A strengthened form of the strong Goldbach conjecture

Ralf Wüsthofen

Abstract. This paper disproves a strengthened form of the strong Goldbach conjecture. Based on this result, it then gives a proof of that statement. The paper thus constitutes an antinomy within ZFC.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. Both SSGB and the negation ¬SSGB hold.

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S_g .

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter corresponds to SSGB and the former corresponds to the negation $\neg SSGB$.

The set S_g has the following property: The whole range of \mathbb{N}_3 can be expressed by the triple components of S_g , since every integer $x \ge 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \ne 1$ when x is composite and not a power of 2, or as (3+5)k/2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$.

We can split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, $S_g = S_g + (y) \cup S_g - (y)$, with

$$S_g+(y)=\{\;(pk',\,mk',\,qk')\in S_g\;|\;\exists\;k\in\mathbb{N}\quad pk'=yk\;\vee\;mk'=yk\;\vee\;qk'=yk\;\}\;\text{and}\;$$

$$S_g\text{-}(y) = \{ \; (pk',\,mk',\,qk') \in S_g \; | \; \forall \; k \in \mathbb{N} \quad pk' \neq yk \; \land \; mk' \neq yk \; \land \; qk' \neq yk \; \}.$$

In the case of $\neg SSGB$, there is at least one $n \ge 4$ additional to all the m that are defined in S_g . The following steps work regardless of the choice of n if there is more than one n.

According to the above three types of expression by S_g triple components, for n we have

(C):
$$\forall k \in \mathbb{N} \exists (pk', mk', qk') \in S_g \quad nk = pk' \lor nk = mk' = 4k'.$$

Let S_g + be shorthand for S_g +(n) and let S_g - be shorthand for S_g -(n). Then, because of (C) and because n cannot be the arithmetic mean of a pair of odd primes not used in S_g , there is no other possibility than: $\neg SSGB => S_g = S_g + \cup S_g$ -.

 $S_g+ \cup S_g$ - is independent of n, since for every n it equals S_g . On the other hand, $S_g+(y) \cup S_g-(y)$ equals S_g for every y by definition, whether or not we assume $\neg SSGB$. So, if a set S equals $S_g=S_g+\cup S_g$ - in the case of $\neg SSGB$ then S equals S_g . Therefore, we obtain

(NG):
$$\forall$$
 S (\neg SSGB => S_g = S) => S_g = S,

which is equivalent to $\neg SSGB$, because it is true if $\neg SSGB$ is true, and false if SSGB is true. So, $\neg SSGB$ is proved.

Now, let us assume that $\neg SSGB$, i.e. (NG), holds. As we have seen above, the validity of (NG) is independent of the n given by $\neg SSGB$. Since the only difference between SSGB and $\neg SSGB$ is the (non-) existence of n, (NG) still holds if we replace $\neg SSGB$ by SSGB. Therefore, we obtain

(G):
$$\forall$$
 S (SSGB => S_g = S) => S_g = S,

which is equivalent to SSGB. So, we have shown ¬SSGB => SSGB, which proves SSGB.