Table 1. Benchmark dose modelling for the effects of HBCDD reported in Eriksson et al. (2006), using the endpoint-specific BMRs (scaled to 1 SD on log-scale). BMD confidence intervals were calculated by model averaging (1000 bootstrap runs). PROAST 70.2 is used. For more details of the analysis also see Figures 1, 2, and 3 below.

Critical effect	BMDL	BMDU	Precision	Endpoint-
	(mg/kg bw per	(mg/kg bw per	(BMDU/BMDL)	specific BMR
	day)	day)		
Horizontal locomotion	0.253	4.05	16	18%
Rearing	0.241	1.65	7	20%
Total activity	0.688	8.25	12	12%

bootstrap curves based on model averaging

version: 70.2 mod el averaging results dtype 10 selected end.point locomotion dose scaling: 1 conf levet: 0.9 number of nuns: 1000 CES -0.17489069822973 BMD CI 0.25 4.05

Figure 1. Calculation of BMD confidence interval for the endpoint horizontal locomotion by model averaging. An endpoint-specific benchmark dose response of 18% is used based on the Effect Size theory.

Figure 2. Calculation of BMD confidence interval for the endpoint rearing by model averaging. An endpoint-specific benchmark dose response of 20% is used based on the Effect Size theory.

Figure 3. Calculation of BMD confidence interval for the endpoint total activity by model averaging. An endpoint-specific benchmark dose response of 12% is used based on the Effect Size theory.