
Date: November 4, 2020
Place: office 102, School of Electrical Engineering, University of Belgrade, Bulevar kralja
Aleksandra 73, 11000 Belgrade, Serbia

Interviewer (NM): Nadica Miljković
Interviewee (PP): Professor Predrag Pejović, School of Electrical Engineering, University of
Belgrade, he was a guest lecturer at ETH Zurich and Universidad Politécnica de Madrid and
PhD at the University of Colorado Boulder, personal webpage, http://tnt.etf.rs/~peja/

Scientific Discipline: Scientific Computing (Numerical and Symbolic Computing)

Transcript (translation in English, originally in Serbian, translated by Nadica Miljković)

NM: The CURE-FAIR questionnaire contains a user story and the first question is your role in
relation to your experience in computational reproducibility. For example journal editor,
researcher, reviewer, educator/lecturer, etc.
PP: I would say researcher only. For some time I have been using exclusively free software for
education and since then I have no problems in computational reproducibility of teaching
materials. Therefore, I do not have accumulated results in proprietary software, everything is
translated. In my experience, the most important aspect in relation to reproducibility is in my
research in numerical computing. I teach students about the importance of numerical
reproducibility in master course. This is very important for example when we have to decide
whether something is zero or close to zero. For example, to decide whether there is a voltage
source loop. When you said reproducibility this came first to my mind.
The next thing that comes across my mind is that the majority of my code was written in Fortran.
Then, when Fortran disappeared I had to translate everything in C. This was hard and
cumbersome work back in 1993. After that experience I was careful when choosing a platform
as I was afraid would I be able to reuse my own results in the future. Then, I had to translate my
code in numerical computing in Matlab, then GNU Octave, and in the end Python. Right now I
tend to use Julia and Python interchangeably.

NM: If I get it right, your major issue was related to cross-platform reproducibility? I am
interested if you had a reproducibility problem as a result of versioning, for example translating
code from Python 2 to Python 3?
PP: Yes, there is cross-versioning. However, I find that problem way too easy, so I had no
intention to mention it. This year I am translating everything to Python 3 and there are only a few
issues that need to be resolved (e.g., print function). Cross-versioning is easy and fast and
uncomparable when I had to reuse Fortran code in C.

NM: What is exactly your scientific discipline? Numerical Computing?
PP: My main area is Scientific Computing and my sub-disciplines are Scientific Computing are
Numerical Computing and Symbolic Computing.
I also had cross-platform issues in Symbolic Computing. I started to use Derive during my PhD
in the USA and at some point it became unavailable. Derive was a very nice small program and

1

http://tnt.etf.rs/~peja/

it worked phenomenal. Texas Instruments bought it and then they created derived Derive and
then it was discontinued. Back then I had to reuse Derive code in Maxima and to start using
Maxima. This happened in 2012 when I was a guest lecturer at Universidad Politécnica de
Madrid and I translated everything that I had in Derive to Maxima. It was quite cumbersome.

NM: As I understood well, cross-platform is the greatest problem?
PP: Yes. Also, I have another cross-machine problem. If I have to use the same code that I
wrote under Linux on a machine with Windows I need to spend quite a large amount of time in
order to reuse a code. For me that is an issue.

NM: I understand. If someone would decide to solve that, what would be a solution? To describe
methodology in all tiny details? Are there any scientific papers in your area where authors do
not report the version of a program or operating system? Was there any situation when the
missing data was important to you and prevented you from repeating someone’s else result?
PP: That is the standard scenario. Unfortunately.
Let me show you something. My PhD student Marija Glišić and I uploaded experimental
verification on Zenodo. We got a request for that from reviewers. You can see it at
https://zenodo.org/record/3732925 for experiment 2, at https://zenodo.org/record/3601544 for
experiment 1, and at https://zenodo.org/record/3601399 for simulation. The idea was to place it
publicly available and accessible to anonymous reviewers.

NM: Obviously sharing code is an important part of computational reproducibility. Do you think
that journals should provide code review (verification)? Would that help? Do you think that
scientists send their erroneous code to journals or they just do not explain it?
PP: I think that there are some of them sharing the erroneous code. I placed this on Zenodo
with the intention that someone can reuse it and check my results. I strongly believe in
verification.

NM: Did your reviewers perform that check?
PP: I have no information on that.
Another thing related to this topic is the work of my student Miloš Novaković. He had an
assignment to reuse Marija’s Python code in Julia and to compare results. Julia performed
expectedly fast, but the most interesting result is comparison - it was identical to the level of bit.

NM: That’s perfect. So cross-platform reuse can be successful if you have all relevant data?
PP: Yes. His input data was this Zenodo link.

NM: This probably depends also on the programming language. Obviously Python and Julia are
compatible. But, what if you choose some other programming language?
PP: Of course.

NM: Should be there a list of recommended programming languages for scientific computing?
PP: I don’t think so. I think that it is related to the IEEE arithmetic standard and if you have this
standard implemented then it should be OK. Of course this is not as simple as it seems. It is

2

https://zenodo.org/record/3732925
https://zenodo.org/record/3601399
https://zenodo.org/record/3601544

because there are intermediate results and if you have a change from 32-bit to 64-bit word at
some point then the results will be different. Those are not simple simulations and calculations,
they usually last for a couple hours and there are many calculations. In order to get identical
results, you practically need to perform all operations identically. This is also conditioned by
word length. Python and Julia seem to be very compatible, but this is not necessarily the case
with other languages.
To my students at course Software Tools in Electronics (all materials are available online, http://
tnt.etf.bg.ac.rs/~oe4sae/) I show how factoriel performs in C and in Python. Algorithmically,
those programs are identical. The problem with C is that flags are set in such a way that
overflow is not detected. When you try to perform a factorial of 500 you will get something that
makes no sense, such as negative value. In Python, the change of type will take place, from
integer to long, and the result will be correct. This is something that I would classify as
computational reproducibility.

NM: Do you think that we should teach PhD students computational reproducibility?
PP: I teach students at 2nd year of Bachelor studies this example with factoriel at course
Software Tools in Electronics (all materials are available online, http://tnt.etf.bg.ac.rs/~oe4sae/).
I do not call it reproducibility, that is true, but I show them, you can find it online in course
materials.
I must admit that when you said reproducibility I wasn’t quite sure what you think by that?

NM: Thank you for your honesty. Many researchers asked me that.
PP: What do you consider to be computational reproducibility? There is another thing that also
crossed my mind. It is a problem with compatibility of Linux Ubuntu. I tried the code on two
computers and it couldn’t work, both Linux Ubuntu GCC compiler. It appeared that one
computer was 32 bit OS and another 64 bit OS and that was the problem.

NM: To conclude OS and cross-platform are the biggest issues?
PP: Yes.

NM: If someone would tell you that your code on Zenodo should work in 200 years from now,
what would you say? Python and Julia might not exist then.
PP: If you insist on backward compatibility you will be in a constant problem of advancement.
That can be both an advantage and disadvantage. You cannot progress if you tie strongly your
hardware and software to such strict requests. Simply, I do not think that you can ensure that. I
would say that we can split reproducibility into reproducibility in time and in the current moment.
We don’t have reproducibility in the current moment and the future is on a completely different
level. That future reproducibility is not computational, it is document reproducibility. For
example, I would love to read my PhD thesis in digital form again. My PhD thesis was prepared
in Word for Windows 2.0C 25 years ago.

NM: Do you still keep those files?
PP: Sure. I have it all on floppy disks. In order to transfer it to my current computer, I had to find
an old computer (you can check behind yourself). Now, I decided to keep this old computer, just

3

http://tnt.etf.bg.ac.rs/~oe4sae/
http://tnt.etf.bg.ac.rs/~oe4sae/
http://tnt.etf.bg.ac.rs/~oe4sae/

in case.

… follows a talk on problems with CD-based storage …

PP: To conclude, I wouldn’t insist on backward compatibility. Rather, I would insist on
reasonable decisions. Fine example of reasonable decision is done with Python versioning.
They kept version 2 for a long time in parallel with 3 and the transition is very well documented. I
think that is why my transition from 2 to 3 is simple. Emulator of and “old” and outdated
programs together with well prepared and detailed documentation would enable reproducibility
in time.

.... follows a sample case that Latex files from 70is and 80is can be reproduced (an experience
from a colleague mathematician) ...

NM: Overall, this should be taken care of by institutions. Information Centres and Data Centres.
PP: This is a well known problem. However, there are other sides of the story. Many lobi groups
would keep vendor-lock-in as they have an interest in it.

… follows a chit chat on author rights …

NM: Do you think that all scientific software should be free software?
PP: This is straightforward. Yes, I do. Many scientists do. My colleagues from ETH in Zurich
even developed proprietary software under Linux as they found it more convenient. That is a
personal decision. I decided not to use it and that is a consequence of my bad experience. I feel
humiliated as their salespersons are insulting my intelligence. No nice way to say this. They do
not have complete knowledge and they try to earn some profit from scientists that are mostly
underpaid.
It is also cost/benefit. What do you get with proprietary software that you can not get with free
software regardless ideology?

NM: I would like to ask something about review. You said that you shared your research on
Zenodo for reviewers expecting that reviewers would use it. Have you ever as a reviewer tested
someone's code and did you get the chance to test it?
PP: A large amount of my time is devoted to review. I just got two papers for review both in
scientific computing. In most cases, I get diagrams in the paper that I cannot reproduce. I
intentionally send my code in my papers so that reviewers can check it, and since I believe that
this way we are creating a standard. I admit that I have never asked authors for a code. Maybe
it is how I am raised as I consider such requests impolite. There are several factors, (1) the first
one is compassion to authors as I know how much effort they have put on and (2) I always think
what their disclosure could be on some commercial grant.
I perform my review visually and if I see something that appears unexpected then I ask them
about that. I have never seen a programming code in all my reviews, although I consider the
code in Scientific Computing the most important part.

4

NM: I understand, you cannot force researchers to give their code, but it is desirable. Maybe
journals can start asking them about code? Not forcing of course.
PP: I have concrete examples on Zenodo. There I share code under CC Attribution Share Alike
- I consider it to be equivalent to GPL. In these examples, all results are worthless without a
code.

In the following PrtScs, factorials in C and Python programming languages are compared.

5

Date: November 5, 2020

NM: Do you approve my transcript of the interview? Would you like to add something?
PP: Yes, I do approve the transcript.
I would like to point out that I think that formats are crucial. Secondly, it is needed to archive
software versions somehow. When you report program results, one should at least say what
version of the program it is and on which platform it works, it is possible that under Windows
and Linux the code works differently. With free software, archiving versions is legal execution,
with proprietary it is not. For outdated OSs, it would be convenient to have an emulator as those
OSs won’t be here forever.
The idea that crosses my mind is could we use any software with a standard command to list
"environment parameters", machine parameters and program version together with its modules
in order to document the type of a machine (by configuration) and the version of the program
used to create results? Could any central body archive the relevant ones program in terms of
making it available to older versions? This can be done for free software only. The problem is
clear, the lobby groups and the seller's vendor-lock-in ideology will not be supportive.

NM: Do you agree that we make this transcript available on Zenodo?
PP: Yes, I do.

6

