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1 Problem statement

Extract as much information as possible about
the shape and dimensions of a metal container from
the sound produced when dropping small objects
(such as peas) into it.

2 Introduction

The question of whether we can “hear the shape
of a drum” has been researched extensively.[1][3]
The heart of the problem lies in the eigenfrequen-
cies of oscillation of the object, because other prop-
erties of the sound are too dependent on external
factors to be used to reliably reconstruct the shape
of the oscillating body. Mathematically, the ques-
tion becomes“Can the eigenvalue spectrum of the
Laplace operator uniquely determine the geome-
try of the domain and boundary on which it is
defined?”. The answer to this question has been
found and is no in full generality, but counterex-
amples are usually contrived. The exactness of the
mathematical question is physically muddled by the
fact that open ends aren’t exactly modeled as Neu-
mann boundary conditions, requiring further end
corrections.

We first focus on solving the inverse question,
namely finding the eigenfrequencies analytically for
common simple geometries in 3D and additionally
comment on other solutions for the sides and other
more complicated shapes. We further discuss the
experimental limitations that arise and limit the
information we are able to extract and the results
we obtained from experiments.

3 Theoretical description

To better understand the question of reverse en-
gineering the shape and size of an object from its
sound we should first look at the inverse problem
— finding the resonant frequencies of the object.

The answer to this question amounts to finding
standing wave solutions of the wave equation

∇2Ψ(r, t)− 1

c2
∂Ψ(r, t)

∂t
= 0 (1)

with a Dirichlet boundary condition for closed ends
and a Neumann boundary condition for open ends,
where c is the speed of sound in the material.

Separating variables as Ψ(r, t) = ψ(r)f(t) reveals
that this is just the problem of finding the spectrum
of the Laplacian operator

∇2ψ(r) = −k2ψ(r), (2)

where k2 is a separation constant that we recog-
nize as the wavenumber. The boundary conditions
give us limitations on this wavenumber which, in
turn, lead to the resonance peaks in the spectrum
through

ν =
c

2π
k. (3)

We now look at the two special cases of a rect-
angular and a cylindrical geometry.

3.1 Rectangular geometry

In this case the solutions are found by further
separating every Cartesian direction. For the vol-
umetric resonances the boundary conditions are
Dirichlet for all but one of the sides if the container
is open, and they are Dirichlet for all sides if the
container is closed leading to the eigenfrequencies
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where Lx, Ly and Lz are the side lengths, n,m ∈
N0, l ∈ N0 if the container is closed and l ∈ N/2 if
the container is open.

3.2 Cylindrical geometry

For this case it’s obviously convenient to work in
cylindrical coordinates where the Laplacian takes
the form
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Separating variables, this time as ψ(r, φ, z) =
R(r)Φ(φ)Z(z), gives us the usual sinusoids sin and
cos as solution for the Z and Φ functions and Bessel
functions as solutions for the radial part R. Impos-
ing the condition of regularity at the origin removes
the Bessel Ym function as a possible solution. The
further conditions of R(a) = 0 at the radial bound-
ary and the usual open-closed conditions on Z for
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the vertical boundaries we get the requirement for
resonance
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where a is the radius, H is the height and ρm,n is
the n-th zero of the m-th Bessel Jm function. The
number l is the same as in the rectangular case,
namely with the same dependence on the container
being open/closed.

3.3 Other solutions

The complications of other solutions come in two
forms.

Firstly, in 3D, it’s not possible to solve the equa-
tions analytically for many other geometries, and
those for which we can aren’t usually used as con-
tainers, meaning an experiment can’t be done to
confirm or deny our calculations.

Secondly, the sides simply can’t be approximated
as just 2D membranes. We have to describe them,
at least, as Kirchhoff-Love isotropic plates.[2] [4]
These equations, although solvable in the case of
simple geometries for isotropic plates, are not of
much use to us because the values for frequencies
they predict depend on the thickness of the plates
and their elastic properties. Seeing as we only have
access to sound information, we have to settle for
only the eigenfrequencies of the volume oscillations.

3.4 End Corrections

The physical reasoning behind the Neumann
boundary condition dψ

dx = 0 is that the pressure
variations at the boundary have to have zero am-
plitude so that the pressure inside matches the at-
mospheric pressure at all times. This already re-
veals that the Neumann boundary condition is in
fact approximate. The air just outside the open
end can also start oscillating, effectively increasing
the size of the oscillator in that direction.

Getting formulas for these end corrections is dif-
ficult in general but for the case when the length
in the open direction Lz is much bigger than the
width in the perpendicular directions we have an
empirical formula given by

δLz ≈ 0.34
√
A, (7)

Figure 1: Setup of the experiment

where A is the area of the open end.[5] After a given
size of opening thinking of the boundary condition
as Neumann is not even approximately true.[6]

4 Experimental setup

The setup for the experiment consisted of using
a microphone connected to a personal computer to
record the sound made by dropping a small rock
into the chosen container to excite the natural os-
cillations (see Fig.1).

The microphone used was a Trust All-round USB
Mico microphone. It was tested to be sensitive to
frequencies up to about 7000 Hz.

The audio files were then processed with the
audio processing software Audacity [ver. 2.2.1],
specifically using its Analyze Spectrum tool to gen-
erate the spectrum of the oscillations. The specific
settings for the Algorithm, Function and Size
fields were Spectrum, Hamming window and 8192,
respectively.

Measurements were done in two ways. Once by
just normally dropping the stone into the container
and the second time by trying to block out most of
the volume oscillations with a large dampener, like
a bottle of water. This way if we plot both spectra
we can easily identify which peaks are coming from
volume oscillations and which are coming from os-
cillations of the sides and bottom.
The containers used were

1. Cylindrical cooking pot (H = 11.0 cm, R =
6.0 cm) [Fig.2e]

2. Cylindrical tea box (H = 8.0 cm, R = 3.0 cm)
[Fig.2b]
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3. Rectangular cake pan (Lx = 16.0 cm, Ly =
8.0 cm, Lz = 7.0 cm) [Fig.2a]

4. Two mystery containers [Fig.2c and 2d]

(a) Cake pan (b) Tea box

(c) Mystery box 1 (d) Mystery box 2

(e) Cooking pot

Figure 2: Containers used in the experiment

The last two mystery boxes were a mystery in
the sense that the only information made available
to the experimenter were audio files of sounds from
the containers being hit. From this they tried to
determine the geometrical properties and dimen-
sions. This served as a way of removing the bias
of the experimenter when trying to fit resonance
peaks onto an actual experimental spectrum.

5 Experimental results

One of the five containers, namely the cooking
pot, was used to test whether the ideas presented

above worked in practice. We did this by mea-
suring its dimensions and trying to fit the mea-
sured spectrum with the theory. The precise di-
mensions of the pot were H = (11.0± 0.1) cm and
R = (6.0±0.1) cm which makes the effective height
of the pot H ′ = (14.6± 0.2) cm. In this spectrum,
as in the others, the speed of sound was taken to
be c = (343 ± 2) m/s. The theoretical predictions
with their respective errors and the positions of the
most prominent peaks from both the blocked and
normal spectra are plotted in Fig.3.

Figure 3: Plot of the theoretical predictions with
their associated errors coming from the geometri-
cal measurements (red) and the most prominent
peaks of the blocked (yellow) and free (blue) spec-
tra. Vertical axis has no physical meaning.

The first thing we notice is that-Dropping for fre-
quencies higher than around 5000 Hz the geometri-
cal measurement errors become too large to effec-
tively fit the theory and experiment. At frequencies
lower than about 900 Hz we have the problem of the
spectrum being too noisy. Between these two ex-
tremes we are looking for places where the red and
blue lines agree. The places where the blue and yel-
low lines agree can be taken out of the discussion
as they are not volume oscillations. We see that
there is some agreement between the two with the
notable exceptions of the lines at around 2200 Hz
and 4100 Hz. One possible explanation is that these
modes just weren’t excited with enough energy to
show up on the spectrum.

From analyzing the tea box spectrum (see Fig.4),
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Figure 4: Plot of the spectrum of the tea box with-
out a blockage (blue) and three measurements with
one (orange, green, red). Vertical axis has arbitrary
units.

we notice peaks at 1055 Hz and, to good precision,
at three times that frequency 3216 Hz. This is a
dead giveaway for the size of the linear direction
of oscillation, giving the value H ′ = (8.1± 0.1) cm.
There aren’t enough other identifiable peaks to get
the radius R. Our precision is thus limited because
we can’t subtract off the end correction, butH ′ still
gives a good guess to the actual height H.

Figure 5: Plot of the spectrum of the rectangular
cake pan.

In the case of the rectangular cake pan (see
Fig.5), we get no recognizable peaks in the spec-

Figure 6: Plot of the spectrum of mystery box 1.

Figure 7: Plot of the spectrum of mystery box 2.

trum because of all the little ways in which our
setup departs from the model. Namely, these are
the geometry not being perfectly rectangular, the
edges not being perfectly motionless, and the open-
ing giving rise to a condition that isn’t Neumann
to any degree of accuracy.

The spectra gotten from the mystery boxes
didn’t have any prominent features above 1400 Hz.
This is partly because higher harmonics weren’t ex-
cited, but it also implies that the size of the con-
tainers is somewhat bigger than the tea box for
example.

The overlap between blocked and free volume
oscillation spectra is particularly high for mystery
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box 1. At first, we thought that the most promi-
nent peak was the one at 371 Hz. Together with
the assumptions that the peak came from oscil-
lations of a linear open dimension (most common
for everyday containers) this frequency would give
the size as L ≈ 23.1 cm. After the geometrically
measured sizes of Lx = 6.2 cm, Ly = 8.3 cm and
Lz = 8.1 cm were revealed it was noticed that a
better choice for the peak would have been 866 Hz,
because it’s the only one not covered by an orange
peak at all. Calculations with that frequency give
the size L ≈ 9.9 cm which is a better fit. This actu-
alizes the fact that reading off the peaks from the
graph can sometimes be hard to do even with the
help of oscillations with the volume blocked.

For mystery box 2 we have a somewhat better sit-
uation where at least one peak is definitely promi-
nent enough, namely the one at 576 Hz. With the
same assumptions as before of the dimension being
linear and open we get L ≈ 14.9 cm. The actual
measured sizes of mystery box 2 were Lx = 8.7 cm,
Ly = 6.0 cm and Lz = 11.6 cm.

Considering that we can’t find the end correc-
tions because we don’t know the other dimensions
from the spectra, these turn out to be good approx-
imations for the vertical sizes of the containers.

6 Conclusions and Discussion

Even though the mathematical question of recog-
nizing shapes from their spectra has a clear answer,
namely that they can mostly be distinguished, the
physics question runs into additional complications.
Theoretically, the problem of the inadequacy of the
Neumann boundary condition for an open end gives
rise to end corrections. While experimentally we
are limited to only a window of the whole spectrum
because of noise and microphone sensitivity.

But even with these restrictions some informa-
tion can be extracted from the spectra of objects.
Usually the geometry can’t be determined because
of the lack of higher harmonics which would have
different distributions for different geometries. It is
usual to be able to determine at least the largest
of the dimensions under some assumptions on the
geometry, such as that the largest dimension is lin-
ear and open (the most common case for everyday
containers).

Theoretical improvements on this problem would

include a better formula for the end corrections or
completely dispensing with them and introducing
a more general formula for objects with one open
side.

Experimental improvements could include get-
ting a better range of frequencies by trying to re-
duce noise and using a microphone with a larger
span, and finding a better way to compare the in-
tensities of the blocked and free oscillations so as
to make recognizing free peaks easier.
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