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    Given that quantum mechanics is argued to be a statistical theory, there have been attempts 
to investigate if the Schrodinger equation follows from the maximization of Shannon’s entropy. 
For example in (1), Shannon’s entropy using P(x)=density is maximized subject to energy 
constraints and the Schrodinger equation appears in the zero temperature limit. Furthermore, 
traditionally it is argued that the free particle quantum wavefunction exp(ipx) has a modulus of 1 
at all x points, which seems to be a statement of maximum entropy. If that is the case, how does 
exp(ipx) follow from the maximization of entropy ? In this note, we try to examine the role of 
maximum entropy in the Schrodinger equation and specifically argue that two principles are 
used. First, maximization of entropy using conditional probability not P(x) is applied using an xW 
(W=wavefunction) and not energy constraint. Secondly, Newton’s conservation of energy is 
applied to a quantum ensemble of free particle conditional probabilities obtained in the first step. 
Thus, statistical arguments are only part of the quantum picture. 
 
The Schrodinger Equation as a T=0 limit of a Maximization of Entropy Equation (1) 
 
    In (1), the Schrodinger equation appears as the zero temperature (Lagrange multiplier) of a 
maximization of entropy given by: 
 
density(x) ln[density(x)/density0(x)] +  b1 density(x) + b2 H density(x)     ((1)) 
 
where density0(x) is a prior and H the energy. The result is: 
 
density(x) = density(0)/Z exp(-H/T)  where Z= Integral dx density0(x) exp(-H/T)  ((2)) 
 
In (1), it is further shown that using density= W* W  (W=wavefunction), ((2)) can be shown to be 
the solution of a Schrodinger type equation which becomes the actual Schrodinger equation if 
T=0. No new assumptions are needed, so this approach suggests that the Schrodinger equation 
follows from a maximization of a Shannon’s entropy -P(x)ln(P(x)) using P(x)=density(x) in the 
T=0 limit. The fundamental point, however, is that this Schrodinger equation is expressed as: 
 
       HW = E W  ((2b)) 
 
In particular, H is an operator representing energy, but no proof is given that average kinetic 
energy is of the form -1/2m d/dx d/dx W / W. ((2b)) as it stands is a classical equation. In this 
note, we argue that statistical maximization of entropy may be used to demonstrate that -1/2m 
d/dx d/dx W / W is the form of kinetic energy at x i.e. Sum over p pp/2m P(p/x), but that ((2b)) is 
a Newtonian and not statistical statement. 
 
 



Classical Mechanics 
 
    It is possible to define a classical density (2):  
 
P(x)= Cdt = Cdx/v(x)  ((3))  
 
for a classical bound state, where v(x) is the velocity i.e.  .5m v(x)v(x) + V(x) = E.  ((4)) 
which is a consequence of Newton’s second law. If one forms a Shannon’s entropy expression 
i.e.  C/v(x) ln(C/v(x)) and maximizes by varying v(x) subject to 
Integral dx C/v(x)=constant1 and Integral dx  .5mv(x)v(x)C/v(x) + V(x)C/v(x) = E C then: 
 
1/v(x) = density(x)  = exp[-b ( mv(x)v(x)/2 + V(x)) ] where b is a Lagrange multiplier  ((5)) 
 
Thus, density(x) is given by a Maxwell-Boltzmann type expression, but this is not the Newtonian 
solution of the problem. Furthermore, b is given by solving for the constraints and so it does not 
follow that one would take b=0.  Thus, ((5)) matches the result of ((1)), but it seems that v(x) 
follows from Newtonian mechanics and not statistics. 
 
Correspondence Principle 
 
    According to the correspondence principle, in the high energy limit, quantum density 
W*(x)W(x) (which has crests and troughs) has an envelope function which roughly matches 
1/v(x). If v(x) follows from Newton’s law (or the conservation of energy equation) and not from 
the maximization of Shannon’s entropy, one would expect the same for at least for the envelope 
of quantum bound density W(x)W(x) (as W(x) is real). Thus, at least part of the quantum does 
not seem to be based on maximization of entropy, but rather Newtonian mechanics. 
 
Quantum Free Particle Probability 
 
   In the above two sections, we argue that Newton’s second law and not maximum Shannon’s 
entropy [using P(x)] seems to govern the classical density = C/v(x) and the envelope of the 
quantum bound density W(x)W(x). This idea should hold for a free quantum particle i.e. one for 
which V(x)=0. In such a case, W*(x)W(x), the envelope should be a constant. This follows also 
from the idea of maximization of entropy, however i.e.: 
 
P(x)=density(x)= C exp(-.5mvv)   where v(x)= constant  ((5)) 
 
Thus, in the free particle case, both Newton’s law and the maximization of Shannon’s entropy 
with P(x) both yield a constant density. This is not surprising as a particle moving with a 
constant speed has an equal probability to be at any x point and in classical statistical 
mechanics, each x point has the same probability if there is no potential. The physical situation 
in statistical mechanics is different, however, because there exists two-body scattering which 
does not depend on x if there is no V(x). This, however, is equivalent to a particle having the 
same velocity at two different points. In other words, statistical mechanics is linked to Newtonian 



mechanics as the MB distribution is C exp[- (.5mv(x)v(x) + V(x))/T] where E= .5mv(x)v(x) + V(x) 
follows directly from Newtonian mechanics and not the maximization of entropy. Conservation of 
energy in statistical mechanics is a property which exists outside of the statistics of the problem. 
(Furthermore, the MB distribution makes use of the idea of elastic scattering which again is 
related to conservation of kinetic energy and not statistics.) The statistical aspect enters through 
a balancing of forward and backward reactions. 
 
  The “wavefunction” for a free quantum particle is exp(ipx). Traditionally it is argued that this 
wavefunction has a modulus of 1 at all x points which seems to indicate that more complicated 
issues exist. First, the statement that the modulus of exp(ipx) is 1 suggests that P(x)=constant at 
all x points. Thus, exp(ipx) is like “ a kind of square root” of P(x) or at least linked to probability. 
We call it at relative conditional probability and move away from the idea of using P(x) in forming 
Shannon’s entropy. 
 
   Secondly, we suggest there is possibly a “principle” in quantum mechanics linking conditional 
probability changes for a free particle (or even a bound one) and average momentum (3). For a 
free particle, the momentum is the constant p. If this principle is to hold, one should expect it to 
be present as a constraint in any maximization of entropy expression. We try to show that this 
“principle” seems to follow from using a constraint of xW and maximizing Shannon’s entropy 
using conditional probability W(x)  : 
  
 
-W ln(W) - b xW  →    -ln(W) -1 -b x = 0     ((6)) 
 
Then W(x)=Cexp(-bx).  The solution should not grow or decrease and its derivative should be 
proportional to p, momentum so: 
 
 W(x)= Cexp(ipx)   ((7)) 
 
It is interesting to note that integral pdx (0, 2pi) px cos(px) = 0, but iIntegral dx (0, 2pi) x sin(px) 
= i. Thus, Real Integral x W dx = 0 over the cycle x=0 to x=2pi. Thus, there seems to be some 
fluctuation within (0,2pi), but overall the average real part of Integral x W(x) dx is 0. This seems 
to be linked to uncertainty in x as the average is 0, yet there are probabilities to have x at 
different places in the interval, some with positive and others with negative conditional 
probabilities. It should also be noted that the size of the interval depends on p i.e. p=2pi/L, L 
being the wavelength or interval size. 
 
If one tried to establish a similar equation using W*W instead of W, then integral dx xW*W is 
automatically 0 by symmetry. Alternatively, one may use P(x) in Shannon’s entropy subject to 
the constraint Integral P(x) dx =1. This yields P(x) = constant. Given that one wants x 
dependence, one may argue that a solution is P(x)=W*(x)W(x) with W(x) = exp(iG(x)) and then 
go on to argue that G(x)=px is a solution with a flow proportional to p. It seems, however, that 
one should be able to maximize entropy related to W directly as an alternative. 
 



As a result, we argue that the maximization of entropy used in quantum mechanics is quite 
different from the usual maximization of Shannon’s entropy of the real P(x)=density(x) subject to 
energy constraints. 
 
It is immediately seen that:    d/dx exp(ipx) = ip exp(ipx) and that -d/dx d/dx exp(ipx) = pp 
exp(ipx).   ((8)) 
 
Thus, the conditional probability is directly linked to probability values for p (momentum) and pp 
(related to kinetic energy).  
 
Quantum Bound State with V(x) 
 
    In the above section, we argue that maximization of Shannon’s entropy using the conditional 
probability W(x) yields the free particle wavefunction exp(ipx) if one uses xW as a constraint 
which leads to a flow result:  -id/dx W = p W. That next consideration is the presence of a 
potential V(x). 
     Let us assume one wishes to use exp(ipx) (the free particle wavefunction) in a problem with 
V(x). In such a case, V(x)= Sum over k V(k) exp(ikx) is the stochastic collision source instead of 
two body collisions in a classical gas. The rule for two body collisions in a classical gas is the 
existence of a reaction time reversal balance i.e. 
 
P1+p2 → p3+p4 and  p1p1/2m + p2p2/2m =  p3p3/2m + p4p4/2m  ((9)) 
 
with   f(p1)f(p2)=f(p3)f(p4)   ((10)) 
 
For a quantum bound state, the rule is completely different, namely: 
 
KE ave (at x) + V(x) = E   ((10)) 
 
((10)) is a Newtonian statement applied to an average and does not necessarily follow from 
statistics. Thus, one needs a statistical expression for KEave(at x). This is where the maximum 
entropy exp(ipx) conditional probability expression comes into play because: 
 
KE ave (at x) =  [Sum over p  pp/2m a(p) exp(ipx) ] / W(x)  where W(x)=Sum over p a(p)exp(ipx)  
 
Or  KE ave (at x) = -1/2m d/dx d/dx W / w 
 
    ((11)) 
 
Thus, the unknowns a(p) may be solved from ((10)) without any maximization of entropy. 
Maximization of entropy has already been performed to obtain exp(ipx) which yields a form for 
kinetic energy  a(p) pp/2m exp(ipx). If a function differing from exp(ipx) had resulted, then -1/2m 
d/dx d/dx W / W would not be the average kinetic energy. 
 



It is interesting to note that the average conservation of energy equation becomes a differential 
equation because of the form exp(ipx) i.e. 
 
-1/2m d/dx d/dx W / W + V(x) = E    ((12)) 
 
This is a mathematical eigenvalue equation. For the case of distinct eigenvalues (and given 
boundary conditions), there is a unique set a(p) corresponding to an E. Thus, there does not 
seem to be a question of maximizing entropy to find an appropriate set of a(p)’s.  
 
 
Reverse Argument 
 
    Given ((12)), the Schrodinger equation and its limit V(x)=0, the solution exp(ipx)=W(x) follows 
from a maximization of entropy which does not use an energy constraint unlike the approach of 
(1) and traditional approaches. It seems energy conservation (applied to averages) differs from 
statistical maximization of entropy approaches. The contribution of the statistical approach is to 
give the form of the average kinetic energy at each x point. Then, a separate approach, i.e. 
Newton’s conservation may be applied to determine any unspecified constants. In general, one 
would combine these two i.e. if conservation of average energy is a constraint it may be 
incorporated in the entropy expression to be maximized, but this cannot be done if one does not 
know the form of average kinetic energy at x in terms of W(x) the conditional probability.  
 
 
Conclusion 
 
    In conclusion, we argue that maximization of Shannon’s entropy using a conditional 
probability for a free particle may be performed if one uses xW as a constraint which leads to 
exp(px) without using an energy constraint. This result is equivalent to -id/dx W = p W, so the 
flow condition seems to follow from maximization of entropy. This is peculiar and differs from 
standard approaches which use density = W*W = P(x) in Shannon’s entropy and obtain 
HW=EW type equations in certain limits without proving that -1/2m d/dx d/dx W / W is average 
kinetic energy, we argue. The approach of using W in Shannon’s entropy and the constraint xW 
seems to lead to a kind of fluctuating picture with x uncertainty. On average x is 0 i.e. Real 
Integral dx x exp(ipx) is 0 for (0, 2pi), but x has values with positive and negative conditional 
probabilities. This is similar to the idea that exp(-ipx)exp(ipx) = 1 at all x, yet there is periodic 
motion beneath the constant density “surface”. 
    A key point to obtaining exp(ipx) as a conditional probability is that it allows for the formation 
of kinetic energy at x i.e. Sum over p pp/2m P(p/x) in a relatively simple manner from W(x) 
where P(p/x)= a(p) exp(ipx)/W(x). In other words, W(x) represents an ensemble of free quantum 
particles. One may apply the rule that average energy at x is E, but still requires an explicit 
expression for average kinetic energy at x. If one knows the conditional probability function at x 
which depends explicitly on exp(ipx), this may be done. exp(ipx), in turn, may be obtained from 
a somewhat peculiar maximization of entropy dependent on a flow constraint d/dx W = ip W. 



Thus, the Schrodinger equation is, we argue, a combination of maximum entropy applied to 
obtain exp(ipx) and Newton’s conservation of energy applied to ensemble averages. 
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