝑛𝑡 − (𝐾𝑐𝑜𝑙 + 𝐷𝐸𝐺𝐵𝐿) × 𝐴𝑐𝑜𝑙_𝑢𝑏 

a) Amount of AMOX within colon as the sum of unbound and bound 

fractions of AMOX quantities 
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c) 
d𝐴𝑐𝑜𝑙_𝑏

dt
 = (1 − 𝑓𝑢) × 𝐾𝑖𝑛𝑡  × 𝐴𝑖𝑛𝑡 − (𝐾𝑐𝑜𝑙 + 𝐾𝑑𝑒𝑔) ×  𝐴𝑐𝑜𝑙_𝑏 

 

 

d) 𝐶𝑐𝑜𝑙_𝑢𝑏  =  𝐴𝑐𝑜𝑙_𝑢𝑏/𝑉𝑐𝑜𝑙 

 

b) Change in colon unbound AMOX amount due to inflow transit rate 

from small intestines (Kint), degradation by beta-lactamase enzymes 

produced by the Resistant E.coli population (𝐷𝐸𝐺𝐵𝐿, see Tableau 4) and 

outflow transit rate from colon  

c) Change in colon bound AMOX amount due to inflow transit rate from 

small intestines (Kint), non-specific degradation (Kdeg) and outflow 

transit rate from colon 

d) Unbound AMOX concentration within colon 

Tableau 1: Pharmacokinetic model equations for AMOX model 

 

Parameter (unit) signification Values and distribution type Reference 

CL/F_im (L/h/kg) Apparent plasma clearance LogNormal (0.39, 0.14) (Rey, et al., 2014) 

Vc/F_im (L/kg) Apparent central volume LogNormal  (0.25, 0.32) (Rey, et al., 2014) 

Vp (L/kg) Peripheral volume LogNormal (1.05, 0.36) (Rey, et al., 2014) 

Q (L/h/kg) Inter-compartmental clearance LogNormal (0.089, 0.088) (Rey, et al., 2014) 

Ka (h-1) Absorption constant for oral route LogNormal (0.15, 0.5) (Agersø, Friis, 1998b) 

F_im Intra-muscular bioavailibility LogNormal (0.82, 0.1) (Agersø, Friis, 1998b) 

Kim1 (h-1) Fast absorption constant for IM route LogNormal (0.34, 0.29) (Rey, et al., 2014) 

Frac_kim1 (%) Fraction of the dose absorbed following kim1 LogNormal (0.16, 0.59) (Rey, et al., 2014) 

Kim2 (h-1) Low absorption constant for IM route LogNormal (0.04, 0.52) (Rey, et al., 2014) 

Fbile (%) Fraction of plasma clearance linked to the excretion 

biliary system 

Uniform (0.14,0.30) (Bernier, 2010; Martinez-Larranaga, et al., 

2004) 
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Ksto (h-1) Transit constant through stomach Uniform (0.49, 1.76) (Anderson, et al., 2002; Davis, et al., 2001; 

Freire, et al., 2000; Gregory, et al., 1990; 

1995; Snoeck, et al., 2004; Suenderhauf, 

Parrott, 2013; Wilfart, et al., 2007) 

Kint (h-1) Transit constant through intestines LogNormal (0.22, 0.2) 

Kcol (h-1) Transit constant through colon LogNormal (0.04, 0.2) 

Vcol (L/kg) Volume of digesta content within colon LogNormal (0.018, 0.25) (Merchant, et al., 2011; Suenderhauf, Parrott, 

2013) 

Kdeg  (h-1) Unspecific degradation rate constant of amoxicillin 

within digestive tract 

Uniform (0.048,0.02) (Hirte, et al., 2016; Kaeseberg, et al., 2018) 

(Chesa-Jiménez, et al., 1994) 

Fu_dig Available fraction of amoxicillin within colon Uniform (0.3, 0.75)  (Agersø, Friis, 1998a; Jansen, et al., 1992) 

Qtity_fec (g) Quantity of faeces produced per day Normal (753, 50) Ref Catherine for weaned piglets 

Tableau 2: Values and probability distribution of PK parameters from the AMOX model 
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3.2.3. Parametrization of the PD model 

 

All equations describing the PD part and the associated parameters values are presented in Tableau 3 

and Tableau 4, respectively. 

The growth rate was obtained from experiments with E.coli in anaerobic conditions in an in vitro gut 

model (de Muinck, et al., 2013). Concerning the fitness cost of R linked to the plasmid, very 

heterogeneous results are given in the literature for beta-lactamase carrier-plasmid. Indeed, from no 

fitness cost (or even an increase growth rate) to about 10% of reduced growth were observed, 

depending on the plasmid, the BL enzyme and the E.coli strains (Fischer, et al., 2014; Humphrey, et al., 

2012; Santiago, et al., 2020; Shin, Ko, 2015). Therefore, we assumed an uniform distribution of fitness 

cost from 0 to a 10% decrease in the R bacteria growth rate. The maximal carrying capacity of E.coli 

within intestines (Nmax) is also associated to high variability between studies, therefore we used a 

uniform distribution from 10^8 to 10^10 CFU  (Hansen, et al., 2013; Herrero-Fresno, et al., 2016; 

Jensen-Waern, et al., 1998; Jensen, 1998; Luise, et al., 2019; Nadeau, et al., 2017; Nguyen, et al., 2014; 

Rhouma, et al., 2016; Trckova, et al., 2015; Viel, et al., 2018; Zhou, et al., 2015).  For the inflow of 

bacteria (IN𝑆/IN𝑅), the rate is poorly studied and was obtained from the PKPD cattle model (Volkova, 

et al., 2012) and assumed to be constant over time. The associated bacterial load of incoming sensitive 

E.coli was kept constant (10^6 CFU), considering the microbiological load within food (Royer, et al., 

2004; 2005) but we simulate different scenario of the incoming resistant bacterial load ranging from 

10^2 to 10^8 CFU/g. The outflow of bacteria was obtained from previous studies but was also 

associated to high uncertainty (Cazer, et al., 2017; Graesboll, et al., 2014). Parameters values of inflow 

and outflow of bacteria were chosen to avoid an extreme loss of bacteria and thus an extinction of any 

E.coli strains, event without antimicrobial treatment. A threshold of 10 CFU/g was considered as the 

minimum value for each strain to multiply. Under this value, the strain does not grow any more. 

Killing of bacteria was modelled as an Emax function but Emax parameter was depending linearly on 

the growth rate of each strain (Lee, et al., 2018b). The EC50 were fixed to the MIC values of each strain, 

as it was shown to be linearly correlated in a study with ampicillin and E.coli (Ahmad, et al., 2016b). 

For the MIC, the values of ½*ECOFF for S and 16*ECOFF for R (EUCAST, 2020) were taken and an 

uncertainty factor was applied (Range𝐶𝑀𝐼), taking into account the acceptable double-dilution 

precision of the MIC method measurement. The plasmid transfer by conjugation and plasmid loss by 

segregation were obtained from several studies focusing on beta-lactamases but we found values 

differing by several order of magnitude, therefore a uniform distribution was chosen (Fischer, et al., 

2014; Lopatkin, et al., 2017; Zwanzig, et al., 2019). Finally, the degradation rate of unbound amoxicillin 

by BL-enzyme was obtained from parameter estimations coming from recent PKPD models (Chauzy, 

et al., 2019; Kristoffersson, et al., 2020), that were also heterogeneous.
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Equation 

number 

Equation Description 

6 a) 𝐺𝑆 =  𝐾𝑔𝑟𝑜𝑤𝑡ℎ × (1 −
𝑁

𝑁𝑚𝑎𝑥
) 

 𝐺𝑅 =  𝐾𝑔𝑟𝑜𝑤𝑡ℎ × (1 − 𝐹𝐼𝑇𝑅) × (1 −
𝑁

𝑁𝑚𝑎𝑥
) 

b) 𝑁 =  𝑆 + 𝑅  

a) Logistic growth of S (GS) and R (GR) populations, limited by the colon carrying capacity (Nmax), 

with a plasmid fitness cost (𝐹𝐼𝑇𝑅) resulting in decrease growth rate for R. 

b) N is the total number of E.coli within colon 

7 IN𝑆 = Inflow𝑆 ×  IN𝐸𝐶 

IN𝑅 = Inflow𝑅 ×  IN𝐸𝐶 

Inflow of S (IN𝑆) and R (IN𝑅) from ingestion (water,food)/environment with a rate IN𝐸𝐶 

8 OUT𝑆 = OUT𝐸𝐶  

OUT𝑅 = OUT𝐸𝐶  

Outflow of S (OUT𝑆) and R (OUT𝑅) from toward faeces with a rate OUT𝐸𝐶 

9 
a) Kill𝑆 =  Emax𝑆 × (

𝐶𝑐𝑜𝑙_𝑢𝑏

EC50𝑆 + 𝐶𝑐𝑜𝑙_𝑢𝑏
) 

Kill𝑅 =  Emax𝑅 × (
𝐶𝑐𝑜𝑙_𝑢𝑏

EC50𝑅 + 𝐶𝑐𝑜𝑙_𝑢𝑏

) 

 

b) Emax𝑆 = (𝐶𝑜𝑒𝑓𝑓𝐸𝑚𝑎𝑥 + 0.18 ) × 𝐾𝑔𝑟𝑜𝑤𝑡ℎ 

Emax𝑅 = (𝐶𝑜𝑒𝑓𝑓𝐸𝑚𝑎𝑥 + 0.18 ) × 𝐾𝑔𝑟𝑜𝑤𝑡ℎ × (1

− 𝐹𝐼𝑇𝑅) 

 

c) EC50𝑆 = Range𝐶𝑀𝐼 ×  CMI𝑆 

EC50𝑅 = Range𝐶𝑀𝐼 ×  CMI𝑅 

a) Pharmacodynamic effect of AMOX on S (Kill𝑆) and R (Kill𝑅), with the maximum 

pharmacodynamic effect (Emax𝑆, Emax𝑅) and the concentration of unbound AMOX producing 50% 

of Emax (EC50𝑆, EC50𝑅) 

 

b) Emax is defined as a linear function (𝐶𝑜𝑒𝑓𝑓𝐸𝑚𝑎𝑥) of the growth of Ecoli (𝐾𝑔𝑟𝑜𝑤𝑡ℎ) (Lee, et al., 

2018b) 

 

d) The EC50 were fixed to the values of ½*ECOFF for S and 16*ECOFF for R (EUCAST, 2020) 

and corrected by a uncertainty factor (Range𝐶𝑀𝐼) 

10 a) 𝑃𝑇 =  γ × (
𝑆

𝑁
)  

b) 𝑆𝐸𝐺 = 𝛽 ×  𝐾𝑔𝑟𝑜𝑤𝑡ℎ × (1 − 𝐹𝐼𝑇𝑅) 

 

a) The plasmid transfer from R to S, by conjugative process with a rate γ 

b) There is a density-dependent plasmid loss, which a plasmid loss constant (𝛽) proportional to the 

growth rate of the R population (𝐾𝑔𝑟𝑜𝑤𝑡ℎ × (1 − 𝐹𝐼𝑇𝑅)) (Fischer, et al., 2014) 
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11 
𝐷𝐸𝐺𝐵𝐿 =  𝐾deg_𝐵𝐿 × (

R

R50 + R
) 

AMOX degradation by beta-lactamases produced by R, expressed as a sigmoidal function with 

maximal degradation rate (𝐾deg_𝐵𝐿) and R50 the bacterial density at 50% of 𝐾deg_𝐵𝐿 

12 a) 
d𝑆

dt
 =  IN𝑆 + (𝐺𝑆  −  Kill𝑆  −  OUT𝑆 ) ×  S +

(𝑆𝐸𝐺 −  𝑃𝑇 ) × 𝑅 

𝑆0 =  Nmax − (R0 × Nmax) 

 

b) 
d𝑅

dt
 = IN𝑅 +  (𝐺𝑅  −  Kill𝑅 −  𝑆𝐸𝐺 − OUT𝑅 +

𝑃𝑇 ) × 𝑅 

𝑅0 =  R0 × Nmax 

 

Change in the number of (a) susceptible and (b)  

resistant E. coli over time due to the population growth, plasmid transfer and loss, killing effect of 

AMOX and inflow and outflow. 

Initial condition are given for each subpopulation (S0 and R0) 

Tableau 3: Pharmacodynamics model equations of the AMOX model  
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Parameter (unit) signification Values and distribution type Reference 

Kgrowth (h-1) Net growth rate of E.coli Uniform (0.69,0.92) (de Muinck, et al., 2013) 

FITr (%) Fitness cost for Resistant population Uniform (0, 0.1) (Fischer, et al., 2014; Humphrey, et al., 2012; Santiago, et al., 

2020; Shin, Ko, 2015). 

Nmax (CFU/g)  Maximal E.coli carriage within colon Uniform (10^8,10^10)  (Hansen, et al., 2013; Herrero-Fresno, et al., 2016; Jensen-

Waern, et al., 1998; Jensen, 1998; Luise, et al., 2019; 

Nadeau, et al., 2017; Nguyen, et al., 2014; Rhouma, et al., 

2016; Trckova, et al., 2015; Viel, et al., 2018; Zhou, et al., 

2015) 

EC50_s (µg/mL) 

EC50_r  (µg/mL) 

AMX concentration leading to 50% 

of Emax effect, for S and R 

respectively 

S : Range_MIC x CMI𝑆 

R : Range_MIC x CMI𝑅 

With CMI𝑆 = 4 and CMI𝑅= 128 

(Ahmad, et al., 2016b) 

 (EUCAST, 2020) 

Range_MIC Correcting factor for EC50, 

considering the imprecision of the 

MIC measurement method 

Uniform (0.5,2) (EUCAST, 2020) 

Coeff_Emax (h-1) Maximal amoxicillin effect on E.coli 

growth, expressed as multiples of 

Kgrowth 

Uniform (1.5, 2.5) (Lee, et al., 2018a; Tuomanen, et al., 1986)  

INec (h-1) Inflow rate of E.coli within colon 0.01 (Volkova, et al., 2012) 

Inflow_S (CFU) 

Inflow_R (CFU) 

Amount of incoming S and R 

bacteria 

S : 1000000 

 

R : From 400 to 400000000, with 

a 10 fold-increment depending 

on the tested scenario 

(Royer, et al., 2005) 
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OUTec (h-1) Outflow rate of E.coli from colon Uniform (0.015, 0.055) (Cazer, et al., 2017; Graesboll, et al., 2014) 

Kdeg_BL Degradation rate constant of 

amoxicillin by beta-lactamase 

enzymes 

Uniform (0.0042, 1.5) (Chauzy, et al., 2019; Kristoffersson, et al., 2020) 

BL50 (CFU) half density for max Beta lactamase 

effect 

Uniform (10^3.8–10^5.1) (Kristoffersson, et al., 2020) 

γ (h-1) Beta-lactamase carrying-plasmid 

transfer rate 

Uniform (0.0000093, 0.093) (Fischer, et al., 2014; Lopatkin, et al., 2017; Zwanzig, et al., 

2019) 

β(h-1) Plasmid loss by segregation rate  Uniform (0.0001, 0.005) (Fischer, et al., 2014; Lopatkin, et al., 2017) 

Tableau 4: Values and probability distribution of PD parameters from the AMOX model 
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3.2.4. Sensitivity analysis 

Global Sensitivity Analysis (GSA) was carried-out to find the most influential parameters of the PKPD 

model. The fast99 Method was used to get the Sobol indices for each parameters. The GSA was applied 

to the AUC over a time period from start of treatment to 30 days after end of treatment, for three 

different outputs : OUTs, OUTr and OUTcol which are the quantity of sensitive, resistant and amoxicillin 

excreted within faeces. The range of parameters values for the GSA was 5th-95th percentiles of their 

distribution(McNally, et al., 2011), except for INCr which was over 8 order of magnitude and for the 

MIC of the S and R strain which could respectively varied from 1 to 8 and 64 to 512 mg/L, reflecting 

the range of sensitive and resistant E.coli strains in the EUCAST database. This methods allow the 

quantification of the first order effects which represent the variation caused by the parameter alone 

and the total effects for the overall effect of varying the remaining parameters, including variance 

caused by parameter interactions. 

 

3.2.5. Software 

Rstudio  (Rstudio, 2018) was used for all simulations. The package mlxR from Lixoft (Lavielle, 2020)  

was used with the simulX function to performe the monte carlo simulation. Several packages from the 

tidyverse set (Wickham, 2019)  were used to clean, format and plot the data.  

 

3.2.6. Results for the amoxicillin case scenario 

3.2.6.1. Case scenario 1: permanent contamination with high level of resistance 

 

For this case scenario, a resistant strain with a MIC equals to 128 mg/L (associated to the EC50 in our 

model, see Tableau 4) was considered as a circulating strain in a pig farm. The incoming inoculum load 

of R bacteria was supposed to be constant all over the simulation period (due to environmental 

contamination), and being present in a subdominant level within pig guts. 

The treatment is given from T=50h for 5 consecutive days. The corresponding plasma concentrations 

are shown in Figure 3. Due to the lowest bioavailability of the oral route, the concentrations are below 

those of IM route, with Cmax approximatively twice lower with water treatment. 
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Figure 3 : Plasma concentration of AMOX either after IM injection or water medication in case 
scenario 1 

Regarding the unbound concentration within colon, i.e the active fraction of AMOX, they are presented 

in Figure 4. It is clear that colon is greater exposed to AMOX with the oral treatment compared to the 

IM treatment (around 8 to 10 times higher). 
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Figure 4 : Unbound colon concentration of AMOX after either IM injection or water medication in case 
scenario 1 

The corresponding impact on the sensitive and resistance bacteria is presented in Figure 5. Despite a 

greater impact on the sensitive bacteria during treatment, the initial level is nearly achieved at the end 

of the simulation time, i.e around 25 days after the end of treatment. For the resistant bacteria level, 

despite more variability within treatment period, the impact was closed between both modalities. This 

is clearly observed with , where we can see that the level of resistance achieved is 100% before a 

decrease but the initial state is not achieved at the end of the simulation. Worst, for 10% of pigs, the 

level of resistance is still 70% at the end. 
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Figure 5 : Concentration of sensitive (top) and resistant (bottom) bacteria within colon after either IM 
injection or water medication in case scenario 1 
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Figure 6 : Proportion of Resistance after either IM injection or water medication in case scenario 1 

 

3.2.6.2. Case scenario 2: permanent contamination with low level of resistance 

 

In this other scenario, the MIC of the resistant strain is about 16 mg/L, so closer to the MIC of the 

sensitive strain. The dosing regimens were the same (see Figure 3). Concerning the unbound AMOX 

concentration within colon, we can observed a huge variability associated to the water treatment, with 

some pigs presenting very high level of concentrations over 300 µg/g.  
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Figure 7 : Unbound colon concentration of AMOX after either IM injection or water medication in case 
scenario 2 

As a consequence, the sensitive and resistant bacteria equilibrium is much more disturbed in the 

water treatment (see Figure 8). Hence, compared to the first case scenario, a large proportion of pigs 

present a huge decrease of the sensitive and the resistant bacteria and the proportion of resistance 

stayed low for these pig (Figure 9). 
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Figure 8 : Concentration of sensitive (top) and resistant (bottom) bacteria within colon after either IM 
injection or water medication in case scenario 2 
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Figure 9 : Proportion of Resistance after either IM injection or water medication in case scenario 2 
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3.2.6.3. Case scenario 3: no income of resistant bacteria and low level of resistance 

 

In this scenario, we still considered a MIC of 16 µg/mL and simulate the (impossible) absence of new 

contamination of pigs with resistant bacteria, meaning that the income of resistant bacteria is null. 

However, the pigs harbour a resistant strain at a subdominant level within the gut at the beginning of 

treatment. Compared  to the previous case study, the absence of incoming bacteria and the high level 

of concentration within gut are sufficient to eradicate the resistant bacteria in a high proportion of 

pigs (Figure 10,Figure 11). However, looking at the median profile, it should be noted that 50% of the 

simulated pigs will keep the resistance strain at a level of 15% or higher at the end of the simulation 

period. 
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Figure 10 :  Concentration of sensitive (left) and resistant (right) bacteria within colon after either IM 
injection or water medication in case scenario 3 
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Figure 11 : Proportion of Resistance after either IM injection or water medication in case scenario 3 

 

3.2.6.4. Global sensitivity analysis 

 

Results from the GSA are presented in the Figure 12. For the quantity of excreted AMOX, 2 major 

influential parameters were observed : Kcol and kdeg, meaning that the excretion flow and the abiotic 

degradation of AMOX (Figure 12) contribute exclusively to the variability of this outputs. The other 

parameters contributed to less than 10% of the total variance and could therefore be considered as 

non-influential. 

For the resistant bacteria, parameters linked to the increase of their number (Inc_R and Ks) were 

obviously found to be very influential.  At a lower level, the parameters associated to the plasmid loss 

(Tr_plas) and spread (Beta_seg) were observed. The other parameters contributed to less than 10% of 

the total variance and could therefore be considered as non-influential. 



This meeting is part of the European Joint Programme One Health EJP. 

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under Grant Agreement No 773830. 

 

  Page 33 

Finally, for the quantity of excreted  sensitive bacteria, the maximal carrying capacity and the excretion 

flow were the only major influential parameters. 

 

 

Figure 12 : Global sensitivity analysis for IM treatment. 
The 3 main outputs are the quantity of resistant (OUTr) and sensitive (OUTs) bacteria and amoxicillin 
(OUTcol) excreted trough faeces, for the whole period of simulation (800h) 

  

For the oral treatment, the GSA gave similar results as for IM treatment concerning the most influential 

parameters (Figure 13). The main differences, for minor influential factors, concerned the excreted 

amount of AMOX within faeces (OUTcol): for IM treatment, PK parameter related to excretion through 
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bile (Fbile) was the 3rd most influential parameter whereas for the oral route, it was a PD parameter 

linked to the action of BL enzyme (R50). 

 

Figure 13: Global sensitivity analysis for oral treatment. 
The 3 main outputs are the quantity of resistant (OUTr) and sensitive (OUTs)  bacteria and amoxicillin 
(OUTcol) excreted trough faeces, for the whole period of simulation (800h) 

 

3.2.6.5. External validation of the PK model 

 

Unfortunately, to our knowledge there is no published data about the intestinal or faecal 

concentrations of amoxicillin in pigs. Therefore it is not possible to assess the predictive ability of our 

PKPD model with observed data concerning the digestive part.  
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However, we assessed the relevance of the PK model with published data of 10 pigs treated with 

amoxicillin in water(Agersø, et al., 1998). We simulated the treatment design as described in the paper 

but the information were scarce (no individual weight, …) and did not took into account the potential 

variability of the input doses. Therefore we used the observed pattern drinking of pigs (Rousseliere, et 

al., 2016; Rousselière, et al.) and simulate a variability of 30% of the input dose. Results of the 

simulation and comparison with the published data(Agersø, et al., 1998) are presented in Figure 14. 

 

 

Figure 14 : Comparison between Simulated and observed plasma amoxicllin concentration based on 
the publication of Agerso 

Black dots represent the mean and black bars the SD, recalculated from the SEM, of observed data 
from(Agersø, et al., 1998). The colored lines are the simulations. 

 

The model slightly over-predicted the observed data but was overall in good agreement with the 

data considering the lack of detailed information about the treatment design from the original paper.  
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3.2.6.6. Connexion with the epidemiological “on farm” model 

To connect with the farm model, a fixed dosing regimen of IM treatment of 15 mg/kg/day for 5 days 

were simulated. Amount of R and S bacteria as well as amount of AMOX excreted by pigs over a 24h 

interval were extracted and divided by the quantity of faeces excreted over a 24h interval. The MIC of 

S and R were fixed, however, different incoming loads of Resistant bacteria were considered (from 

10^2 to 10^8 CFU). These data were used to inform the farm model (WP 2.2) 

 

3.3. Case scenario: use of colistin 

 

Colistin is an old polypeptidic drug used in pig production, especially against digestive infection due to 

E.coli after weaning. It has been extensively used during decades but with the recent discovery of a 

plasmid-mediated resistance mechanism (mcr) (Liu, et al., 2015), a great concern has been raised 

concerning the risk of transmission of resistant strain towards human. Indeed, in human medicine, 

colistin is used as a last-resort treatment {Nordmann, 2016 #333}.   

 

3.3.1. Simulated dosing regimens 

 

Colistin is essentially used through the oral route. Therefore we only considered the oral treatment. In 

contrast to AMOX, there are published longitudinal data about the faecal concentrations of colistin in 

pigs (Viel, et al., 2018), thus we used the dosing regimen from this paper for our simulation (oral dosing 

by gavage). 

 

3.3.2. Parametrization of the PK model 

 

We used the same equations as for the AMOX model with some modifications. Colistin is a non-

absorbable molecule (Rhouma, et al., 2015), therefore the systemic compartments were not 

considered (eq 1-2). Moreover, a high and rapid degradation of colistin has been observed in gastric 

fluid leading to 50% of degradation (Rhouma, et al., 2015). Therefore the degradation rate was set 

equal to the stomach flow. It was assumed no other degradation within intestines.  

The remaining equations are a simplification of those concerning AMOX because with colistin there is 

no intestinal absorption thus no possible biliary excretion. 
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All parameters were kept at the same value as for AMOX (Tableau 2), except concerning the unbound 

fraction which is supposed to be as low as 1% to 10% in media supplemented with faeces (Hazenberg, 

et al., 1986; Van Saene, et al., 1985). 
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Equation 

number 

Equation Description 

1 d𝐴𝑠𝑡𝑜

dt
 =  −(𝐾𝑑𝑒𝑔𝑠𝑡𝑜 +  𝐾𝑠𝑡𝑜)  ×  𝐴𝑠𝑡𝑜  

 

Change in stomach colistin amount due to outflow transit rate (Ksto)  

Degradation up to 50% within stomach (Rhouma, et al., 2015), with 

𝐾𝑑𝑒𝑔𝑠𝑡𝑜 equal to Ksto 

2 d𝐴𝑖𝑛𝑡

dt
 =  𝐾𝑠𝑡𝑜 ×  𝐴𝑠𝑡𝑜 − (𝐾𝑖𝑛𝑡) × 𝐴𝑖𝑛𝑡 

Change in intestines colistin amount due to inflow transit rate from 

stomach (Ksto) and outflow transit rate from small intestines 

3 a) 𝐴𝑐𝑜𝑙 =  𝐴𝑐𝑜𝑙_𝑢𝑏 +  𝐴𝑐𝑜𝑙_𝑏 =   𝑓𝑢 ×  𝐴𝑐𝑜𝑙 + (1 − 𝑓𝑢) × 𝐴𝑐𝑜𝑙 

 

b) 
d𝐴𝑐𝑜𝑙_𝑢𝑏

dt
 =  𝑓𝑢 ×  𝐾𝑖𝑛𝑡  ×  𝐴𝑖𝑛𝑡 − (𝐾𝑐𝑜𝑙) ×  𝐴𝑐𝑜𝑙_𝑢𝑏 

 

c) 
d𝐴𝑐𝑜𝑙_𝑏

dt
 = (1 − 𝑓𝑢) × 𝐾𝑖𝑛𝑡  × 𝐴𝑖𝑛𝑡 − (𝐾𝑐𝑜𝑙) ×  𝐴𝑐𝑜𝑙_𝑏 

 

d) 𝐶𝑐𝑜𝑙_𝑢𝑏  =  𝐴𝑐𝑜𝑙_𝑢𝑏/𝑉𝑐𝑜𝑙 

a) Amount of colistin within colon as the sum of unbound and bound 

fractions of colistin quantities 

b) Change in colon unbound colistin amount due to inflow transit rate 

from small intestines (Kint), and outflow transit rate from colon  

c) Change in colon bound colistin amount due to inflow transit rate from 

small intestines (Kint) and outflow transit rate from colon 

d) Unbound colistin concentration within colon 

Tableau 5 : Equations for the PK model of colistin
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3.3.3. Parametrization of the PD model 

 

For the PD, it was not possible to find enough relevant data to inform the mechanistic model, especially 

concerning the killing mechanism (Emax, EC50). Indeed, the published data with colistin mainly 

concern bacterial species that are a concern for human medicine (e.g., P. aeruginosa, A. baumanii …). 

Moreover, we have previously published an experimental study with pigs harbouring mcr-1-positive 

E.coli that were treated with colistin (Viel, et al., 2018) and surprisingly didn’t observe a selective effect 

of colistin on the resistant strains. In order to explore in a mechanistic way these results, we carried-

out several time-kill experiments in order to estimate some of the PD parameters. 

3.3.3.1. Time-kill experiments 

 

Two intestinal porcine E.coli strains, a resistant one harbouring mcr-1 (named EC-R) and a sensitive 

one (named EC-S, with a MIC 32 times lower) were used in the Time-kill studies (TKS). A fresh inoculum 

of 105 UFC/mL of each strain was prepared in MHB liquid media (separated tubes), and strains were 

exposed to different concentrations of colistin as multiples of their respective MIC over 24H. Regular 

sampling was performed and bacteria were counted on agar plate with serial dilutions. 

Results of these experiments are presented in  

 

 
Figure 15 : time kill curve of EC-R with colistin 
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Figure 16 : time kill curve of EC-S with colistin 
 

A rapid and concentration-dependant killing of colistin was observed for each strain. However, a re-

growth was noted for all colistin concentrations < MIC even for the EC-S despite no change in the MIC 

values between t=0 and t=24h.  These TKC are necessary to assess the response of each strain to 

colistin separately but in in vivo conditions, both resistant and sensitive strains are present within guts. 

 

Threfore, the TKS were performed over 30h in co-culture condition that would mimic the in vivo 

situation of intestinal E.coli of our study (Viel, et al., 2018) with a dominant EC-S population (starting 

inoculum: 106 CFU/mL) and EC-R at a sub-dominant level (starting inoculum: 103 CFU/mL). Regular 

sampling was performed and total and EC-R bacteria were counted on agar plates (selective agar with 

antibiotic for the resistant strain) with serial dilutions. 

Results are presented on the  

 

Figure 17. 
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Figure 17 : time kill curve of EC-S and EC-R in co-culture with colistin 
 

 

After 24h, EC-R stayed at a subdominant level (~2 log10 under total E.coli level) in  

 

Figure 17A-C, even when total E.coli (and therefore EC-S) concentrations decreased sharply between 

0 and 4h (C). However, for the highest concentration (D), EC-R became dominant, i.e. equal to the total 

E.coli population. 

 

3.3.3.2. Modified mechanistic PKPD model (under development) 

 

In order to describe mechanistically the results of TKS, a previous semi-mechanistic PKPD model with 

colistin was adapted (Mohamed, et al., 2014) (Figure 18). As a regrowth is observed, even for the 

sensitive strain, an adaptive resistance mechanism and the presence of persisters was considered 

(Nielsen, Friberg, 2013).  
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Figure 18 : Semi mechanistic PKPD model of colistin with EC-S and EC-R 
  

This model is still under current development at the time of this report because this model adequately 

fitted the separated TKS but failed to capture properly the co-culture TKS, especially the data observed 

in Figure 17 D (data not shown). An interaction term between EC-R and EC-S may be needed to 

characterize the inhibition of the EC-R even when the EC-S are sharply decreasing (Lenhard, et al., 

2019). 

 

3.3.4. External validation of the PK model 

As for the AMOX case scenario, we only assessed the predictive ability of the PK part of the PKPD model 

with observed data. We simulated the conditions of the study from our lab (Viel, et al., 2018), with 2 

groups of 5 pigs receiving 2 different doses (simple dose : 50 000 UI/kg or double dose: 100 000 UI/kg 

twice a day for 5 days) and taking into account the individual dosages. The observed fecal 

concentrations reported in the publication were considered as representative of the concentration 

within colon and were thus compared with the corresponding simulated concentrations from the PK 

model. The results are shown in Figure 19. 
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Figure 19 : Comparison between simulated and observed fecal colistin concentrations based on the 
publication of Viel 
Black dots represent the observed data from (Viel, et al., 2018) and colored lines the simulations by the 

PK model 

 

The model was in very good agreement with the observed data despite a higher variability of the latter. 

These results gave confidence in the relevance of the PK model of the digestive tract. 

 

3.4. Discussion about the PKPD model 

 

With the AMOX case scenario, the PKPD model clearly highlighted the importance on the 

administration route on the evolution of resistance E.coli within guts. Looking at the IM treatment, we 

can observe that the AMOX concentration within colon are sufficient to allow the amplification of the 

R strain, meaning that the concentrations are within the mutant selection window. These results are 

in accordance with experiments in pigs and ampicillin, which is close to AMOX, showing a strong 

increase of the resistant population of ESBL E.coli (that was already present within gut) after IM 

treatment (Bibbal, et al., 2007). However, others author has not observed a selective effect of 
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amoxicillin on an inoculated ESBL strain within gut, i.e. that was not present “naturally” within pig guts 

(Cavaco, et al., 2008). The limiting factor of this last study may be the inadequacy of the strain to 

colonize efficiently the gut (as seen in their control group) compared to a strain which would be already 

well established. To avoid an over-parametrisation of our model, we chose to represent only Resistant 

(R) and Sensitive (S) strains, both of them being represented by one compartment. We could have used 

more complex models (as for the colistin case) but it was shown that it hard to find the most relevant 

mechanistic model (i.e. the best mathematical description of the data) based solely on the count of 

resistant/sensitive data without an exploration in deep of the resistant mechanisms that are involved 

(Jacobs, et al., 2016). 

Concerning the intestinal concentrations of AMOX, there are no studies within literature that have 

measured this. Our predictions are in accordance with the predictions made earlier by Burch (Burch, 

2007). However, it should be necessary to check the accuracy of the predictions by comparing them 

with observed data. Nerveless, we were able to validate the predictability of the model concerning the 

plasma concentrations following an oral treatment trough water (Agersø, et al., 1998).  

For the colistin case, the digestive PK model was able to predict with a good agreement the observed 

fecal data from pigs treated with colistin (Viel, et al., 2018) giving good confidence in our digestive PK 

model. Some recent studies have followed the intestinal concentration of several antimicrobials, and 

these data should be used to further assess the predicting ability of the PKPD model (De Smet, et al., 

2017; De Smet, et al., 2018).  

Despite the importance of BL enzyme in the resistance phenomena and interaction between R and S, 

the degradation of AMOX by BL did not seem to be an influential factor concerning the excreted 

quantity of AMOX. This is confirmed by other authors looking at the inactivation of amoxicillin by 

biological and non-biological processes (Jensen, et al., 2006). However, other studies have shown a 

significant impact of these BL on the protection of other bacteria species against ampicillin (Gjonbalaj, 

et al., 2020). The importance of the gut microbiota (especially within caecum) an the metabolism of 

antimicrobial drug is an ongoing subject (Zimmermann, et al., 2019) and new data may help to refine 

the PKPD model  

The GSA highlighted the importance of knowing some key parameters values with high precision. For 

the amount of excreted antibiotic drug, the outflow rate and the abiotic degradation rate are the most 

influencing parameters and therefore their values should be known with good precision. However, 

these are maybe the most difficult parameters to measure. 

 

Concerning the colistin case, unfortunately the PD values for colistin and E.coli in pigs are very scarce 

in literature and due to the regrowth phenomena that is observed in time-kill studies (Figure 16), the 
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PD model from the AMOX model with only S and R subpopulations will not be sufficient to describe 

adequately the data. Hence, a more mechanistic model is currently under development and once 

finalized, it could be included within the generic PKPD model. This reveals the impossibility to develop 

a real generic, meaning universal, PKPD model that would be predictive for all couple bacteria/AMD.  

 

As seen in our results, the oral treatment leads to an increase of the inter-individual variability 

concerning the pig exposure to antibiotic (either in plasma and in guts) and hence the impact on the 

gut E.coli. As outlined by a recent review, this kind of antibiotic delivery could result in under-dosing 

or over-dosing of many pigs (Little, et al., 2019). The impact of social rank has been highlighted as a 

main covariate explaining these results (Soraci, et al., 2014). Treatments via feed could also have been 

considered and other authors explored (quite empirically) the impact of such route on the variability 

of plasma exposure (Li, et al., 2008). However, EMA recently discouraged the use of feed medication 

due to the high risk of AMR selection (EMA, 2019).  

 

The difficulty of such model is to be able to adapt to the physiological status/disease condition of the 

animal and their impact on the parameters values (especially the physiological values). Hence for 

amoxicillin, it was shown that pigs with diarrhoea will absorb less drug than healthy animals (Burch, 

Sperling, 2018) and this will also probably increase the excretion of bacteria. Therefore an adaptation 

of the model, especially the outflow rate, could be made. This has already been explored in a previous 

PKPD model of pigs (Ahmad, et al., 2016b) but in a rather theoretical was without proper data 

validation. 

 

4. Assess relative importance of clonal dissemination for resistance 
occurrence 

4.1. Introduction 

 

Antimicrobial treatment creates a selection window for antimicrobial resistance strains. Mechanistic 

Pharmacokinetic/Pharmacodynamic (PK/PD) models were developed to describe the antimicrobial 

effect on bacterial growth (Nielsen and Friberg 2013). Several of them takes into account different sub-

populations with different antimicrobial susceptibility to be kill. Horizontal gene transfer (HGT) of 

resistance is a major mechanism of acquisition of antimicrobial resistance by bacteria. It is assume that 

antibiotics promote HGT but this notion lacks of conclusive evidence in the literature (Lopatkin, 

Sysoeva, and You 2016). If bacterial models of HGT were described, we lack of rigorous data 
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interpretation (Lopatkin, Sysoeva, and You 2016) to interpret the role of selection dynamics (Lopatkin, 

Sysoeva, and You 2016).  

Considering the importance of the phenomenon, a part of the project was dedicated to study the 

variability of these processes in function of the bacterial capacity to disseminate resistance by 

combining a microbial model associated with the PK/PD model and to discuss if the structural 

adaptation of the generic model is necessary. 

 

4.2. Objectives 

The main objectives of this part were: (i) Review of the literature to determine the range of value for 

the pharmacodynamic parameters; (ii) Develop a process to simulate the model in fixed PK conditions 

and analyse the pattern of evolution of resistance along time to determine the combination of PD 

parameters value leading to a success of the resistance; (iii) Simulate different antimicrobial dosage 

regimens. 

 

4.3. Literature review 

 

Horizontal gene transfer is the transfer of DNA from one organism to another independently from 

reproduction, and facilitates genetic recombination in bacteria and other single celled organisms. Of 

the three main mechanisms of HGT (transformation, conjugation and transduction), conjugation is 

often cited as the most significant in the spread of antibiotic resistance. A recent meta-analysis of 

plasmid transfer rates from laboratory experiments was reported  and reviewed theoretical models 

(Sheppard, Beddis, and Barraclough 2020). The main parameters of the theoretical models are plasmid 

transfer and loss rates (segregation), the cost or benefit of plasmid carriage on the host (Carroll and 

Wong, 2018), and the population size (N). In theory, a plasmid can persist when its transfer rate is 

greater than the combination of the rate of loss and the cost of the plasmid, within a large population 

size (Lopatkin et al. 2017). 

 

The model proposed by Levin et al, is used to described the transfer of plasmids from a donor and a 

receptor population. (Levin, Stewart, and Rice 1979). Different methods (endpoint measurements, 

endpoint model) are used to determine the transfer rates. Several factors (type of cells, culture 

conditions, bacterial species, donor and receptor density, size of plasmids) has to be taken into account 

for the analysis. A recent systematic review demonstrated that the transfer rates varied over 13 orders 

of magnitude, ranging from 1.6 x 10-20 to 4.8 10-7 ml cell-1h-1 (Sheppard, Beddis, and Barraclough 2020). 
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While plasmid confer a benefit to their hosts under particular conditions (e.g. antimicrobial resistance), 

a fitness cost of plasmid carriage is expected (Carroll and Wong 2018). Many studies have suggested 

that carriage of antimicrobial resistance is generally costly to the host, although this cost can be 

reduced over time. According a recent systematic review, the fitness reductions is low ranging from 

1% to 28 % (Carroll and Wong 2018). The host genetic background may be an important determinant 

of plasmid fitness and can be dependant of the carriage of several plasmids with different fitness costs.   

Plasmids are expected to slowly be lost from a population due to segregational loss where a plasmid 

is lost by chance during cell division. Estimates of the rate of segregational loss vary from 10-3 per cell 

per generation to 0.05 per cell per generation according to a recent review (Carroll and Wong 2018). 

 

4.4. Modelling 

 

Different PKPD modelling of antimicrobial effects were described in the literature but few contains the 

plasmid dynamics, focusing mainly on the horizontal gene transfer (Leclerc, Lindsay, and Knight 2019). 

The combination of a PKPD model with a model of HGT is explored in a limited set of papers (Volkova 

et al. 2013)(Volkova, Cazer, and Gröhn 2017). 

The PK model used in this part is represented by a single central compartment with an extravascular 

administration associated to 3 PK parameters: V, volume of distribution, ka, rate of absorption and k, 

rate of elimination to described concentration (C) along time for different dosage regimen. 

For the purpose of our study, we establish a set of ordinary differential equations to describe the 
growth of bacteria and describing the transfer rate of plasmids, the segregation rate of them during 
replication and their fitness cost ( 

Table 1, Equations 1-5). These equations take into account a logistic growth in the compartment. For 
the simulation of the effect of the drug on the growth rate of bacteria, we use pharmacodynamic 
model based on a hill function for the effect of the antimicrobial on the 2 bacterial populations ( 

Table 1, Equations, 6 and 7). The multiplicative effect on the growth is adapted to antimicrobials active 

only on growing bacteria such as beta-lactams.
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# Equation Description 

1 𝑑𝐵𝑠

𝑑𝑡
= 𝐺𝑠 × 𝐵𝑆 × 𝐾𝑆 − 𝑡𝑟 × 𝐵𝑅 × 𝐵𝑠 + 𝑠𝑔 ∗ 𝐺𝑅 ∗ 𝐵𝑟 

Growth of susceptible population BS with loss due to transfer of plasmid (tr), gain of 

segregated resistant cells (sg) and antimicrobial effect (KS) 

2 𝑑𝐵𝑅

𝑑𝑡
= 𝐺𝑅 × 𝐵𝑅  × 𝐾𝑅 + 𝑡𝑟 × 𝐵𝑅 × 𝐵𝑠 − 𝑠𝑔 ∗ 𝐺𝑅 ∗ 𝐵𝑟 

Growth of resistant population BR with gain due to transfer of plasmid (tr), loss of 

segregated resistant cells (sg) and antimicrobial effect (KR) 

3 
𝐺𝑠 = 𝑔 × (1 −

𝐵

𝐵𝑚𝑎𝑥
) 

Logistic growth of BS, limited by the carrying capacity in the compartment Bmax 

4 
𝐺𝑅 = 𝑔 × (1 − 𝐹𝐶) ∗ (1 −

𝐵

𝐵𝑚𝑎𝑥
) 

Logistic growth of BR, limited by the carrying capacity in the compartment Bmax and 

a plasmid fitness cost (FC) 

5 𝐵 = 𝐵𝑆 + 𝐵𝑅 Total bacterial population 

6 
𝐾𝑆 = (1 − 𝐾𝐾𝑆 × (

𝐶𝛾

𝐶𝑆50𝛾 + 𝐶𝛾
)) 

Antimicrobial effect on growth rate according antimicrobial concentration C, CS50 

(concentration to obtain 50 % of the maximal killing effect KKS on susceptible 

population) 

7 
𝐾𝑅 = (1 − 𝐾𝐾𝑅 × (

𝐶𝛾

𝐶𝑅50𝛾 + 𝐶𝛾
)) 

Antimicrobial effect on growth rate according antimicrobial concentration C, CR50 

(concentration to obtain 50 % of the maximal killing effect KKR on resistant 

population) 

 

Table 1 : Equations of the PD part of the PKPD model of clonal dissemination
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The model can be used to investigate the effect of different dosage regimens on the selection of 

resistance in function of the bacterial parameters of HGT. Different conditions have been fixed such as 

the initial proportion of bacteria at the start of treatment, dosage regimen (dose, number and interval), 

pharmacokinetic and pharmacodynamic parameters (Table 2). Rmarkdown reports were generated to 

investigate the influence of parameters on the development of resistance (see annexes for some 

examples).  

 

 

Parameter 

Class 

Parameter Definition Value Unit 

PK F Fraction absorbed 1 Unitless 

PK Ka Absorption rate 1, 0.1 h-1 

PK K Elimination rate 0.1, 0.01 h-1 

PK V Volume of distribution 1 L/Kg 

Bacteria Bo Initial Bacterial population without 

plasmid 

106 Bacteria/ml 

Bacteria Bop Initial Bacterial population with 

plasmid of resistance 

104 Bacteria/ml 

Bacteria BM Maximal population 106 Bacteria/ml 

PD CS50 concentration to obtain 50 % of the 

maximal killing effect KKS on 

susceptible population 

1 mg/L 

PD CR50 concentration to obtain 50 % of the 

maximal killing effect KKR on 

resistant population 

8 mg/L 

PD Gamma Gamma 1 Unitless 

PD KKs Killing rate for susceptible 

population 

2 X Growth rate h-1 

PD KKr Killing rate for susceptible 

population 

2 X Growth rate h-1 

Table 2 : Fixed conditions tested in the PKPD model of clonal dissemination 

 

4.5. Pattern analysis and software 

 

To study the relationship between bacteriological parameters and the development of resistance in 

fixed condition of exposure, we performed Monte Carlo Simulations only for the 4 following microbial 

parameters:  growth, plasmid transfer, segregation rate and fitness cost Table 3.  
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Parameter Definition Unit Range Distribution 

g  growth rate h-1 0.5 - 1 Uniform 

Tr  transfer rate ml cell-1h-1 10-20 – 10-7 Log Uniform 

Sg segregation rate h-1 0.01 – 0.3  Log Uniform 

FC Fitness cost Unitless 0-0.1 Uniform 

Table 3 : Microbial parameters and their probability distribution for Monte Carlo simulation 

 

To analyse the different patterns, we developed a Rmarkdown (Allaire, 2020) process using R with 

different packages as detailed below 

The processing contains the simulation of different randomized bacteriological parameters using 

Simulx (Lavielle, 2020). The sets of parameter values, leading to a correct simulation, were collected 

for analysis. The outputs were the size of the two bacterial populations and the percentage of 

resistance observed over time.   

During the development of the processing, problems in simulation were identified for a part of the 

generated parameters. After a filtering of the outputs, we performed the statistical analysis on the 

valid simulation outputs.  

 

Pattern analysis and clustering of the time series of resistance along time were performed using the 

package dtwclust (Sardá-Espinosa 2019) and the function tclust. The type of clustering is 'partitional'. 

The number of pattern cluster is set at 9. The different classes of patterns were graphically reported. 

The distribution of the different parameters and the values of resistance at different time according to 

the pattern were analysed.  

A factorial analysis (Partial Component Analysis) using the package FactomineR (Sebastien, 2008) 

studies the correlation between resistance and bacteriological parameters. 

 

4.6. Results 

 

4.6.1. No antibiotic  

The clusters (Figure 20A) lead to 100 % of resistance (1, 5, 9), high level of resistance (3), intermediate 

(7) and low level of resistance with slow increase (4), negligible with slow increase (2, 8) or decrease 

(6).  
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Figure 20 : Clusters’ members of antimicrobial resistance evolution (A) and the associated distribution 
of transfer rate values (B) 
A: The cluster were simulated over time (by step of 4 h) in case of no treatment. B : Boxplot of log of 
transfer rates for the 9 clusters observed in absence of antibiotic. 
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The pattern are clearly associated to the plasmid transfer rates (expressed as decimal log) (Figure 20B). 

However, fitness cost, growth and segregation rates are not correlated with the development of 

resistance in absence of antimicrobials as shown by the PCA graph (Figure 21). 

 

 

Figure 21 : Partial component analysis of relation between variances and bacterial parameters as 
explicative variables. 
Resistance ratio at 72, 120, 240 and 480 h are reported as observed variables. 

 

4.7. PK and Dosage regimen 

 

The model was then applied with fixed pharmacokinetic parameters (no variability) and different 

dosage regimens to analyse the influence of bacterial parameters on development of antimicrobial 

resistance. 

 

4.7.1. Dosing regimen n°1 

 

The first dosing regimen was based on three doses of 10 mg/kg at 24 h interval were simulated to show 

the effect of a selective pressure on the evolution of the susceptible and resistant populations and 

development of resistance. 
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Figure 22 : Antibiotic time-concentration profile with the dosing regimen n°1  
Conditions: 3 doses of 10 mg/kg/24h, Ka=1, k=0.1, V=1, F=1 mono-compartmental model with 
absorption. 
 

The impact of such dosing regimen on the number of resistant and sensitive bacteria is given in Figure 

23. The impact of the antibiotic treatment is clear with a median resistance ratio close to 100% during 

the whole treatment period. After the end of treatment, the level of each bacteria greatly varied.
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Figure 23 : Percentiles distribution for the Sensitive, Resistant bacteria number and resistance ratio over time with the dosing regimen N°1 
Conditions: 3 doses of 10 mg/kg/24h, Ka=1, k=0.1, V=1, F=1 mono-compartmental model with absorption. 

Sensitive bacteria Resistant bacteria Resistance ratio

Time (h) Time (h) Time (h)
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The evolution of resistance follows different patterns, as illustrated in the Figure 24A. The clusters lead 

to 100 % of resistance at 48 h that persisted to a value close to 100%  until 480h (2, 4, 5, 6), high level 

of resistance (1,8), medium level (1,7) and low level of resistance (3,9). Again, the patterns were clearly 

associated to the plasmid transfer rates (expressed as decimal log, Figure 24B) with high value 

associated to high level of resistance. On the contrary, high value of segregation rate were associated 

to the loss of resistance along time (9) (Figure 24C). These relations were confirmed by the PCA analysis 

(Figure 25).
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Figure 24 : Clusters’ members of antimicrobial resistance evolution (A) and the associated distribution of transfer rate values (B) and segregation rate (C). 
A: The cluster were simulated over time (by step of 4 h) with the following treatment: 3 doses of 10 mg/kg/24h, Ka=1, k=0.1, V=1, F=1 mono-compartmental model 
with absorption. B and C : Boxplot of log of transfer rates and segregation rate (respectively) for the 9 clusters; 
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According to this PCA analysis, the fitness cost and growth were also partially correlated with the 

percentage of resistance at different time points as shown in Figure 25. 

 

 

Figure 25 : Partial component analysis of relation between variances and bacterial parameters as 
explicative variables for the design regimen n°1. 
Resistance ratio at 72, 120, 240 and 480 h are reported as observed variables. 

 

4.7.2. Dosing regimen n°2 

 

The second dosing regimen included five doses of 10 mg/kg at 24 h interval (Figure 26) to simulate the 

effect of a longer treatment on the selective pressure of the susceptible and resistant populations and 

development of resistance (Figure 27) 
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Figure 26 : Antibiotic time-concentration profile with the dosing regimen n°2  
Conditions: 5 doses of 10 mg/kg/24h, Ka=1, k=0.1, V=1, F=1 mono-compartmental model with 

absorption)
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Figure 27 : Percentiles distribution for the Sensitive, Resistant bacteria number and resistance ratio over time with the dosing regimen N°2 
Conditions: 5 doses of 10 mg/kg/24h, Ka=1, k=0.1, V=1, F=1 mono-compartmental model with absorption. 

Sensitive bacteria Resistant bacteria Resistance ratio

Time (h) Time (h) Time (h)
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As for the first dosing regimen, the evolution of resistance follows different patterns. The clusters lead 

to 100 % of resistance at 48 h followed by high levels of resistance until 480h (1, 2, 3), high level of 

resistance (4, 6), medium level (7) and low levels of resistance (5,8,9). The patterns were still clearly 

associated to the plasmid transfer rates and segregation rate values, with a positive correlation 

between level of resistance and plasmid transfer and a negative correlation with the segregation rates 

(Figure 28 B,C).
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Figure 28 : Clusters’ members of antimicrobial resistance evolution (A) and the associated distribution of transfer rate values (B) and segregation rate (C). 
A: The cluster were simulated over time (by step of 4 h) with the following treatment: 5 doses of 10 mg/kg/24h, Ka=1, k=0.1, V=1, F=1 mono-compartmental model 
with absorption. B and C : Boxplot of log of transfer rates and segregation rate (respectively) for the 9 clusters; 
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According to the PCA analysis, the fitness cost and growth were not correlated with the percentage of 

resistance at different time points as shown in Figure 29. 

 

 

Figure 29 : Partial component analysis of relation between variances and bacterial parameters as 
explicative variables for the design regimen n°2. 
Resistance ratio at 72, 120, 240 and 480 h are reported as observed variables. 

 

4.7.3. Dosing regimen n°3 

 

 

For the last dosing regimen, three doses of 1 mg/kg at 24 h interval associated to a low clearance value 

and slow absorption rate (Ka= 0.1, k=0.01) that lead to accumulation of the antibiotic were simulated 

(Figure 30) to show the effect of long term selective pressure on the evolution of the susceptible and 

resistant populations and development of resistance. 
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Figure 30 : Antibiotic time-concentration profile with the dosing regimen n°2  
Conditions: 3 doses 1 mg/kg/24h, Ka=0.1, k=0.01, V=1, F=1 mono-compartmental model with 

absorption)
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Figure 31 : Percentiles distribution for the Sensitive, Resistant bacteria number and resistance ratio over time with the dosing regimen N°3 
Conditions: 3 doses 1 mg/kg/24h, Ka=0.1, k=0.01, V=1, F=1 mono-compartmental model with absorption) 
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Time (h) Time (h) Time (h)
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The evolution of resistance follows different patterns but with less diversity than for the other dosing 

regimens (Figure 32 A). The clusters lead to 100 % of resistance at 96 h followed by high levels of 

resistance until 480h (1, 2, 3, 5, 7), high level of resistance (6), medium level (8, 9).  

As seen with the other dosing regimens, the clusters were associated to the value of the log transfer 

rate with high value associated to high level of resistance (Figure 32 B) while high value of segregation 

rate were associated to the loss of resistance along time (Figure 32 BC. According to the PCA analysis, 

the fitness cost and growth rate are partially correlated with the percentage of resistance at different 

time points (Figure 33).
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Figure 32 : Clusters’ members of antimicrobial resistance evolution (A) and the associated distribution of transfer rate values (B) and segregation rate (C). 
A: The cluster were simulated over time (by step of 4 h) with the following treatment: 3 doses 1 mg/kg/24h, Ka=0.1, k=0.01, V=1, F=1 mono-compartmental model with 
absorption. B and C : Boxplot of log of transfer rates and segregation rate (respectively) for the 9 clusters; 
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Figure 33 : Partial component analysis of relation between variances and bacterial parameters as 
explicative variables for the design regimen n°3. 
Resistance ratio at 72, 120, 240 and 480 h are reported as observed variables. 

 

4.8. Discussion about the clone dissemination 

 

The modelling approach and analysis workflow were inspired by the work done previously by the team 

of Volkova (Cazer, Volkova, and Gröhn 2018; 2014). For our study, we limit our analysis on the effect 

of bacterial parameters describing horizontal gene transfer on the selection of resistance. We choose 

to test the influence of the combination of parameters on resistance selection by the use of clustering 

approach adapted to time series and recently provided as R Package (Sardá-Espinosa 2019).  

To assess the influence of the bacterial parameters on the different patterns, we analyse the 

distribution of the log value of the plasmid transfer, growth and plasmid segregation rates and the 

value of the fitness cost. The range of value tested were closed to those reported in a similar study 

simulating evolution of antimicrobial resistance in humans (Tepekule et al. 2019). In fixed conditions 

of antibiotic exposure, the most important parameters were always the plasmid transfer and 

segregation rates (Figure 25, Figure 29, Figure 33). Their combination explains the type of equilibrium 

reached after an antimicrobial selective pressure period as well as the equilibrium reached over time 

after introduction of a resistant population without any selective pressure. Our results are similar to 

those recently reported about the influence of HGT on the development of resistance in different 
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conditions of selective pressure (Lopatkin et al. 2017) who had investigated in vitro the persistence of 

plasmids. They developed some models to take into account different hosts with different bacterial 

properties. Our modelling approach is able to combine three model layers, PK, Bacterial and PD to 

investigate the effect of variability of the different parameters on the development of resistance. The 

influence of each layers can be independently simulated as fixed or under random conditions, as seen 

with the full PKPD model in pigs (see part. 3). 

The use of time pattern clustering allow us to classified easily the different patterns leading to different 

level of resistance (Figure 24, Figure 28,Figure 32) and to analyse their relation with the variance by 

partial component analysis  (Figure 25, Figure 29, Figure 33). Overall this modelling approach combined 

with a statistical analysis of the patterns of time series offers the opportunity to move forward in the 

research of synergy between plasmid-curing compounds and conjugation inhibitors as antibiotic 

adjuvant as suggested by different authors (Lopatkin et al. 2017; Hernando-Amado et al. 2019; 

Baquero 2011). It offers also the opportunity to develop more complex models able to describe the 

ecological inter-relation between bacterial species in the microbiota in order to get a better 

assessment of the impacts of antimicrobial treatments (Ruppé et al. 2019, Burdet et al. 2019).   

 

 

5. General discussion 

5.1. Gaps to develop mechanistic PKPD models 

 

There is a need of a better understanding of the mechanism that contribute to the spread of 

antimicrobial resistance in farm animals in order to limit and control this risk. Therefore, mechanistic 

models were developed in order to describe these phenomena and hence, find which relevant policy 

measure could be taken. The main aim of the generic PKPD model developed in this work was to 

include a relevant pharmacokinetic part and find which factors are the most important in the selection 

of resistant bacteria. 

Our results explored the influence of the route of administration on the actual exposure of intestinal 

bacteria, but also highlighted the most influential bacterial parameters that lead to the development 

of resistance. As outlined in this recent review, there are only few model that take into account the PK 

at the host level and the bacterial/PD part simultaneously (Birkegård, et al., 2018).  

However, we could identify several gaps that prevent the development of robust PKPD models of AMR 

(Birkegård, et al., 2018; Knight, et al., 2019; Leclerc, et al., 2019; Niewiadomska, et al., 2019) :  
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 As for many of antimicrobial resistance model previously published, these models are based on 

parameters values that are either empirically derived or based on a simplification/extrapolation of 

published values that may not always be relevant (Birkegård, et al., 2018; Knight, et al., 2019). As 

an example, a recent meta-analysis about conjugation frequencies from Escherichia coli 

highlighted the impact of different factors like the temperature, the type of media (liquid/solid), 

etc… (Alderliesten, et al., 2020). As a consequence, they  reported conjugation frequencies with a 

variation over 11 orders of magnitude (4.5.10− 11 – 2.1)(Alderliesten, et al., 2020).  Moreover, some 

experimental conditions are far from the reality and it may be erroneous to derive conclusions 

based on their results. For instance, bacterial interaction are often studied in liquid culture assays 

whereas bacteria are very often in dense community on solid media (Frost, et al., 2018). There is 

a need to further study the bacterial interactions (competition/cooperation with the space 

dimension), between sensitive and resistant strains of the same species, especially in a complex 

environment as the gut microbiota. Recent studies showed surprising results : antibiotic treatment 

may select against antibiotic-resistant strains, by promoting the competition towards sensitive cell 

because the resistance mechanism, for instance beta-lactamase produced by resistant strains that 

protect the sensitive ones (Frost, et al., 2018). This is definitively a major limiting factor for the 

predictive ability of these models because we showed that these parameters are the most 

influential in the outcome of resistance spread (see part 4.) 

 

 The complexity to develop a realistic digestive PK model: huge variability/heterogeneity between 

literature data, because of the differences of the study design (different breed of pigs/weight/age/ 

fasted or not…) (Tan, et al., 2016) but also due to the inherent variability of the transit rate within 

digestive tract between individuals (Kostewicz, et al., 2014). The impact of the type of food/meal 

is also important on the variability of the digesta flow, and this has been shown even with 

indigestible markers (Jacobs, et al., 2017).  To get a more precise view of the impact of 

antimicrobial within microbiota, more mechanistic model could be used that take into account 

much more physiological parameter (pH, nutriments concentrations, peristaltic flow(Cremer, et 

al., 2017),…). However, most PBPK models of the digestive tract that were developed for human 

are focused on the oral absorption processes rather than the local impact of drug on the 

microbiota.  

 

 The need of (external) observed data to validate the model although it is more difficult to carry-

out in vivo experiments, compared to in vitro experiments, due to financial and ethical reasons. 

This is the main limitation to most of all published models which a lack of real validation 
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(predictions without confronting real data). Again, the methods of measurement/collections of the 

observed data is fundamental. The best would be to get individual longitudinal data, in order to 

characterize properly the intra-individual variability. For instance, concerning the resistant 

bacteria within intestinal/fecal samples, it is often only pooled samples from several animals at 

few different time points. However, one study showed that the sampling times influence the 

variability in antimicrobial resistance (expressed in fecal E. coli ) more than the within-animal 

diversity in pig faeces (Brun, et al., 2002). The question of the representativeness of the intestinal 

concentration of antibiotic by assaying faecal sample is also raised. As the colon is the site of water 

reabsorption all along its tract, it may increase the concentration of antibiotic at the end and 

therefore we may overestimate the actual exposure of intestinal bacteria to antibiotic. 

Nevertheless, it remains an easy and non-invasive way of exploring the digestive antimicrobial 

concentration evolution.  

 

 

5.2. The persistence of antimicrobial resistance 

The use of ATB is known to be a driver of emergence/selection of ATBR but the opposite is not always 

true. Indeed, the prudent use or the cessation of use of ATB will not always lead to a decrease of 

antibiotic resistance (Christaki, et al., 2019). Several reasons were given by Christaki et al, in order to 

explain this phenomena: 

- Compensatory mutations which restore the fitness of antibiotic-resistant bacteria and thus which 

help the se bacteria to compete with sensitive ones. 

-  Plasmid acquisitions which are fitness cost-free for the resistant bacteria (and sometimes also for 

chromosomal mutations) 

- Co‑selection with other resistance gene, especially due to the fact that plasmid often harbour multi-

resistance genes 

- Plasmid stability mechanisms (Wein, et al., 2019) 

Some authors used a modelling approach to outline the importance of bacterial persistence in the 

evolution of antibiotic resistance (Windels, et al., 2019). However, their main goal was to give a 

supportive framework of their hypothesis, thus they used parameters values which are not specific for 

any antibiotic-strain combination. As a consequence, it is quite difficult to re-use this kind of model 

without the relevant parameters values. Again, the increase of data collection should help the future 

improvements of these models. 
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Another interesting phenomena is the collateral sensitivity, a process in which a bacteria strain 

becomes hypersensitive to an antibiotic A meanwhile she becomes resistant to antibiotic B.  This may 

happen for some particular antibiotic couple due to opposite effect of the mutations associated to the 

resistance mechanisms for each antibiotic. Therefore, it is hypothesized that alternating between drug 

A and drug B over time will help to limit the risk of ATB-R. A recent PKPD model was published to 

explore this feature (Udekwu, Weiss, 2018) but was not validated against experimental observed data. 

This should be further developed in order to manage the use of antibiotic within farms where the same 

molecules are frequently used. 

 

5.3. The immune system 

Several authors have already included the immune system in their PKPD model (Ankomah, Levin, 2014; 

Gjini, Brito, 2016). These papers highlight the importance of the immune component to control the 

bacterial load within infection sites. However, these models only apply to acute infection (with 

existence of a population of resistant bacteria), a situation where a clear involvement of the immune 

response is expected. In our case for amoxicillin, the gut microbiota is not the primary site of infection 

and thus the immune response should not be a major factor affecting the response to the treatment. 

Moreover, it would be quite difficult to model the immune response within gut due to the complexity 

of this organ and the importance of the spatial dimension in the different segment. Some model were 

developed, for instance to describe the infection by Helicobacter pilori within gastric mucosa and the 

associated immune response (Verma, et al., 2019). However, to our knowledge, none of them is a PKPD 

model which takes into account the effect of antibiotic, immune response and the gut microbiota.  
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6. CONCLUSION 

 

This work highlighted the different tools and methods that exist but also the numerous gaps to develop 

a mechanistic PKPD model of antimicrobial resistance within guts. Our work outlined the relative 

importance of the inherent variability of each PK and PD sub-levels for the understanding of the 

evolution of bacterial populations toward resistance development/selection after a perturbation due 

to an AMD. The influence of specific bacterial parameters on the plasmid dynamism and its influence 

on the selection, maintenance or disappearance of resistance could be independent of the initial 

exposition.  

This work outlined that the mechanistic modelling of the digestive tract is still challenging and should 

be improved but will probably need additional data. Some very mechanistic models of digestion and 

food transit have already been published but are sometimes theoretical with parameters values not 

based on experimental measures (Taghipoor, et al., 2014). The complexity of such model will 

definitively need inter-disciplinary approach combining mathematicians and 

pharmacologist/biologists. 

For the PD model, our simulations focused only on one bacterial specie, E. coli, and the different case 

scenario outlined the need to get a better understanding of the bacterial interactions within specie 

(Davies, et al., 2019). Indeed, these interactions/competitions between strains are likely a major key 

that affects the dynamics of resistance evolution (Knight, et al., 2019). However, the inter-specie 

transmission of AMR should also be considered (Leclerc, et al., 2019) and the development of more 

complex model including the whole microbiota is currently an ongoing research topic (Cremer, et al., 

2017; Ruppé, et al., 2019) and it will probably be possible within the next years to include ecological 

models inside the PKPD models. 
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7. ANNEXES 

7.1. ANNEXE 1 

Table 4 : Published PKPD models for swine intestinal microbiota 

PK model PD model Used observed data Modeling method Type of 

validation 

References 

Digestive tract represented as one 

Compartment for ciprofloxacin 

(compartmental/empirical 

approach) 

2 populations (R 

and S). 

Strains: E. coli 

Faecal data of ciprofloxacin 

concentrations and count of R 

population and total (S+R)  

Parameter estimations with NLME 

model based on observed data 

Internal 

validation 

(Nguyen, et al., 

2014) 

 

Constant intestinal concentration 

of tetracycline over the duration of 

treatment.  

Multiple strains of E. 

coli (until 20 per 

pig), mix of R and S. 

No observed data Pure simulations (MC ?) with 

parameters distributions/values from 

literature or author’s assumptions 

None (Græsbøll, et al., 

2014) 

Two-compartmental PK-model for 

tetracycline. Plasma concentration 

as surrogate. 

12 strains of E. coli 

(between 3 and 12 

per pig). 1/3 R and 

2/3 S 

Published plasma data for PK 

parameters. 

In vitro data for PD 

parameter.  

No information about PK nor PD 

parameters estimation method. 

Pure simulations 

None (Ahmad, et al., 

2015) 

Two-compartmental PK-model for 

ampicillin. Plasma concentration 

as surrogate 

Multiple strains of E. 

coli (between 3 and 

12 per pig). 1/3 R 

and 2/3 S 

Published plasma data for PK 

parameters  

In vitro data for PD parameter  

No information about PK parameters 

estimation method.  

Nonlinear least square algorithm for 

PD parameter. Pure simulations 

None (Ahmad, et al., 

2016b) 

Two-compartmental PK-model for 

ampicillin and tetracycline.  

Plasma concentration as surrogate 

10 strains of E. coli Published plasma data for PK 

parameters  

In vitro data for PD parameter 

- No information about PK parameters 

estimation method.  

- nonlinear minimizing routine for 

growth rates then nonlinear 

minimizing routine for the other PD 

parameters  

None (Ahmad, et al., 

2016a) 
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7.2. ANNEXE 2 : Rmarkdown code for clone dissemination 

 

Mathematical Model 

 

The pharmacokinetic model corresponds to a single compartment with an extravascular administration 

with 3 PK parameters: V, volume of distribution, ka, rate of absorption and k, rate of elimination. The 

bacterial clone is described by its growth rate (g) and the maximal population size (BM). The plasmid 

carrying a resistance gene is described by its fitness cost (fc), its transmission factor (ltr) and is 

segregation rate (sg). The antimicrobial killing rate is described by a hill function with a maximal killing 

rate corresponding to the double of the growth rate, a concentration to reach 50% of the maximum killing 

rate and a hill factor (gamma or gammap). The susceptible and resistant bacteria differ only by the 

difference of potency (EC50 and EC50p) and the fitness cost. 

 

The model is coded in mlxtran for simulation by simulx using R. 

Mymodel<-inlineModel("<MODEL> 
[INDIVIDUAL] 
                     input={g_min, g_max,ltr_min,ltr_max,fc_min,fc_max,lsg
_min,lsg_max} 
                      
                     DEFINITION:  
                     g={distribution=uniform, min=g_min, max=g_max} 
                     ltr={distribution=uniform, min=ltr_min, max=ltr_max} 
                     fc={distribution=uniform, min=fc_min, max=fc_max} 
                     lsg={distribution=uniform, min=lsg_min, max=lsg_max} 
 
  [LONGITUDINAL] 
input = {ka, V, k, g, Emax, Ec50, gamma,Emaxp,Ec50p,gammap,ltr,fc,Lb0,Lb0p
,LbM,lsg} 
 
PK: 
Cc = pkmodel(ka,V,k) 
 
EQUATION: 
t0=0 
B_0=10^Lb0-10^Lb0p 
Bp_0=10^Lb0p 
BM=10^LbM 
tr=10^ltr 
sg=10^lsg 
Cg=(Cc^gamma) 
Cgp=(Cc^gammap) 
ddt_B=g*B*(1-((B+Bp)/BM)-(2*g*Cg/((Ec50^gamma)+Cg)))-tr*B*Bp+sg*g*Bp 
ddt_Bp=g*Bp*(1-fc-sg)*(1-((B+Bp)/BM)-(2*g*Cgp/((Ec50p^gammap)+Cgp)))+tr*B*
Bp 
B_sat=max(B,1e-6) 
Bp_sat=max(Bp,1e-6) 
R=Bp_sat/(B_sat+Bp_sat) 
") 

Conditions for simulation 
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Nind<-500 
Tsimulation<-c(480) 
IntSim<-c(4) 
Amount<-c(10) 
Ndose<-c(3) 
IntDose<-c(24) 
ka<-c(1) 
k<-c(.1) 
V<-c(1) 
gmin<-0.5 
gmax<-1 
LbM<-c(6) 
Lb0<-c(5.98) 
Lb0p<-c(4) 
Emax<-c(2) 
Emaxp<-c(2) 
EC50<-c(1) 
EC50p<-c(8) 
Gamma<-c(1) 
Gammap<-c(1) 
ltr_min<--12 
ltr_max<--2 
lsg_min<--2 
lsg_max<--0.52 
fc_min<-0 
fc_max<-.1 

## [INFO] The lixoftConnectors package has been successfully initialized: 
## lixoftConnectors package version -> 2019.1 
## Lixoft softwares suite version   -> 2019R1 

The output value are the concentration, the size of bacterial populations and the fraction of resistance 

R. The individual parameters g, ltr, sg and fc are recorded. 

 

Clustering analysis of Resistance time series 

 

The resistance time series have been joined to the table containing individual value for bacteriological 

parameters. Then they are standardized for further analysis by rejection of time series containing 

negative value or value above 1. 

## function (x, ...)  
## UseMethod("end") 
## <bytecode: 0x0000000011fe9aa8> 
## <environment: namespace:stats> 

Pattern analysis and clustering have been performed using the package dtwclust and the function tclust. 

The type of clustering is 'partitional'. The number of pattern cluster is set at 10. 

 

 

Figure : Centroid patterns for resistance by cluster 
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Mean value and standard deviation for the different parameters and resistance levels at 24, 48, 96, 240 

and 480 h are summarized in the following tables. 

Table : Growth rates (mean, SD) by cluster 

cluster N moy sd 

1 30 0.88 0.08 

2 85 0.76 0.14 

3 38 0.75 0.15 

4 43 0.71 0.14 

5 47 0.74 0.15 

6 12 0.69 0.13 

7 31 0.77 0.13 

8 183 0.75 0.14 

9 30 0.70 0.15 
 

Table : Segregation rates (mean, SD) by cluster 

cluster N moy sd 

1 30 -1.02 0.10 

2 85 -1.47 0.25 

3 38 -1.27 0.45 

4 43 -1.33 0.45 

5 47 -1.48 0.42 

6 12 -0.62 0.07 

7 31 -0.74 0.10 

8 183 -1.35 0.42 

9 30 -1.13 0.17 
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Table : Plasmid transfer rates (mean, SD) by cluster      Table : Plasmid costs (Mean, SD) by cluster 

 

cluster N mean sd 

1 30 -10.11 0.91 

2 85 -9.82 1.28 

3 38 -6.90 0.45 

4 43 -6.17 0.52 

5 47 -8.52 1.45 

6 12 -9.55 0.82 

7 31 -10.43 1.11 

8 183 -3.89 1.06 

9 30 -9.93 1.29 
 

cluster N Mean sd 

1 30 0.057 0.026 

2 85 0.050 0.029 

3 38 0.048 0.029 

4 43 0.049 0.028 

5 47 0.047 0.029 

6 12 0.052 0.024 

7 31 0.060 0.029 

8 183 0.051 0.031 

9 30 0.047 0.029 

 

Table : Resistance at 24 h (Mean, SD) by 

cluster 

cluster N Mean sd 

1 30 0.877 0.029 

2 85 0.908 0.101 

3 38 0.898 0.083 

4 43 0.957 0.038 

5 47 0.890 0.092 

6 12 0.615 0.100 

7 31 0.737 0.069 

8 183 0.998 0.003 

9 30 0.806 0.125 
 

Table : Resistance at 48 h (Mean, SD) by 

cluster 

cluster N Mean sd 

1 30 0.882 0.026 

2 85 0.939 0.052 

3 38 0.920 0.060 

4 43 0.968 0.019 

5 47 0.931 0.063 

6 12 0.700 0.035 

7 31 0.776 0.028 

8 183 0.998 0.003 

9 30 0.879 0.048 

 

Table : Resistance at 96 h (Mean, SD) by 

cluster 

cluster N Mean sd 

1 30 0.686 0.050 

2 85 0.843 0.088 

3 38 0.870 0.067 

4 43 0.960 0.022 

5 47 0.841 0.112 

6 12 0.452 0.031 

7 31 0.528 0.042 

8 183 0.998 0.003 

9 30 0.717 0.080 
 

Table : Resistance at 240 h (Mean, SD) by 

cluster 

cluster N Mean sd 

1 30 0.094 0.017 

2 85 0.268 0.060 

3 38 0.775 0.070 

4 43 0.949 0.032 
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5 47 0.443 0.076 

6 12 0.060 0.015 

7 31 0.066 0.019 

8 183 0.999 0.003 

9 30 0.149 0.025 

 

Table : Resistance at 480 h (Mean, SD) by cluster 

cluster N Mean sd 

1 30 0.038 0.008 

2 85 0.141 0.040 

3 38 0.774 0.071 

4 43 0.949 0.032 

5 47 0.351 0.119 

6 12 0.027 0.010 

7 31 0.028 0.011 

8 183 0.999 0.003 

9 30 0.070 0.014 
 

Factorial analysis 

A factorial analysis is performed on the distribution of bacterial parameters. 

MPCA<-cbind(MPC[,2:5],MR[,19],MR[,31],MR[,61],MR[,121]) 
vars<-c("growth","transfer rate","seg rate","fitness cost","R 72","R 120", 
"R 240","R 480") 
colnames(MPCA)<-vars 
res.pca<-PCA(MPCA,ncp=5,graph=TRUE)
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