
NeuralPot: An Industrial Honeypot Implementation
Based On Deep Neural Networks

Ilias Siniosoglou∗, Georgios Efstathopoulos†, Dimitrios Pliatsios∗, Ioannis D. Moscholios‖

Antonios Sarigiannidis¶, Georgia Sakellari‡, Georgios Loukas‡, Panagiotis Sarigiannidis∗§
∗Department of Electrical and Computer Engineering

University of Western Macedonia, Kozani, Greece
{isiniosoglou, dpliatsios, psarigiannidis}@uowm.gr

†0 INFINITY Limited
Imperial Offices, London, United Kingdom

george@0inf.com
‖Department of Informatics and Telecommunications

University of Peloponnese Tripoli, Greece
idm@uop.gr

¶Sidroco Holdings Ltd.
Limassol, Cyprus

asarigia@sidroco.com
‡Computing and Information Systems

University of Greenwich, London, United Kingdom
{g.sakellari, g.loukas}@greenwich.ac.uk

Abstract—Honeypots are powerful security tools, developed
to shield commercial and industrial networks from malicious
activity. Honeypots act as passive and interactive decoys in a
network attracting malicious activity and securing the rest of
the network entities. Since an increase in intrusions has been
observed lately, more advanced security systems are necessary.
In this paper a new method of adapting a honeypot system in
a modern industrial network, employing the Modbus protocol,
is introduced. In the presented NeuralPot honeypot, two distinct
deep neural network implementations are utilized to adapt to
network Modbus entities and clone them, actively confusing
the intruders. The proposed deep neural networks and their
generated data are then compared.

Index Terms—Industrial Control System, SCADA, Honeypots,
GAN Network, Autoencoder Network, Data Generation

I. INTRODUCTION

Industrial Control Systems (ICS) are the fundamental con-
trol elements, both hardware and software, used to organize
and oversee industrial network processes such as water and
gas pipeline distribution, heavy manufacturing, generation and
distribution of energy. A typical ICS system is composed
of a central controller, and a number of distributed field
devices, such as sensors and actuators. Custom communication
protocols are used to enable the data exchange between the
controller and the field devices. As the legacy ICS operated

§ The corresponding author is Panagiotis Sarigiannidis
(psarigiannidis@uowm.gr)

on isolated networks, using custom communication protocols,
they were resistant to cyber attacks [1]. Driven by the need for
high scalability, computational-intensive processes, and remote
monitoring and control, as well the rapid evolution of Infor-
mation and Communication Technologies (ICT), modern ICS
are connected to the Internet. In addition, in order to provide
seamless integration among various components, as well as
different vendors, well-known communication protocols are
utilized. As a result, modern ICS are exposed to numerous
security threats.

A cyber attack against an ICS can have devastating conse-
quences on public health and safety. For example, an attacker
can compromise an ICS and shut down electricity, gas, and
water services, or destroy critical military infrastructure. Re-
ports in [2] and [3] show an increasing number of security
incidents and cyber attacks against critical ICS infrastructure.
Consequently, security considerations for ICS are gaining
higher priority and consideration than those for traditional ICT
systems due to the potential impact on the physical safety
of employees, customers, or communities. The Repository of
Industrial Security Incidents (RISI) [4] contains 242 reported
incidents dating from 1982 to 2014. Each record contains the
year, title, industry type, country and information about the
incident and its impact.

In order to address these threats, ICS have adopted several
security mechanisms and tools form the conventional computer
networks. The Intrusion Detection Systems (IDS) are effective
countermeasures against security threats. Depending on their
operation, IDS can be categorized into signature-based and978-1-7281-8086-1/20/$31.00 c©2020 IEEE

SPEAR H2020
Typewriter
I. Siniosoglou et al., “NeuralPot: An Industrial Honeypot Implementation Based On Deep Neural Networks,” presented at the 2020 IEEE Symposium on Computers and Communications (ISCC), Jul. 2020, doi: 10.1109/iscc50000.2020.9219712This is the author's preprint version, the published version is available at the IEEE Xplore Library: https://ieeexplore.ieee.org/document/9219712

SPEAR-H2020
Sticky Note
I. Siniosoglou et al., “NeuralPot: An Industrial Honeypot Implementation Based On Deep Neural Networks,” presented at the 2020 IEEE Symposium on Computers and Communications (ISCC), Jul. 2020, doi: 10.1109/iscc50000.2020.9219712This is the author's preprint version and not the final published version. The published version is available at IEEE Xplore Digital Library: https://ieeexplore.ieee.org/document/9219712

behavior-based detection systems [5]. Signature-based IDS,
which are simpler to deploy and operate, utilize a database of
previously known attack signatures and system vulnerabilities.
However, they are inefficient against new and unknown at-
tacks. Behavior-based IDS continuously monitors the network
traffic and compare it to a reference traffic pattern. In case of
any deviation from the reference traffic, the IDS classifies the
traffic as a cyber attack.

A. Motivation and Contribution

The concept of honeypots has emerged as an effective
method to generate the signature database, as well as to
discover novel attack methods and tools [6]. Honeypots mimic
the operation of applications, services, and devices in order to
attract potential attackers to attack them instead of attacking
the real ones [7].

Honeypots are extensively used in the protection of conven-
tional computer networks. Nevertheless, the use of honeypots
in industrial environments is limited, due to several challenges
[8]. In this paper, a novel method of generating pseudo-traffic
used for masking and adapting an industrial honeypot into a
network is described.

This implementation aims to actively mislead attackers and
redirect their interest away from the real network devices. To
accomplice this, a Deep Neural Network (DNN) scheme is
introduced. DNNs are used in a variety of technological and
scientific fields due to their rapid evolution and implementation
as well as their reliability and scalability. This work leverages
DNNs as a dynamic method of generating Modbus traffic data.
The generated data are not statically defined, but they are
adapted to those of a real device.

Specifically, two different categories of Neural Networks are
employed, namely the Generative Adversarial Network (GAN)
[9] and the Auto-Encoder Network [10] in order to learn the
device behavior and generate similar traffic. Finally, the DNN
implementations are compared to evaluate their performance.

This work also introduces a new way of preprocessing and
transforming Modbus response data from a network entity to
Modbus memory data and consequently presenting them to the
aforementioned deep neural networks. From this method all
the required information is extracted to customize a honeypot
to the specific network entity.

By adapting these techniques into modern honeypots and
placing multiple of those honeypots into a network, due to
their low hardware needs, will engulf any possible intruder
with a plethora of digital interactive mines and will make the
important components of the network almost indistinguishable
to the attackers means.

Therefore, the contribution of this work is summarized as
follows:

• Design an autonomous system that dynamically analyzes
network traffic from Remote Terminal Units (RTUs) and
Programmable Logic Controllers (PLCs).

• Design a Deep Neural Network (DNN) that generates
network traffic that is adapted to the real network traffic.

• Implement a novel honeypot that utilizes DNNs to gen-
erate traffic in order to attract potential attackers and
mislead them into attacking the honeypot instead of the
real RTUs and PLCs.

The rest of the paper is organized as follows: Section
II presents the related work, while section III provides the
fundamental background. Section IV presents the design and
the proof of concept implementation. In section V the evalu-
ation results are presented and discussed. Finally, section VI
concludes the paper.

II. RELATED WORK

The notion of honeypots is quite popular in the literature.
The authors in [11] reviewed and discussed the recent ad-
vances as well as the future trends in honeypot research. The
survey suggests that honeypot research is on the rise due to the
increasing number of connected devices. Moreover, research
honeypots generate valuable data that are used to improve and
develop new honeypots. Finally, the legal and ethical concerns
of honeypot usage is an important research area.

Simoes et al. [12] investigated the utilization of honeypots in
ICS environments, along with implementation and deployment
strategies. In addition, the authors impended and compared two
ICS honeypot systems, one hosted on a physical device, while
the other is hosted on a virtual machine. The results indicate
that low-cost machines can provide enough computational
resources, and in cases where the location of the honeypot
is irrelevant, the virtual honeypots are more flexible and cost-
effective.

The authors in [13] presented the architecture of an ICS
novel honeypot, and deployed a modular and scalable hon-
egynet architecture on the Amazon EC2 cloud platform. In
addition, they conducted a series of realistic experiments in
order to validate feasibility of the proposed approach, as well
as to highlight the impact of proper security mechanisms in
ICS environments.

In [14], the authors presented the design of a high-
interaction ICS honeypot that aims to address the main chal-
lenges related to ICS requirements. In addition, the authors
utilized the MiniCPS framework in order to implement the
proposed honeypot. In order to evaluate it, they organized
a Capture The Flag (CTF) competition, hosted by Singapore
University of Technology, where they deployed a water treat-
ment testbed.

The authors in [15] presented a method for a dynamic
honeypot configuration, deployment, and maintenance strategy
based on machine learning techniques. The method utilizes
an identification mechanism in order to cluster the devices
in a network. Based on the clusters, a number of honeypots
is smartly deployed in the network. The main benefit of the
proposed approach is that no configuration and maintenance
are required after the deployment.

Cao et al. [16] proposed DiPot which is a distributed
industrial honeypot system, that provides deep data analytics
and advanced visualization techniques. DiPot is a modular

honeypot that consists of three nodes, namely honeypot, pro-
cessing, and management nodes. The honeypot node emulates
an ICS device, while the data processing node periodically
analyses raw log files. The management node facilitates user
interaction and provides data visualization functionalities. In
order to evaluate Dipot, large amounts of both legitimate and
malicious network traffic were captured and analyzed.

The authors in [17] developed an intelligent honeypot
that uses reinforcement learning to proactively engage with
and learn from attacker interactions. Therefore, it adapts its
behavior for automated malware to optimize the volume of
data collected. To achieve its aim, the honeypot leverages
machine learning techniques to retrospectively model botnet
interactions.

Pauna et al. [18] proposed an SSH-based interactive hon-
eypot using Reinforcement Learning. The honeypot aims to
learn the attacker’s behavior and generate a series of actions
to maximize the defender’s long-term reward. In order to train
the honeypot, a deep neural network is utilized using the Deep
Q-Learning method.

The authors in [19], designed an ICS honeypot that collects
and feeds intelligence to real-world ICS cyber security mon-
itoring services. The ICS system module emulates the HMI
and the PLC devices, the simulation system that evaluates the
process status variables in real time, and the cybersecurity
monitoring infrastructure that collects and generates informa-
tion about the cyber attackers. The honeypot continuously
provides security intelligence and insights such as, correlation
rules, IDS signatures, and general awareness of the cyber threat
landscape.

The authors in [20] designed and implemented an interactive
ICS honeypot, that emulates a physical ICS device by replicat-
ing realistic traffic from a real device. The implemented ICS
honeypot is based on Conpot, while the Modbus ICS com-
munication protocol is used for the communication between
the ICS devices. The honeypot runs inside a virtual machine,
in order to facilitate the emulation of the entire organization’s
ICS infrastructure.

III. BACKGROUND

A. Conpot Honeypot

The proposed approach is based on the Conpot honeypot,
which is an industrial honeypot that utilizes well-known in-
dustrial communication protocols [21]. These include the IEC
60870-104, Backnet, EtherNet/IP, Guardian AST, Kamstrup,
Modbus, S7Comm communication protocols. For this work,
the Modbus communication protocol was selected since it is
widely used in industrial applications.

B. Modbus Communication Protocol

Modbus is an open and royalty-free communication pro-
tocol, that is widely used in industrial applications [22].
It is a simple and easy to deploy protocol, developed to
facilitate the communication among PLCs and RTUs. Modbus
supports both serial and Transmission Control Protocol (TCP)
communication schemes.

TABLE I: Notations & Symbols

Term Description
xi Feature i of input vector x
x′ Flattened data vector
G Generator
D Discriminator
z Random noise
p(·) Probability function
yi Label of sample i
σ(x) Normalized sigmoid function
n Number of predictions
M Number of features
µr Real data
µp Predicted data
Σr Covariance matrix of real data
Σp Covariance matrix of predicted data

The basic Modbus entities in a network are the Modbus
clients, masters, and slaves. A client is a remote query
terminal, such as a Human-Machine Interface (HMI) that
requests information from the Modbus master and sends
control information to them. The servers are usually PLCs
or RTUs throughout the network, that manage the slaves (e.g.,
acquisition blocks), that oversee the field devices. Each server
can have multiple slaves with unique slave IDs associated with
them.

In the Modbus protocol, the data are stored in four tables,
with each table corresponding to the discrete (called coils)
and numerical (called registers) inputs and outputs, respec-
tively. The master utilizes several Function Codes in order to
communicate with the PLCs and RTUs. The most common
function codes include the Read Coil Status (FC01), Read
Input Status (FC02), Read Holding Registers (FC03), Read
Input Registers (FC04), Force Single Coil (FC05), Preset
Single Register (FC06), Force Multiple Coils (FC15), Preset
Multiple Registers (FC16).

C. Network Traffic Dataset

The datasets for the training and testing of the DNNs are
extracted from the real network traffic. The network traffic
is collected and stored in a pcap file. The collected traffic
corresponds to the communication of an HMI with a PLC and
a RTU in the network. Specifically, the HMI sends requests to
the PLC and RTU for an update on a value, that is stored in the
device memory (i.e., Read Holding Registers (FC03)). Upon
the reception of the request, the PLC or the RTU responds
with a packet that contains the requested values.

IV. DESIGN AND IMPLEMENTATION

This section provides a detailed description of the design
and implementation of the DNN that generates the Modbus
network traffic. Table I lists the notations and symbols that
are used in this work.

A. Problem Statement

Most of the works that were reviewed in section II, imple-
ment a honeypot using preconfigured traffic, in order to act as
a real device and attract potential attackers. In this work, we
adopt a novel approach in the implementation of a honeypot.

To achieve this, we utilize a DNN that generate network traffic,
which is roughly identical to the real traffic. Consequently, the
generated traffic is dynamic and has a higher probability to
attract attackers.

Fig. 1: Pcap file - Modbus traffic

B. Data Preprocessing
Dataset Generation: Fig. 1 depicts a high-level view of the

dataset generation process. Two pipelines have been developed
to extract and transform the data into a suitable structure
that will be used in the training process. The first pipeline
parses the raw traffic from a pcap file and extracts the selected
features into two separate categories, one for the Modbus
request and one for the Modbus responses, respectively. For
the requests the selected features are: i) Relative-Time, ii)
Type, iii) Transaction-ID, iv) Protocol-ID, v) Length, vi) Unit-
ID, vii) Function Code, viii) Start Address, ix) Quantity (of
Addresses). Regarding the responses, the Quantity feature is
replaced with the Byte Count feature, while an additional
feature, namely x) Address, is selected.

The second pipeline takes over the procedure of transform-
ing the selected features in the appropriate form to be inputted
in the training process and to create metadata, which will later
be used to correlate the produced values with the modbus
standard structure. Consequently, since the flattened data are
not sorted, a sorting function is leveraged in order to include
the different values of the addresses to the memory instance
without omitting values. In order to transform the flattened
data into an appropriate form, the process creates a tuple of all
of the given values in an instance, which is considered as the
tuple of values of addresses between two recurring addresses.
Afterward, the generated tuples are exported to a csv file, that
is used as input to the neural network. In order to improve the
training and testing effectiveness, the datasets are scaled using
a MinMax Scaler based on the following formula:

x′ =
xi −min(x)

max(x)−min(x)
(1)

where x′ is the scaled vector of data, x is the inputted vector
of data and xi is the different features in the data vector.

C. GAN Architecture

Fig. 2: GAN Architecture

The GAN architecture [9] [23], as shown in Fig. 2, is
based on a pair of neural sub-networks, namely the Generator
that generates the mimic data using noise as input, and the
Discriminator that classify the generated data into fake and
real. The GAN aims to generate data that the discriminator
will classify as real. Equation (2) below shows the relationship
between the Generator and the Discriminator (denoted as G
and D, respectively) as a value function.

min
G
max
D

V (G,D) = min
G
max
D

Ex∼pdata
[log(D(x))]+

Ez∼pz [log(1−D(G(z)))]
(2)

in which the G accumulates noise z from space Z and outputs
x, which is forwarded to the D. The terms pdata(x) and
pz(z) denote the probabilistic distribution of spaces X and
Z respectively. In the proposed implementation, the GAN
consists of three different components. The first component
is the Input module, the second is the Generator module and
third the Discriminator module.

Input Module: The Input module of this GAN is a simple
layer with an input size of 100, that describes the randomly
generated input noise given to the Generator to produce the
simulating data. The random noise is created using the normal
distribution with mean µ = 0 and a standard deviation of
σ = 1.

Generator Module: The Generator module is one of the
two neural sub-networks in the GAN architecture. It aims to
produce an output that is almost identical to the real data. In
this GAN, the Generator is composed of seven layers and it is
compiled with the Binary Crossentropy loss function (3) and
the Adam Optimizer [24].

Hp(q) = − 1

N

N∑
i=1

yi ·log(p(yi))+(1−yi)·log(1−p(yi)) (3)

where N is the number of samples given, y is the data label,
and p(yi) is the probability of the sample being a match to
the label.

The architecture of the Generator module is shown in Fig. 3.
The first layer is the Generator’s input dense layer that has
a size of 100 tuples. Among the remaining layers, three are

Fig. 3: Generator Module Architecture

dense layers, where the number of neurons is increasing from
256 to 1024. The output layer contains M number of neurons,
where M is the number of selected features. The rest of the
layers are Leaky ReLU layers that follow the first, second and
third dense layers.

Discriminator Module: The second neural sub-network in
the proposed GAN architecture is the Discriminator, which is
responsible for the classification of the real data, originating
from the input dataset, and the generated data, originating from
the Generator module. The Discriminator is trained on both
real and generated data.

Fig. 4: Discriminator Module Architecture

The architecture of the Discriminator module is shown
in Fig. 4. The module includes nine layers, consisting of
Dense, LeakyReLU and Dropout layers. The first layer is the
Discriminator’s input layer, with an input dimension of M .
Each one of the first three Dense layers is followed by a
LeakyReLU layer. In order to prevent overfitting, each of the
first two combinations of Dense and LeakyReLU is followed
by a Dropout layer [25]. Finally, the last layer produces the
output using a sigmoid activation function:

s(x) =
1

1 + e−x
(4)

where x is the input data vector, and the output of the function
is 0 or 1. The result is used as a label, indicating whether the
input data was real or generated.

Fig. 5: Autoencoder Architecture

D. Auto-Encoder Architecture

The basic concept of the Auto-Encoder is the assimilation of
given data of space X into a compressed manifold F of those
data using the encoder module and consequently the scaling of
that manifold F to the predicted value P of those given data
by the decoder, where P ∼ X . Fig. 5 depicts the architecture
of the Autoencoder.

Encoder Module: The role of the Encoder module is to
compress the input data to a pre-defined output size and
forward the output to the Decoder for scaling. The architecture

Fig. 6: Encoder Module Architecture

of the Encoder module is shown in Fig. 6. The Encoder
module is comprised of an input layer followed by two Dense
layers. The input layer has an input dimension of M and no
activation function. The following two layers consist of 32
and 16 neurons, respectively. Both of them utilize the ReLU
activation function, which replaces all negative values with
zeros. The Encoder integrates the Mean Square Error loss
function:

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (5)

where n represents the number of predictions, while Y and Ỹ
are the samples and predicted values vector, respectively.

Decoder Module: The aim of the Decoder module is to
scale the data generated by the Encoder in order to make
them similar to the real data. Fig. 7 depicts the architecture of
the Decoder module. The Decoder module consists of three
Dense layers. The first two layers contain 16 and 32 neurons,
respectively, and utilize the ReLU activation function. The last

Fig. 7: Decoder Model

layer contains a variable number of neurons, depending on
the number of features M of the input data. In addition, the
last layer uses the sigmoid activation function (equation 4) to
output the scaled data.

E. Conpot Integration

The proposed DNNs were integrated into the Conpot hon-
eypot, by incorporating the trained model to Conpot’s databus
system, which performs the data acquisition and delivery
within the honeypot. Two different indexes were used to
cross-reference the generated values and update the Conpot’s
Modbus memory blocks. One of the manifests keeps the actual
Modbus address index in reference to the network produced
index. The manifest is a file that contains metadata from the
Preprocessing. The manifest contains the essential information
required, in order to cross-reference the information that the
neural networks generated. This manifest is used with the
Modbus memory block index to assign the correct values
to their corresponding slave memory block. The index is
produced from the profile that Conpot is simulating. Using this
configuration, Conpot updates its memory block every time a
query is received, successfully emulating a Modbus device.

V. EVALUATION

The evaluation is branched into three parts. Firstly, the
proposed DNNs are compared using quantitative metrics to
evaluate the accuracy of the results. Secondly, the generated
data of the two DNNs are statistically compared using simi-
larity metrics and visualization. Finally, the duration of traffic
generation is measured.

A. Quantitative Comparison Metrics

The performance of the DNNs is evaluated in terms of
similarity with the real data, while the training dataset has
a size of 1.0 gigabyte. The performance metrics are the
arithmetic mean, the standard deviation, and the the Frechet
Inception Distance (FID) [26], [27] score. The FID score is
calculated as:

FID = ||µr − µp||2 + tr(Σr + Σp − 2
√

(Σr · Σp)) (6)

0 5 10 15 20 25 30 35 40 45

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea
n

Real
Predicted-Autoencoder
Predicted-GAN

Fig. 8: Arithmetic mean of the data against the number of
epochs

0 5 10 15 20 25 30 35 40 45

Epochs

0

0.1

0.2

0.3

0.4

0.5

S
ta

nd
ar

d
D

ev
ia

ti
on

Real
Predicted-Autoencoder
Predicted-GAN

Fig. 9: Standard deviation of the data against the number of
epochs

where µr and µp are the vectors of the real and predicted data
respectively, while Σr and Σp are the covariance matrices of
the aforementioned vectors. Finally, the term tr denotes the
trace of the matrix.

Figures 8 and 9 depict the similarity between the generated
and real data values, in terms of arithmetic mean and standard
deviation. Particularly, Fig. 8 shows the arithmetic mean of the
data against the number of epochs, ranging from 1 to 45. An
epoch indicates the number of times the algorithm analyzes the
entire dataset. Therefore, each time the algorithm analyzes all
the samples in the dataset, an epoch is completed. Both of the
approaches achieve a high overall similarity to the real values,
with the GAN achieving a slightly better similarity.

Similarly, Fig. 9 shows the standard deviation of the values
against the number of epochs, ranging from 1 to 45. Both
approaches achieve a high overall similarity. n this case, GAN
also achieves a slightly better similarity than the Autoencoder
architecture.

As mentioned the Frechet Inception Distance is employed
to measure the difference between the generated and the real
samples. In the testing phase, GAN achieves an FID score of

31.29, while the Autoencoder’s score is 29.94. Smaller FID
score indicates a higher similarity, therefore the Autoencoder
generates data with higher similarity compared to the GAN.

B. Time and Complexity

The elapsed time of data generation has a critical impact, as
the honeypot has to generate the requested data in a very short
time to effectively emulate a real network device. In order to
measure the execution time of the proposed DNNs, a testbed
has been deployed, where the DNNs run in a virtualized
environment. An Intel Core i7-6700HQ has been utilized for
the computation, with a 16GB of RAM to its disposal.

The GAN, having a more complex architecture, generates
128 values in 0.6969 ms. On the other hand, the Autoencoder
achieved a time of 0.4116 ms. Both times are within the
accepted limit (as defined in [28]), therefore both approaches
can be effectively used for network traffic generation in real-
time.

VI. CONCLUSION

In this work, we presented the design and implementa-
tion of a novel method that adapts honeypot technologies
to the requirements of an industrial network. NeuralPot is
a highly interactive adaptation of the Conpot honeypot, that
generates network traffic based on an existing network entity.
The two distinct DNN implementations are compared against
each other, as well as against the actual Modbus network
traffic. Even though the output-wise results of both DNNs are
close, based on the quantitative metrics comparison, the GAN
architecture is recommended due to its higher similarity with
the real data.

In the future, we aim to deploy the implemented honeypot in
a real ICS network containing a large number of ICS devices,
in order to evaluate its efficiency in attracting attackers and
record their behavior. Furthermore, we aim to incorporate
additional well known ICS communication protocols, such
as the IEC 60870-104, Backnet, EtherNet/IP, Guardian AST,
Kamstrup, and S7Comm.

ACKNOWLEDGMENT

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No. 787011 (SPEAR).

REFERENCES

[1] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis,
“A survey on scada systems: Secure protocols, incidents, threats and
tactics,” IEEE Communications Surveys & Tutorials, 2020.

[2] S. A. Baker, S. Waterman, and G. Ivanov, In the crossfire: Critical
infrastructure in the age of cyber war. McAfee, Incorporated, 2009.

[3] B. Miller and D. C. Rowe, “A survey scada of and critical infrastructure
incidents.” RIIT, vol. 12, pp. 51–56, 2012.

[4] “RISI - The Repository of Industrial Security Incidents.” [Online].
Available: http://www.risidata.com/

[5] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-
detection systems,” Computer Networks, vol. 31, no. 8, pp. 805–822,
1999.

[6] C. Dalamagkas, P. Sarigiannidis, D. Ioannidis, E. Iturbe, O. Nikolis,
F. Ramos, E. Rios, A. Sarigiannidis, and D. Tzovaras, “A survey on
honeypots, honeynets and their applications on smart grid,” in 2019
IEEE Conference on Network Softwarization (NetSoft). IEEE, 2019,
pp. 93–100.

[7] A. Mairh, D. Barik, K. Verma, and D. Jena, “Honeypot in network
security: a survey,” in Proceedings of the 2011 international conference
on communication, computing & security. ACM, 2011, pp. 600–605.

[8] B. Gupta and A. Gupta, “Assessment of honeypots: Issues, challenges
and future directions,” International Journal of Cloud Applications and
Computing (IJCAC), vol. 8, no. 1, pp. 21–54, 2018.

[9] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, 10 2017.

[10] P. Baldi, G. Guyon, V. Dror, G. Lemaire, D. Taylor, and D. Silver,
“Autoencoders, unsupervised learning, and deep architectures editor: I,”
09 2019.

[11] R. M. Campbell, K. Padayachee, and T. Masombuka, “A survey of
honeypot research: Trends and opportunities,” in 2015 10th international
conference for internet technology and secured transactions (ICITST).
IEEE, 2015, pp. 208–212.

[12] P. Simões, T. Cruz, J. Proença, and E. Monteiro, “Specialized honey-
pots for scada systems,” in Cyber Security: Analytics, Technology and
Automation. Springer, 2015, pp. 251–269.

[13] A. V. Serbanescu, S. Obermeier, and D.-Y. Yu, “A flexible architecture
for industrial control system honeypots,” in 2015 12th International Joint
Conference on e-Business and Telecommunications (ICETE), vol. 4.
IEEE, 2015, pp. 16–26.

[14] D. Antonioli, A. Agrawal, and N. O. Tippenhauer, “Towards high-
interaction virtual ics honeypots-in-a-box,” in Proceedings of the 2nd
ACM Workshop on Cyber-Physical Systems Security and Privacy.
ACM, 2016, pp. 13–22.

[15] D. Fraunholz, M. Zimmermann, and H. D. Schotten, “An adaptive
honeypot configuration, deployment and maintenance strategy,” in 2017
19th International Conference on Advanced Communication Technology
(ICACT). IEEE, 2017, pp. 53–57.

[16] J. Cao, W. Li, J. Li, and B. Li, “Dipot: A distributed industrial
honeypot system,” in International Conference on Smart Computing and
Communication. Springer, 2017, pp. 300–309.

[17] S. Dowling, M. Schukat, and E. Barrett, “Improving adaptive honeypot
functionality with efficient reinforcement learning parameters for auto-
mated malware,” Journal of Cyber Security Technology, vol. 2, no. 2,
pp. 75–91, 2018.

[18] A. Pauna, A.-C. Iacob, and I. Bica, “Qrassh - a self-adaptive ssh
honeypot driven by q-learning,” 06 2018, pp. 441–446.

[19] Ó. Navarro, S. A. J. Balbastre, and S. Beyer, “Gathering intelligence
through realistic industrial control system honeypots,” in International
Conference on Critical Information Infrastructures Security. Springer,
2018, pp. 143–153.

[20] D. Pliatsios, P. Sarigiannidis, T. Liatifis, K. Rompolos, and I. Sin-
iosoglou, “A novel and interactive industrial control system honeypot for
critical smart grid infrastructure,” in 2019 IEEE International Workshop
on Computer Aided Modeling and Design of Communication Links and
Networks. IEEE, 2019, p. to appear.

[21] A. Jicha, M. Patton, and H. Chen, “Scada honeypots: An in-depth
analysis of conpot,” in 2016 IEEE conference on intelligence and
security informatics (ISI). IEEE, 2016, pp. 196–198.

[22] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for
the modbus protocols,” International Journal of Critical Infrastructure
Protection, vol. 1, pp. 37–44, 12 2008.

[23] Y. Hong, U. Hwang, J. Yoo, and S. Yoon, “How generative adversarial
nets and its variants work: An overview of gan,” ACM Computing
Surveys, vol. 52, 11 2017.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
06 2014.

[26] S. Barratt and R. Sharma, “A note on the inception score,” 01 2018.
[27] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention

generative adversarial networks,” 05 2018.
[28] C. C. S. LLC, “Modbus Message Timing message description,” 2018.

[Online]. Available: https://ctlsys.com/support/modbus message timing/

