
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction to
Parallel Performance Engineering

Bill Williams
TU Dresden

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance: an old problem

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 2

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Difference Engine

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase
■ Performance gains only through

increased parallelism
■ Optimizations of applications more

difficult
■ Increasing application complexity

■ Multi-physics
■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory
■ More CPUs / multi-core

F Every doubling of scale reveals a new bottleneck!

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation
■ Cache and memory
■ Input / output

■ “Parallel” performance factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 5

•Calculation of metrics
•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data
•Aggregation of performance data

•Build model of predicted
performance

•Select data to measure
•Prepare application with symbols
•Insert extra code (probes/hooks)

Preparation Measurement

AnalysisOptimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Parallel Performance Engineering in Practice

§ Starting point: well-understood, well-optimized code at scale N
§ Goal: scale to M >> N

§ Predict behavior: what is the current bottleneck, what performance should we see?

§ Measure possible bottlenecks
§ Idle resources
§ Changes in profile

§ Minimize perturbation
§ May require multiple measurements!

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 6

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance Modeling: Predicting Behavior

§ Simplest models: scaling properties
§ What parts of the code are serial and parallel?
§ How much time is spent in each?
§ How efficient are they currently?

§ More complex concepts
§ Roofline model (comparing throughput to theoretical maxima)
§ Load balancing: what code is responsible for idle resources?
§ Critical path analysis (e.g. Scalasca)

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 7

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Strong and weak scaling

§ Strong scaling: increasing compute power yields faster solutions on the same problem
§ Amdahl’s law: Speedup = (serial + parallel) / (serial + parallel / N) = 1 / (serial + parallel / N)

§ Weak scaling: increasing compute power yields larger problems solved in the same
time
§ Gustafson’s law: convert Amdahl’s law to measure scaled speedup (as a factor of problem size)

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Roofline Model

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 9

1

2

4

8

16

0,25 0,5 1 2 4 8 16 32

GFLOP/s

Arithmetic intensity (Operations/Byte)

Performance upper bounds

CPU FLOPS/DRAM

Bandwidth limited

Compute limited

Can be optimized

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Multiple Roofline Model

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 10

1

2

4

8

16

32

0,25 0,5 1 2 4 8 16 32

GFLOP/s

Arithmetic intensity (Operations/Byte)

Performance upper bounds

CPU FLOPS/DRAM CPU FLOPS/L1 Cache GPU FLOPS/GPU transfer bandwidth

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Load balancing

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 11

Iteration function

Iteration function

Iteration function

Iteration function

Iteration function

Iteration function

Iteration function

Iteration function

Communication

Communication

Communication

Communication

Comms

Communication

Communication

Communication

Probably mostly idle!

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical Path Analysis

§ Key concept: critical path is the sequence of tasks that govern execution time
§ At any given time, what is the job waiting for? May be computation or transfer or a combination!

§ Optimizing tasks off the critical path can’t speed up execution
§ Example: load imbalance due to a rare case being 2x slower than the common case
§ The slow rare case may only be 1% of aggregated execution time, but responsible for 50% of wall

time in iterations
§ Optimize the critical path = make the rare case closer to the speed of the common case

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

What to Measure

§ So you have some hypothesis about how your code will behave
§ This requires certain data
§ Simple scaling models: execution time, possibly subdivided between serial and parallel parts
§ Roofline model: operations/second and bytes/second corresponding to one or more rooflines
§ Load balancing: distribution of time spent in computation and communication
§ Critical path: detailed measurement of execution time across all nodes and threads

§ Allows you to ignore certain other data
§ Example: load balancing
§ Detection typically based on communication wait states
§ Don’t need to analyze computation details for that

§ When possible, measure only what you need to test your hypothesis
§ All-in-one-run only when it’s unavoidable

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement Practices

§ Measurements on HPC systems are noisy
§ Shared resources: anything short of full-system DAT probably shares something (and maybe even

then, if you use site-shared filesystems)
§ Nondeterminism: cache effects, which nodes were allocated, small race conditions

§ Particularly relevant to wall time, but can affect other metrics

§ As with all scientific measurements, repeat the experiment
§ Especially if the initial results look weird!

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 14

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance
■ Perturbation

■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters
■ Granularity

■ How many measurements?
■ How much information / processing during each measurement?

F Tradeoff: Accuracy vs. Expressiveness of data

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling

§ Running program is periodically interrupted to take
measurement
§ Timer interrupt, OS signal, or HWC overflow
§ Service routine examines return-address stack
§ Addresses are mapped to routines using symbol table

information
§ Statistical inference of program behavior
§ Not very detailed information on highly volatile metrics
§ Requires long-running applications

§ Works with unmodified executables

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 16

Time
main foo(0) foo(1) foo(2) int main()

{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation

§ Measurement code is inserted such that every event
of interest is captured directly
§ Can be done in various ways

§ Advantage:
§ Much more detailed information

§ Disadvantage:
§ Processing of source-code / executable

necessary
§ Large relative overheads for small functions

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 17

Time
Measurement int main()

{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

F Profile = summarization of events over execution interval

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

■ Recording detailed information about significant points (events) during execution of
the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)
■ Abstract execution model on level of defined events

F Event trace = Chronologically ordered sequence of
event records

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 19

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

■ Tracing advantages
■ Event traces preserve the temporal and spatial relationships among individual events

(F context)
■ Allows reconstruction of dynamic application behaviour on any required level of abstraction
■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large
■ Writing events to file at runtime may causes perturbation

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

No single solution is sufficient!

A combination of different methods, tools and techniques is typically needed!
§ Analysis
§ Statistics, visualization, automatic analysis, data mining, ...

§ Measurement
§ Sampling / instrumentation, profiling / tracing, ...

§ Instrumentation
§ Source code / binary, manual / automatic, ...

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes function-by-function

SC'20 TUTORIAL: PRACTICAL HYBRID PARALLEL APPLICATION PERFORMANCE ENGINEERING (VIRTUAL, NOV 2020) 22

