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 The article describes the issues of preparation and verification of mathematical 

models of computing systems with resource virtualization. The object of this 

study is to verify of mathematical models of computer systems with 
virtualization experimentally by creating a virtual server on the host platform 

and monitoring its characteristics under load. Known models cannot be applied 

to the aircraft with virtualization, because they do not allow a comprehensive 

analysis to determine the most effective option for the implementation  

of the initial allocation of resources and its optimization for a specific sphere 
and task of use. The article for the study used a closed queueing network. 

Simple models for the analysis of various structures of computer systems  

are experimentally obtained. To implement the properties of adaptability in  

the models, triggers are used that monitor and adjust the power  

of the processing channel in individual Queuing systems, depending on  
the specified conditions. Experiments prove the obtained results reliable  

and usable as a flexible tool for studying the virtualization properties when 

structuring computing systems. This knowledge could be of use for businesses 

interested in optimizing the server configuration for their IT infrastructure. 

Keywords: 

Adaptive model 

Closed queueing network 

Computational system 

Mathematical modeling  

Natural resource virtualization 

Verification 

Virtual server 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Alexey I. Martyshkin, 

Department of Computational Machines and Systems,  

Penza State Technological University, 

440039, Russia, Penza, 1/11 Baydukova proyezd/Gagarina ul, 1/11, Russia. 

Email: Alexey314@yandex.ru 

 

 

1. INTRODUCTION  

Data storage and processing infrastructure is one of the crucial components of corporate IT systems; 

its effectiveness is fundamental to the business performance in a dynamic and competitive market ,  

which is why computing systems (CS) and data storage sys tems of today shall meet stringent requirements.  

As such, they must be able to adapt to rapidly changing tasks and objectives; to guarantee the required 

application performance; to be have necessary scalability with an option to increase resources in -service;  

to minimize downtime due to failures or maintenance; to be easy to use and maintain. The most efficient way 

to meet such requirements is to use virtualized CS; at the operating system (OS) level, this technology uses up 

https://creativecommons.org/licenses/by-sa/4.0/
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to 20% of the server CPU capacity. However, this research aims at describing the creation of efficient CS 

models, which is why such models shall be based on natural virtualization that uses more efficient  

software/hardware-level mechanisms. Based on this, the following problems are relevant today: creating 

models of virtualized CS; model implementation and application feasibility testing, e.g. using virtual servers 

to test and develop software, to set up a remote office, or to rent out as a basis for outsourcing  

in computing, etc. 

 

 

2. METHODOLOGY 

This is generally an exploratory paper. While studying the subject matter, the authors hereof have 

analyzed a bulk of literature [1-10] to find uncovered or unresolved issues, such as using virtual servers to 

study and verify models of virtualized systems. Some issues relating to the possibility of creating  

and verifying a mathematical virtualized-CS model are not properly covered in papers; however, [11-14] 

address the most problematic issues in part. The goal hereof is to analyze the existing CS that use natural 

virtualization to describe how models or their implementations (virtual servers) could be used, to study them, 

and to obtain the results of using a virtual server to verify a virtualized -CS model; the characteristics and 

models of such server are detailed in [15]. Another goal is to develop a method for making virtualization -based  

models of adaptive CS. These issues are relevant today in view of global computerization and nearly universal 

use of big (and various) data and virtual servers. To attain this goal, the following must be addressed: describe, 

and prepare the source data of, virtualized-CS models for different classes of tasks; adapt the mathematics  

behind the queueing theory to computing virtualized-CS models, i.e. to verifying such models by means of 

virtual servers; develop a method for constructing and evaluating adaptive-system models. The research 

methods used herein are based on the queueing theory as well as on mathematical statistics and experimental 

model verification. 

Virtualization means a variety of methods for abstracting from various physical computational 

resources (CR). Virtualization tools can represent a single physical resource as a set of separate logically  

independent resources (logical servers) to isolate applications from each other; conversely, virtualization can 

combine separate physical resources within a heterogeneous structure, be it servers or drives, into a single 

logical resource. CPU virtualization is possible in theory as substantiated by the Church -Turing thesis [16-19]. 

The thesis is essentially about computer simulation of a Turing machine (an abstract computing machine), 

which is assumed possible; the assumption means that as tools for handling algorithmic problems,  

all computers are equivalent regardless of their implementation. The thesis is not a proven theorem; 

nevertheless, it suggests that any computing environment can be simulated by another such environment. 

Important theoretical research into CPU virtualization was carried out by Gerald Po pek and Robert Goldberg  

in the form of three virtualization requirements [1]: equivalence; resource management; efficiency. 

Server efficiency is very low, especially in the case of x86 servers; its commonly recognized level  

is about 5% to 15%. Such efficiency largely depends on the coherence of CPU and server architecture with   

the operating system. If that coherence is good, as is the case of the RISC/Unix combination, server efficiency  

may reach 25-30% or above [19-25]. Virtualization can raise this figure to above 85% while improving   

the reliability, scalability, and other characteristics critical for data centers; besides, it helps save the costs  

of hardware, support, and administration. The existing models are not applicable to virtualized CS as they  

cannot run comprehensive analysis to find the most efficient way of initial resource distribution and to optimize 

such distribution for a particular application while CS is running. Simulation models are common; they 

simulate the behavior of a real system by introducing special conditions and lags that configure the sequence, 

in which the system components transition from one state to another. One important advantage simulation  

model has over analytical models is that a simulation model could potentially b e made even closer to  

the simulated object by injecting additional complications. However, it should be borne in mind that complex 

simulation models require substantial CR to run, which means that such models are only advisable if analytical 

methods are not suitable. 

Literature review shows that Russian and international researchers mostly use less intensive analytical 

methods suitable for parametric analysis and optimization. The time characteristics of systems can be assessed 

by the queueing theory. To produce the estimated ratios that comprise mathematical models, analytical methods 

require constrains and assumptions that limit their applicability. Thus, the models proposed by L. Kleinrock 

and M. Schwartz [21, 22] consider a message-switching communication network consisting of M channels 

 and N switching nodes. The mathematical model uses the following assumptions: all channels and all 

switching nodes are noiseless and absolutely reliable; switching-node processing time is zero; the transmitting 

end of a channel can queue messages in an unlimited memory; the traffic the communication network receives 

from external sources (e.g. from host machines) forms a Poisson process; for many analytical relations,  

the exclusive path is known for each transmitter-receiver pair; for some problems, the probability p(j,k)  
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of transition from the jth node to the kth node is introduced; message lengths are independent and distributed 

by an exponential law. These constrains and assumptions can be used to find the time ti a message stays in  

the network; the communication channel load factors r(r,v), and the queue lengths li. They also help address 

the issues of efficient design. In [21], L. Kleinrock focuses on three problems: configuring the channel 

throughput; configuring the distribution of streams in channels; and selecting the network topology. These  

are single-attribute problems that minimize the mean messaging latency in the communication network  

while keeping the costs within the required limits. Methods developed and summarized in [23] consider  

packet-switching networks that are studied as bipolar multiphase queueing systems. These methods use  

the following assumptions and constraints: the distribution of any random variable is assumed exponential 

except the third queueing phase, where the service time distribution is deemed regular; the specific subscriber 

load at subscriber terminals and computers is deemed uniformly distributed network-side; the message queue 

discipline is FIFO; the time to establish a logical connection is included in the switching time; the queueing 

system is non-priority; while transmitted over the network, messages age at the specified rate. The basic criteria 

of evaluating a data transmission network are usually the probability a message will be delivered in time;   

and the mean delivery time. 

Despite the well-elaborated nature of the existing approaches, some of which have evolved into 

engineering methods, these models have one significant disadvantage: they cannot comprehensively consider 

both the intra-model information flows and changes in the components of the model itself due to random factors 

such as hardware failures or CS reconfigurations, which are typical for naturally virtualized systems. Consider 

the mathematical basis, i.e. the closed queueing networks (CQN)-based calculation method [6-9, 24, 25] chosen 

because such networks are used to represent processes occurring in CS with limited number of requests;  

the limitation is due to an inherent limitation, in this case, the limited number of CPUs available to the CS.  

For instance, multiprocessor systems (MPS) can only connect a limited number of CPUs to a shared bus.  

In case of virtualization, we have a pool of CPUs, RAM, and input-output adapters.  

On the other hand, one example of a QN is the simplest multi-program computer, where the finite 

number N  of programs corresponding to a multiprogramming level will turn to one of the M  CPUs, i.e. be 

processed by M  CPUs at the probability
( 1, )iP i M

. The mathematics behind the CQN is analyzed  

and summarized below. When running, each of the M  CPUs requests the hypervisor to grant access to  

a resource, i.e. RAM, an external storage (ES), or an I/O adapter. While the hypervisor grants such access to  

a CPU, others process data from their caches or local RAM, or wait for a similar access permission; as such, 

they do not generate new queries to the hypervisor until the running CPU frees the resource requested by 

another CPU; in the case of time-sharing, such suspension lasts until the running CPU’s allocated cycle is over. 

Figure 1 shows the general information-flow model of a virtual server with a limited number of requests.  

In a closed model, requests come from the system 0S
 that contains M  channels 1,..., MT T

 and displaying  

the CPUs as they function in an MPS. The parameter 0  of the model equals the mean time the CPU spends 

to analyze the results of processing its preceding request [12-14]. 
 

 

 
 

Figure 1. Information-flow model of a virtualization server 
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In this model, the number of circulating requests equals the number of QN channels 0S , hence no 

queue. The rate 0  at which requests come from the system 0S  to other systems 1,..., nS S  depends on  

the number of requests in the system 0S . 
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where jM  is the number of requests in the jth queueing system (QS) of the network. 

Given equal intensity of the input/output request streams 0S , the rate 0  will determine  

the performance of the simulated MPS, i.e. the mean number of CPU queries processed by the hypervisor per 

unit of time. Consider a CQN with exponentially distributed request processing time in each of the systems 

 1,...,jS j n . For each of the network’s systems, define the parameters: jK  is the number of channels; 

j  is the mean channel-specific request processing time; j  is the transfer factor. Another known variable  

is the number M  of circulating requests. The parameters jK , j , j , and M  are source data for calculating 

the network’s steady state, in particular the probabilities of its states, in terms of which all other characteristics 

are given [5]. 

Find the expression for the loads j  of the systems jS . For a single-channel QS, a load is a difference 

between 1 and the probability that this QN is idle. The probability that the system jS  has exactly r  requests 

while the requests of other systems are distributed in any possible combinations is written as 
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(2) 

 

To find the load of a channel in a multichannel system, first find the mean number of idle channels , 
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where jK  is the number of channels in the system; jk  is the mean number of busy channels;  Pr jM r   

is the total probability of all states from the set  ,A M n , for which jM r . The load of each channel in  

a multichannel system jS  is defined as the difference between 1 and the mean number of idle channels from 

the total number of channels  

 

 
1

0

1 1 Pr
jK

j j j
j j

j jr

K k K r
M r

K K






 
    

 

(4) 

 

From (3), find the mean number of busy channels in the system jS . 
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(5) 

 

Apparently, j j jk K  . Given that for a multichannel QS j j jk   , obtain the expression for the incoming  

stream rate. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 3, June 2020 :  1106 – 1120 

1110 

j j jk 
 

(6) 

 

To calculate the mean number of channels jm  and the mean number of channels jl  (incoming and waiting in 

the system jS ), use the expressions, 
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The mean stay time ju  and the mean waiting time j  in the systems  1,...,jS j n  equal 

j j ju m   and j j jl  , respectively, where j , jm , and jl  are found from (6) to (8). Refer to  

the mean time interval between two consecutive exits of a request from the system jS  as the system cycle 

time. The mean stay time of a request in the system iS  over its single stay in the system jS  equals  i j ju  . 

The mean cycle time U  can be found by summing these values for all the systems in  

the network  
1

n

j i j j
j

U u 


 . Given that the mean stay time of a request in the system iS  i i iu m  , get 
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(9) 

 

Given that we are expected to model virtualized CS, it is safe to say that the obtained models will 

depend on, and self-adapt to, the load on a rule-based principle that will make use of the data received while 

computing a model. It is also worth noting that the mean queue length and performance will depend on  

the QS service rate. Mean queue length is a monotonically decreasing (increasing) function, while  

the performance is a monotonically increasing (decreasing) function of the service rate. 

 

 

3. INPUT DATA FOR MODELS 

The initial number of QS channels is set forth in the assumed number of dedicated or shared virtual 

devices for each specific virtual server. The concept of QS channel number is replaced with the concept  

of allocated processing power, given as a percentage or proportion of a whole processing channel/CPU.  

For instance, two channels can be assigned to a CPU, which will mean the virtual server has two virtual CPUs;  

if the model is assigned two QS CPUs, it means that the virtual server has two CPUs, each of which can be 

further divided into virtual CPUs as  channels. On the other hand, a CPU QS can be allocated specific processing 

power starting from 0.1 and incrementing at 0.01, which corresponds to similar virtualization properties.  

The meaning devices are set in the model in a similar way, i.e. if an input -output device is not 

dedicated to a particular virtual server, or if a virtual server uses a shared device provided by the virtual I/O 

server. Such a device could be a network adapter, the I/O adapter to access ES of different types. Before models 

could be built for studies, consider the structural diagram of a host platform used for creating virtual servers as 

shown in Figure 2. It shows all the components  of future virtual servers; unused resources are pooled together 

to form the CPU pool, the RAM pool, the ES pool, etc.; the diagram also shows the primary component  

of resource virtualization, a POWER hypervisor, and zoomed-in diagrams of model virtual servers. 
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Figure 2. Structural diagram of a host platform 

 

 

Figure 3 shows a part of Figure 2 (virtual servers) in detail; it also demonstrates virtual  

input-output servers with CP distribution and logical links between the system components. The diagram  

of a non-virtualized MPS would be functionally similar except that it would use a fixed amount of hardware 

resources instead of pools. Re-configuring a server with a fixed amount of hardware resources will at least 

require a server shutdown; besides, it might require reconfiguring the runtime environment, the OS, or the app 

server. When using virtualization, resources can be added to or removed from the configuration while  

the system is running. To model such operating conditions using the selected model computing method, the 

method can be adjusted or use in two ways: 

a. Either use multichannel QS where the number of channels can be adjusted during simulation. This might  

be inappropriate for percentage distribution of CPU power when the number of channels Kj  

and the number of busy channels kj in a multichannel QS could be a fractional number 

b. Or simulate the process by adding or removing QS dynamically, which will entail a full rebuild   

of the transmission probability matrix and recalculating all o f the earlier collected statistics, which   

is not acceptable 
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Figure 3. Structural diagram of logical partitions  

 

 

The first option is a more optimal choice; however, some of the formulas have to be modified ,  

e.g. the formula for finding the mean number of busy channels in the QS, as in this case, the CPU power can 

be distributed starting at 0.1 x the CPU-total power. 
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where the load of the multichannel system is defined as j j j j j jk K K    . Another formula that uses 

factorial that is generally only applicable to integers  
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The problem of calculating the factorial of a fractional number can be solved by using  

the asymptotic factorial formula (the Stirling formula) that can calculate the approximate factorial (12).  
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where O capital is the mathematical notation for comparing the asymptotic behavior of functions, which means 

the way the function is altered when approaching a certain point. The essence of the term О capital depends on 

the application; however, it never  O f grows faster than f .In many cases, approximate calculation of a 

factorial requires only the dominant term of the Stirling formula 
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It can be argued that; 
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One of the absolute musts is the ability to create random events so as to  simulate random failures in  

the CS model. The probability of a failure is set as a trigger of pseudo-random failures to simulate the failure 

of this or that device in the CS model. The failure trigger generates events of the model runtime.  

While the model is running, such events manifest as a drop in a channel-specific power in a QS to  

the minimum of 0.1. Full exclusion of the failing QS from the model is not an option as that would entail 

resizing the entire transmission matrix and could deteriorate the statistics collected before the failure. 

Therefore, post-failure restoration of the processing power is possible provided there is a pool of available 

virtual resources. The technology of aggregating the network channels and input -output channels backup can 

be simulated by several intermediate QS. Based on the collected model computation results, one can prove  

the efficiency of using the CR and the better balance of the simulated virtualized CS as compared to ordinary 

CS that cannot dynamically allocate resources. Therefore, given the above-described triggers, the models 

become adaptive; in other words, one can create adaptive models, specifically mathematical models used in 

combination with the operator-assigned dynamic characteristics, i.e. machine decision-making procedures 

applicable to adjustments in the model resources. 

 

 

4. RESULTS 

4.1. Model verification 

In general, verification means confirming that the CS model description fully matches  

the specification or the analyzed system. To check whether the experimental system works as planned,  

it is necessary to trace the system response to an input and compare it with the simulated response or to  

the response of another model [26]. Model verification is apparently a very important process that can be done 

in several ways: 

a. Experimentally 

b. By using simulation models in case of testing analytical models, or vice-a-versa 

c. By using a third method to build a similar model and compare the results  

Bearing in mind that papers [12-14] describe virtualized-CS models, the most rational way is to create 

virtual servers and measure their dynamic characteristics; in other words, to carry out a computational 

experiment. Verification tests have been run using a virtual server, see Table 1 for specifications. 

 

 

Table 1. Specifications of the virtual server used for model verification  
Resource name Quantity and characteristics 

Processor 
Two Power 5 virtual processors, 1.6 GHz (up to 1 physical processor allocated); also a double dedicated 

processor. 
Cache L1 combined cache: 64 kb instructions and 32 kb data; 1.9 Mb L2; 36 Mb L3 
Memory 2 Gb (range: 1 to 4 Gb) 
Drive 20 Gb, connected via a virtual I/O server, virtual SCSI adapter 

Network 100 Mbps or 1 Gbps, also a virtual Ethernet adapter, via a virtual I/O server. 
OS AIX 6.1, 64bit 
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Each virtual processor has SMT on, i.e. comprises two logical processors. Figure 4 shows an image 

from the hardware management console (HMC) connected to the physical server (System P) hosting  

the virtual server. 

 

 

 
 

Figure 4. General partition properties  

 

 

To measure the functional indicators of the virtual server, this research uses the Nmon  utility [27];  

this utility can collect and log statistics on the virtual server operations. Data can further be visualized as graphs 

or shown in the console window in a symbolic form. Nmonanalyser is used to convert this statistic into  

a convenient representation [28]. Stress is used to generate server load, i.e. to simulate request processing in  

a way similar to the models [29]. This C utility is extended to generate loads not by time but by the set number 

of simplest cycles (counter decrement and sqrt () function are computed instead of timeout). This effectively 

simulates running “requests” of a specific computational intensity so as to link model calculation results to 

verification results, as well as to draw findings on the performance. Besides, this  program uses child processes, 

i.e. makes effective use of parallel processing. 

The experiment is a two-part test: it is to monitor a virtual server with allocated processing power, 

and a virtual server with a dedicated processor, using the load generation  utility and dynamic reconfiguration 

to adjust to the load. While verifying a model, it should be borne in mind that any operating system (OS) runs 

various system processes that load the CPU(s) at 5% to 10% on average, which is comparable to  

the modeling error and represents the verification error, which is acceptable for engineering studies.  

This conclusion is confirmed by analyzing the Nmon-collected statistics on the idle load, as the virtual server 

is only running the OS itself, see Figure 5. 

 

Experiment Steps. 

a. Start Nmon to collect and log statistics every second until Stress completes a run 

b. Start Stress at the required computational intensity (number of requests) 

c. Collect statistics on the load of the virtual server or its separate subsystems while ru nning in a static mode, 

i.e. without reconfiguring 

d. Collect statistics on the load of the virtual server or its separate subsystems while running in  

a dynamic mode 

e. Use Nmonanalyser to process the statistics  

f. Approximate the results and compare it to the modeled ones  
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Figure 5. Idle system load 

 

 

Assume that a request equals 10,000,000 cycles of an ordinary counter. First collect data on  

the static request processing time: the virtual server is subject to no reconfiguration, and only the number  

of processed request will change, see Figure 6. Stress is configured as follows: 

a. cpu 2: two threads are intensively loading the CPU by calculating sqrt () for a random number 

b. io 2: two threads are intensively loading the I/O system, namely the buffers  

c. hdd 1 --hdd-bytes 256M: 1 thread is intensively writing onto the disk in 256-Mb blocks 

d. vm 2 --vm-bytes 32M: 2 threads are intensively using the RAM in 32-Mb blocks 

e. loops: the number of counter cycles or the number of requests, from 0.5 to 16 

 

 

 
 

Figure 6. Request processing time 

 

 

Data has been collected from 3 virtual server configurations that only differ in allocated processing 

power, RAM=2 Gb: 

a. 0.5 processor units (1 virtual processor=2 logical processors) 

b. 1 processor unit (2 virtual processors=4 logical processors) 

c. 2 dedicated processor blocks (2 virtual processors=4 logical processors) 

Repeated measurements identify a reduction in the processing time as more iterations are run, which  

is explainable by greater amounts of data stored in the cache (up to 100%). Each CPU-loading thread  

is processed by a separate virtual processor, which makes clear the efficiency of using multithreading in 

software. For example, if there are only two threads, two of four virtual processors will be idle; in this case, 

virtualization enables flexible adaptation to the load. A similar feature was demonstrated in  

the models in [12-14]. 
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Maximum request processing speed is attained when the number of virtual processors equals  

the number of threads in a program. Mean request processing time of the three configurations equals 0.053, 

0.141, and 0.483 (requests/sec). Comparison of the results shows that the model behaves similarly to the real 

system, see Figure 7. Find below the results of virtual server monitoring as collected by Nmon  

and Nmonanalyser with PLM (partition load manager) enabled and a specified resource management policy. 

The batch job contains 20 requests. The batch is processed twice. The graphs show the “stepped” dynamic 

resource buildup, particularly in the case of CPU (Figure 8) and RAM (Figure 9). 
 

 

 
 

Figure 7. Summary virtual server statistics  
 
 

 
 

Figure 8. Dynamics of logical CPUs 
 
 

 
 

Figure 9. Dynamics of virtual CPUs 
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The CPU utilization (load) will depend on how well a running program is parallelized in comparison 

to Stress. Approximating the graph above makes it clear that CPU are loaded at  100% right from receiving the 

first request; request multithreading maximizes the CPU utilization. Figure 10 shows the dynamics  

of load across all CPUs. 

 

 

 
 

Figure 10. Dynamics of load across all CPUs 

 

 

Starting at 18:15, the graphs show the processing of the second request batch; apparently, it takes far 

less time to process since the maximum processing power is available right away, unlike in the case  

of the first batch, which the server used to adapt itself to the load. Efficient caching enhances  

the performance, too. As can be seen applicable to CPU7 and CPU8, increasing the number of processors 

beyond that number of the test threads will cause “unneeded” CPUs to idle.  

Thus, verification using a virtual server configured similarly to the model reveals similar dynamics of 

the server and the model, both in terms of the load and in the resource utilization; it also makes clear  

the effect of adaptability, which means that the models developed and described in [26-29] are appropriate for 

studying virtualized CS. However, there are some differences, as the input stream of the model  

and the real-world task batch are different. 

 

4.2. Adaptive model building and evaluation 

As mentioned earlier in [5], using a parallel algorithm for p processors as compared to sequential 

computing will solve the problem on P  CPUs P  times faster than on a single CPU and/or multiply   

the amount of processed data by P ; however, such acceleration is rarely attainable, as most executables  

are not optimized and feature a considerable portion of non-parallel code. Given that most state-of-the-art  

heavy-load software systems use parallelization, hardware utilization efficiency can be maximized by coupling 

parallel computing with virtualization for dynamic allocation of processing power and RAM. 

Judging from the above, building an efficient virtualized-CS model is key; such virtualization shall 

best suit the needs of an app planned to run on the future virtual server based on the model. On the other hand, 

given that virtualized CS adapt well to loads, the easiest approach would be using a minimum configuration 

and allow the CS to optimize its configuration while processing a task batch so as to adapt itself to the load.  

It is also possible to run each app on a separate virtual server with a separate OS, which will isolate  

the processes in terms of security and fail-safety. Let us define the basic criteria of modeling efficient  

virtualized CS: 

a. Adequate source data for the model, adjusted to the parameters of the future hardware hos t platform, as  

the accuracy of the inputs will directly affect the accuracy of simulation 

b. Flexibility of model adaptability to load, which is attained by using multiple criteria and conditions  

of adaptability triggering 

c. Cost optimization to the researcher’s requirements as part of the modeling effort 

d. Request processing speed and quality optimization to the researcher’s requirements as part of the modeling 

effort. Such optimization shall provide minimum request processing time, minimum set of resources, etc. 

e. It is assumed that workload tasks are optimized for multithreading 

Powerful and efficient CS and visualization tools will considerably reduce the task processing, 

analysis, and prediction time applicable to electronic workflow, real-time transaction processing, and creation 
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of data storages for decision-making systems, climate and global warming modeling, etc. However, a fast CPU 

is not everything. The architecture must be balanced to fully utilize the power of a modern CPU. Efficien t  

computing platforms shall provide balanced performance in many aspects, including memory ac cess, system 

switch, input-output, graphics accelerator, network operations, and CPU computing. 

As performance and scalability bar is being set ever higher, conventional workstations  

(even multiprocessor ones) become too expensive and impractical, making it more effective to use virtual 

servers with natural virtualization, since OS virtualization tools will use 10% to 30% of the CPU power while 

natural virtualization is provided as firmware level or by specialized hardware, which is way more efficient.  

Multiprocessor computing can be made more efficient by parallelization, which accelerates database 

query processing, provides efficient access to remote file systems, speeds up resource-intensive applications. 

Indeed, the POWER architecture provides such flexibility that additional virtual CPUs can simply be added  

if necessary, or pre-installed ones can be activated to handle peak loads. Besides, the OS and the related 

software and technologies do support and make active use of the hardware advantages this platform offers. 

Thus, for the above criteria, the method of modeling an adaptive system will comprise the following  

steps: 1) build a model in a software system (e.g., in [30]); 2) calculate and analyze the results; 3) define  

the significant cost, quality, and processing speed criteria; 4) vary the model parameters to optimize by  

the previously defined criteria; 5) compare to the initial version and make the necessary adjustments;  

6) create a virtual server to verify the model, as this method produces the most reliable data; 7) define  

the virtual server resource management policy specifying the pool of available resources or the donor group of 

virtual servers; 8) configure and start the server tasks; 9) monitor; 10) analyze the resource manager functioning 

and adjust the original virtual server profile to finalize the virtual server configuration. 

 

 

5. CONCLUSION  

This research has experimentally produced simple models for analyzing various systems designed for 

tasks of varying responsibility and requiring various resource groups to efficiently handle whatever they  

are tasked with. The proposed models can analyze various CS options that use virtualized resources with   

the above constraints. Speaking of the real-world application of virtual servers, outsourcing IT infrastructures 

is an increasingly popular solution, as it eliminates the need to purchase expensive servers that will also require 

hardware and software support.  

Therefore, there exist two separate products for resource and load management, which causes 

inconvenience and makes it difficult to configure an integrated system that would take into account both  

the resource load and the responsibility of each application. It is therefore optimal and convenient to use  

a single integrated resource management mechanism based on the resource loads and on the responsibility  

of tasks assigned to each partition. The researchers have verified the mathematical virtualized-CS models by 

using a similarly configured virtual server. 

Comparing the verification results and the calculations shows that the model and its virtual server 

implementation are identical in dynamics. The differences in the calculations and the experimental results  

are due to the difficulty of simulating the model-generated input stream of requests, which is quite abstract 

compared to real-world tasks; for maximum similarity, the research team has used a multithreaded load 

generator that clearly shows the specifics of multiprocessor CS with respect to the thread dist ribution between 

processors and thread parallelization. 

CS cost and service quality optimizations are case-specific; however, what can be concluded for  

use is that maximum performance is non-attainable within cost restrictions. The developed model for building 

virtualized-resource CS models and optimizing them by various criteria reveals an interesting effect:  

it is possible to build systems capable of s elf-adaptation to load while being autonomous, which reduces  

the maintenance costs. The effect is observed when flexible system resource management policies  

are configured. In conclusion, it should be noted that the considered adaptive systems feature us ing both  

model-generated and expert data for decision-making; the expert data are idiosyncratic decision charts provided 

by the researcher. 
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