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Abstract Pre-trained word embeddings encode general word semantics and
lexical regularities of natural language, and have proven useful across many
NLP tasks, including word sense disambiguation, machine translation, and
sentiment analysis, to name a few. In supervised tasks such as multiclass text
classification (the focus of this article) it seems appealing to enhance word
representations with ad-hoc embeddings that encode task-specific informa-
tion. We propose (supervised) word-class embeddings (WCEs), and show that,
when concatenated to (unsupervised) pre-trained word embeddings, they sub-
stantially facilitate the training of deep-learning models in multiclass classi-
fication by topic. We show empirical evidence that WCEs yield a consistent
improvement in multiclass classification accuracy, using six popular neural
architectures and six widely used and publicly available datasets for multi-
class text classification. One further advantage of this method is that it is
conceptually simple and straightforward to implement. Our code that im-
plements WCEs is publicly available at https://github.com/AlexMoreo/

word-class-embeddings.

Keywords Word-Class Embeddings · Word embeddings · Distributional
hypothesis · Multiclass text classification · Neural text classification

1 Introduction

Recent advances in deep learning have led to important improvements in many
NLP tasks that deal with the semantic analysis of text, including word sense
disambiguation, machine translation, summarization, question answering, and
sentiment analysis (see (Collobert et al., 2011; LeCun et al., 2015), for an
overview). At the heart of the neural approach to the semantics of text lies
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the concept of word embedding (a.k.a. continuous or distributed representa-
tion (Bengio et al., 2003; Mikolov et al., 2013b)), a dense representation of
a word’s meaning in a vector space where the semantic similarity of words is
embodied in the notion of distance between vectors.

Word embeddings can either be initialized randomly and allowed to evolve
along the rest of the model parameters, or be initialized from pre-trained word
embeddings obtained offline by scanning massive amounts of textual data. This
latter approach is generally preferred, since pre-trained embeddings encode an
effective prior that embodies our general-purpose knowledge of the semantics
of words, and that can be successfully transferred to (and eventually fine-tuned
for) specific application contexts and downstream tasks (Erhan et al., 2010).

Approaches to generate word embeddings typically rely on the distribu-
tional hypothesis, according to which words that tend to occur in similar
contexts tend to have similar meanings (Harris, 1954). Different realizations
of this hypothesis were initially based on context-counting approaches (Blei
et al., 2003; Bullinaria and Levy, 2007; Deerwester et al., 1990; Sahlgren,
2005) and later based on context-predicting approaches (Grave et al., 2017;
Mikolov et al., 2013b; Pennington et al., 2014). Context-counting approaches
collect frequencies of word co-occurrence and typically involve some form of
matrix factorization to obtain the final word representations (Deerwester et al.,
1990). Conversely, in context-predicting approaches the word representations
constitute the parameters of a model trained to predict some distributional
property of the data. As an example, word2vec’s skip-gram with negative sam-
pling method (SGNS) (Mikolov et al., 2013b) tries to guess the surrounding
words from the observation of the central word in a sliding context window.

While the relative desirability of one paradigm over the other was once
the subject of debate (Baroni et al., 2014), it has later been argued that the
two approaches simply embody different ways of pursuing what is essentially
the same objective (Levy and Goldberg, 2014), and that differences in perfor-
mance are mainly explainable in terms of hyperparameter settings and design
choices (Levy et al., 2015). It has been proven that the optimum of the objec-
tive function that SGNS (Mikolov et al., 2013b) and noise-contrasting estima-
tion (NCE) (Mnih and Kavukcuoglu, 2013), two context-predicting methods,
seek to optimize, can directly be attained by a context-counting method called
shifted pointwise mutual information (SPMI) (Levy and Goldberg, 2014). This
seems to suggest that SPMI (and context-counting approaches in general)
should be preferred to SGNS or NCE (and to context-predicting approaches
in general). However, there are practical reasons why the opposite is the case.
The main drawback of context-counting methods is the fact that they need to
work with the entire co-occurrence matrix, something that becomes imprac-
tical when large quantities of text are involved. This problem does not harm
neural supervised learning approaches, though, which are inherently incremen-
tal when adopting stochastic optimization (a standard practice nowadays). For
this reason, the neural approach is currently the dominant one in modern dis-
tributional semantics.
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Through the lens of the downstream task, the pre-trained word embed-
dings that all these methods generate are unsupervised, in the sense that they
capture how words are distributed in general language use, in a way which is
completely independent of (and thus not optimized for) the downstream task.
However, in supervised tasks such as text classification (the focus of this work),
it seems reasonable to imbue the word representations with supervised infor-
mation that is available during training. In this article we propose word-class
embeddings (WCEs), a form of supervised embeddings of words specifically de-
signed for multiclass text classification,1 that directly model the interactions
between words and class labels.

A related intuition has been explored before in the context of text classifica-
tion (Bojanowski et al., 2017; Grave et al., 2017; Tang et al., 2015; Wang et al.,
2018) by jointly modelling word embeddings and label embeddings in a common
vector space as part of the optimization procedure. Arguably, the best-known
among the methods based on this intuition is fastText (Bojanowski et al.,
2017; Grave et al., 2017), a variant of word2vec’s continuous bag-of-words
method (CBOW – see Section 2.1) that substitutes the target central word
that CBOW seeks to predict, with a token representing one of the document’s
labels. The result is a method that jointly models words2 and labels as vec-
tors, by recasting labels as new words and simply applying the distributional
hypothesis anew.

We follow a different approach from those explored before by confining the
supervised embeddings in a dedicated vector space, so that they can then be
concatenated with any unsupervised pre-trained representations. The resulting
embedding matrix can be used as the building block of any neural architec-
ture. Our method does not involve any optimization procedure but operates
directly on the co-occurrence counters. In a way, the method we propose might
be regarded as the context-counting counterpart of (the context-predicting)
fastText for word-class distributions, just like SPMI stands to SGNS for
word-word distributions (Levy and Goldberg, 2014). Note that the disadvan-
tage of context-counting approaches with respect to context-predicting ones
that we have discussed before (i.e., the need to work with the entire, potentially
huge co-occurrence matrix) does not arise here, since the amount of labelled
documents one typically has in text classification applications is limited, and
working with the co-occurrence matrix is thus unproblematic.

One advantage of this method is that it is conceptually straightforward
(or, echoing the words of Daumé (2007), “frustratingly easy”), and very sim-
ple to implement, since it comes down to one matrix multiplication, followed
by a pass of standardization and optionally by the application of dropout (Sri-
vastava et al., 2014). Yet, as we empirically show, extending the pre-trained

1 Given a set of classes (a.k.a. a codeframe) C = {c1, . . . , cm}, a classification problem is
said to be multiclass if m > 2; it is said to be single-label if each item always belongs to
exactly one class; it is said to be multilabel if each item can belong to any number (i.e., 0,
1, or more than 1) of classes in C.

2 fastText can consider not only unigrams but also n-grams and subwords as the surface
forms of input.
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unsupervised word embeddings with our task-specific supervised WCEs sub-
stantially facilitates the training of neural classifiers, and yields consistent
improvements in multiclass classification performance across six widely used
and publicly available text classification datasets, and six popular neural ar-
chitectures (including fastText and BERT). Experiments also show that our
word-class embeddings can be computed very quickly.

The rest of this article is structured as follows. In Section 2 we thoroughly
review related work. We explain the method in Section 3, while Section 4
reports the experimental evaluation we have conducted. Section 5 tackles a
few advanced topics related to WCEs, while Section 6 concludes, pointing at
possible avenues for future work.

2 Related Work

In this section we turn to review relevant related work on word embeddings
(Section 2.1) and neural approaches to text classification that exploit either
word or label embeddings (Section 2.2).

2.1 Word Embeddings

Although the term word embedding owns its popularity to the neural approach,
the very first attempts to generate distributed representations arose in the
realm of context-counting approaches. Arguably, the best-known one is Latent
Semantic Analysis (LSA) (Deerwester et al., 1990), a method that obtains
r-dimensional representations of words by factoring (via singular value de-
composition – SVD) a word-by-context co-occurrence matrix, and retaining
the r eigenvectors with the highest eigenvalue. Positive Pointwise Mutual In-
formation (PPMI) (Levy and Goldberg, 2014) takes the positive part of PMI
as applied to the counters of the matrix, before decomposing it.3 We explore
PPMI as an alternative to our method in Section 4.8.

The neural approach to distributional semantics started with (Bengio et al.,
2003), and gathered momentum with word2vec (Mikolov et al., 2013b), a
method based on a two-layer neural network trained to predict the words in
the context of a central word (skip-gram – SG) or the center word from the
words in a (sliding) context window (continuous bag-of-words – CBOW). In-
put and output words are represented as one-hot vectors, and the first layer
acts as a lookup table indexing the word embeddings (the layer parameters).
word2vec owns part of its success to hierarchical softmax and negative sam-
pling (Mikolov et al., 2013a), that permitted to dramatically speed up their

3 Pointwise Mutual Information (PMI) is defined as PMI(wi, cj) = log
Pr(wi,cj)

Pr(wi) Pr(cj)
,

where Pr(wi, cj) is the joint probability of word wi and context cj , and Pr(wi) and Pr(cj)
are the marginal probabilities of the word and context, respectively. PPMI takes the positive
part of PMI, i.e., PPMI(wi, cj) = max{0,PMI(wi, cj)}.
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computation, thus allowing the method to scale to massive amounts of tex-
tual data. GloVe is another popular method for generating embeddings, that
has proven superior to word2vec in various tasks (Pennington et al., 2014).
GloVe learns the word vectors that better reconstruct the probabilities of co-
occurrence between pairs of words as estimated via their dot product. Simi-
larly, fastText can be used in “unsupervised” mode to act as a method for
the generation of word embeddings. When doing so, fastText implements SG
or CBOW, but adds further tricks, such as the possibility to operate with sub-
word information in order to cope with out-of-vocabulary words (Grave et al.,
2017). word2vec, GloVe, and fastText have been used to generate large sets
of embeddings that have later been made publicly available. We use all these
sets of pre-trained vectors in the experiments of Section 4.

Despite the good performance these sets of pre-trained embeddings have
delivered across many NLP tasks, they all fail to provide contextualized repre-
sentations of words. The recent trend in embedding-generation research focuses
on devising ways for conditioning the representation of the word on its position
and context in the sentence. Some renowned examples along these lines include
Embeddings from Language Models (ELMo) (Peters et al., 2018), Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al., 2019), or
the generalized autoregressive pre-training method based on Transformer-XL
(XLNet) (Yang et al., 2019b). Pre-trained versions of these models have been
made available to the community, and are known to enable state-of-the-art
performance in many NLP tasks by simply adding one or few layers on top
of the chosen neural architecture and fine-tuning on task-dependent data. In
Section 4 we consider BERT-generated embeddings as a representative exam-
ple of contextualized embeddings, and show how WCEs improve classification
performance when concatenated to them.

2.2 Neural Text Classification

Text classification (TC) is a supervised learning task in which a model is
trained to predict labels for unseen documents from the observation of la-
belled documents. Unlike traditional machine learning approaches to TC which
represented documents through sparse vectors of lexical features (Joachims,
1998; Wang and Manning, 2012), the neural approach to TC builds on top
of distributed representations for words and documents. Popular architec-
tures routinely adopted in neural TC include convolutional neural networks
(CNNs) (Collobert et al., 2011; Kim, 2014; Le et al., 2018), recurrent neural
networks (RNNs) (Hochreiter and Schmidhuber, 1997; Lai et al., 2015; Rumel-
hart et al., 1986), recursive deep models (RDMs) (Socher et al., 2013), and
attention models (ATTNs) (Luong et al., 2015; Vaswani et al., 2017). The
training strategy is common across all these architectures: they first generate
a document representation and then connect it directly to the labels during
training. Typically, classifiers built on top of these networks generate a doc-
ument embedding that is then connected, thorough one or more feed-forward
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layers, to the target labels. The supervised information contributes only indi-
rectly to representing the documents, as resulting from iterations of backward
passes during training. Put it another way, words and labels are disconnected
when generating the document representation in the forward pass.

Different models have been proposed that instead leverage the training la-
bels directly at the word level. Tang et al. (2015) proposed Predictive Text
Embeddings (PTEs), a type of embeddings that rely on a heterogeneous text
network consisting of three bipartite graphs, each of which models one par-
ticular type of co-occurrence: word-word, word-document, and word-label. An
embedding is then generated for each vertex in the graph, and documents are
represented by averaging the embeddings of the vertices corresponding to the
words they contain. However, the embeddings of the vertices corresponding
to the labels are not used directly by the classifier, but only concur in the
generation of the word embeddings.

Grave et al. (2017) and Bojanowski et al. (2017) proposed fastText, a
variant of the CBOW architecture for text classification that models both
word embeddings and label embeddings. fastText seeks to predict one of the
document’s labels (instead of the central word) and incorporates further tricks
(e.g., n-gram features, sub-word information) to further improve efficiency. As
a variant of CBOW, and similarly to PTEs, fastText represents a document
as a simple average of word embeddings (although fastText implements a
full set of heuristics –or “a bag of tricks”, as the authors put it– to boost
performance).

Yet another attempt to incorporate class label information into distributed
word representations is to be found in (Jin et al., 2016). The proposed method,
called Bag-of-Embeddings (BoE), is an extension of SGNS that, differently
from SGNS, generates one distributional representation for each pair (word,
class), i.e., the target word embeddings are class-conditional (the context em-
beddings are, as in SGNS, class-independent). The document class is then
inferred via maximum likelihood by considering the (class-conditional) word
embeddings of the words in the document. Note that, while our WCEs build on
top of class-conditional distributions as well, they are meant to embed words,
and not word-class pairs. This means that, if V is the vocabulary and C is
the codeframe (i.e., the set of classes of interest), our WCE method computes
|V| × |C| parameters (though this can be controlled for large codeframes –
Section 4.6) while BoE computes instead |V| × r + |V| × |C| × r parameters
for the context vectors and the word-class embeddings, respectively, where r
is the dimensionality of the embeddings. This can rapidly become unfeasible
for large codeframes. Furthermore, our WCEs do not require optimization and
are meant to be used in any neural classifier, while it is not clear how, if at all,
BoE could be used outside the scope of the maximum likelihood classification
model they were optimized for.

Pappas and Henderson (2019) incorporate a model of compatibility between
a document embedding (generated by a combination of a word-level attention
model and a sentence-level attention model) and a label embedding (generated
as the average of the embeddings of the words in a brief description of the
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class semantics) by means of a nonlinear feedforward model4 whose number
of parameters is independent of the number of input labels.

Wang et al. (2018) instead model the compatibility between words and
labels (and not between documents and labels as in (Pappas and Henderson,
2019)) in order to define an attention model. They propose a model called Label
Embedding Attentive Model (LEAM), which jointly embeds words and labels
in the same latent space. Once words and labels are embedded in a common
vector space, word-label compatibility is measured via cosine similarity. The
label-embedding attentive model allows LEAM to go beyond simply averaging
word embeddings (as, e.g., PTE and fastText do), and to weight differently
the contribution of the word embeddings in a supervised fashion. An interest-
ing variant of LEAM is the Weighted Word Embedding Model (WWEM) (Ren
et al., 2019). WWEM replaces the attention model that LEAM computes with
a simpler weighting criterion that uses Supervised Term Weighting (STW)
scores for the weighted embedding average. WWEM also models bi-grams
(weights and embeddings) in order to account for local word order informa-
tion. In a similar vein, Gupta et al. (2019) propose OptEm (standing for Op-
timal Embeddings), a method that similarly relies on weighted averaging as
the composition function. Word weights are obtained in OptEm as part of a
SVM optimization that aims at separating the positive examples from the neg-
ative examples in binary text classification. In contrast to these methods, our
WCEs method models the word-class compatibilities directly by observing the
co-occurrences of words and labels of the entire training set, without gener-
ating intermediate embeddings for words and labels, and without performing
any optimization. The word-label correlations compose our WCEs, while they
are instead used, via weighted averaging, to scale the relative importance of
the input words in LEAM, WWEM, and OptEm. A differentiating aspect of
our method is that it keeps the modelling of word-class interactions separate
from the original word embedding. Word-class correlations are confined in a
dedicated vector space, whose vectors enhance (by concatenation) the unsu-
pervised representations. The net effect is an embedding matrix that is better
suited to classification, and imposes no restriction to the network architecture
using it.

Dong et al. (2020) propose P-LSIAM (standing for Pre-trained Labels em-
bedding and Self-Interaction Attention based text classification Model), a model
that expands the ideas of LEAM. P-LSIAN relies on BERT (instead of GloVe
pre-trained vectors as LEAM does) to transform the text into contextualized
word embeddings and sentence embeddings. Word-label compatibility is then
computed as in LEAM; however, in this case, the resulting attention weights
are used not only to rescale the importance of the input, but also the contri-
bution of each label embedding. The second important difference with respect
to LEAM concerns the way P-LSIAM embeds documents. P-LSIAM replaces

4 The compatibility between a label embedding matrix E and a document embedding h
is defined to be proportional to σ(EU + bu)σ(V h + bv), and this is in contrast to what is
customarily done in previous related literature that relied instead on bi-linear models of the
form EWh for the same purpose (U, bu, V, bv ,W are learnable parameters).
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the weighted average of word embeddings with a weighted average of interac-
tion embeddings; these are generated via a “self-interaction” attention model
that models how the different sentences of the text (as embedded by BERT)
interact with each other.

The main difference between our method and the ones described above
lies in the fact that ours is a method for learning word representations for
text classification, and is not a classifier per se. Incidentally, this means that
WCEs can be used within any classifier that relies on pre-trained embeddings,
by simply expanding the initial embedding matrix with WCEs, and with-
out requiring any modification in the architecture of the classifier. We show
examples of this in Section 4.4, in which we show how WCEs can lead to sub-
stantial improvements when used within different models, including fastText

and LEAM among other general architectures.
The rationale behind WCE is similar in spirit to the method of (Lei et al.,

2019). The authors propose Task-Oriented Representation (TOR), that models
word-class distributional vectors based on a direct measure of the correlation
between the word and each of the classes in the codeframe. However, there are
important differences between TOR and WCEs. TOR relies on P (wi|cj) (that
the authors call Word Probability – WP) or on P (cj |wi) (that the authors call
Class Probability – CP) as the correlation measures. However, these metrics
are inevitably biased towards the prevalence of word wi (in the case of WP)
or towards the prevalence of class cj (in the case of CP), while, as will be
shown in Section 3, these biases are explicitly factored out in the computation
of WCEs. TOR has been tested on small codeframes (with no more than
6 classes) and thus the method does not implement any mechanism to deal
with the computational burden that dealing with large codeframes entails.
WCEs do instead cater for large codeframes (see Section 3.1), which allows
our experiments to be run on datasets containing up to 2,706 classes. Finally,
and differently from our WCEs, TOR does not implement any regularization to
prevent overfitting the supervised signal; in Section 4.6 we show how properly
regularizing the supervised embeddings (see Section 3.3) is fundamental to
obtain good results. We compare our WCEs against TOR in the experiments
of Section 4.4 and show that these differences bring about significantly higher
performance for our method.

3 Method

Let C = {c1, . . . , cm} be the classification scheme (a.k.a. codeframe). We con-
sider multiclass classifiers h : D → {0, 1}m, mapping documents from a domain
D into vectors of m binary class labels. (The label vector contains a single 1
in single-label multiclass classification (m > 2) and in binary classification
(m = 2), and any combination of 0’s and 1’s in multilabel multiclass clas-
sification.) We are interested in equipping the classifiers with continuous dis-
tributed representations of words, i.e., with an embedding function E : V → Rr
(sometimes called the lookup table, and often presented simply as a matrix E)
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mapping words in the vocabulary V (the set containing any desired textual
feature, e.g., words, stems, word n-grams, or any such surface form of interest)
into a dense r-dimensional vector space. Most methods based on distributional
semantics learn the mapping E on the basis of how words are distributed in
an external corpus D′ of textual data (sometimes huge, and sometimes unre-
lated to the domain D). We instead investigate task-specific mappings, i.e.,
mappings specific to the domain D and codeframe C, based on how words are
distributed across classes.

We define the word-class embedding E(wi) ∈ Rr of word wi with respect
to codeframe C as

E(wi) = ψ(η(wi, c1), . . . , η(wi, cm)) ∈ Rr (1)

where η : V×C → R is a real-valued function that quantifies the correlation be-
tween word wi ∈ V and class cj ∈ C, and where ψ : Rm → Rr is any projection
function mapping vectors of class-conditional priors into an r-dimensional em-
bedding space. (More details on both η and ψ later on.) The value of η(wi, cj)
can be estimated from a training set of labelled documents L = {(xk,yk)}nk=1,
with xk the k-th training document and yk ∈ {0, 1}m the binary vector indi-
cating the class labels attributed to xk. We make the default assumption that
the same training set L is also used by the supervised learning algorithm for
generating the classifier h.

We now detail the embedding generation process using matrix notation.
First, we map set L into a matrix X ∈ Rn×|V|, where X consists of the vectorial
representations of the documents in L according to a weighted (e.g., tfidf, or
BM25) “bag-of-words” feature model. Note that the step of mapping L into X
is specific to the WCE generation procedure, and imposes no restrictions on the
supervised learning method to be used, which may instead rely on a different
mechanism for representing documents. Similarly, we create a document-class
binary matrix Y ∈ {0, 1}n×m, consisting of the n binary vectors yk ∈ {0, 1}m.
We generate a word-class matrix A ∈ R|V|×m as

A = X>1 Y (2)

where X1 denotes the matrix X with L1-normalized columns. L1 normalization
serves the purpose of factoring out term prevalence (see below).5 Element aij
of matrix A thus represents the correlation between the i-th feature and the
j-th class across the n labelled documents, as quantified by the dot product.6

We may expect a randomly chosen word to show no a priori significant
correlation with a randomly chosen class label. We thus want to choose as our
η function one that is centered at the expected correlation value (i.e., the value

5 Put it another way, L1 normalization fixes a “budget” of mass 1 to the score a term can
deliver for any class, irrespectively of its prevalence in language or in the corpus.

6 It is worth recalling that the bag-of-words model tends to produce matrices that are
highly sparse. Many software packages take advantage of this sparsity in order to compute
matrix multiplication efficiently, at a cost that, in practice, falls far below the asymptotic
bound O(|V|nm). We discuss empirical computational complexity issues in Section 4.7.
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of correlation that may simply be explained by chance). In other words, we
want η to return positive (resp., negative) values whenever the presence of wi
brings stronger (resp., weaker) evidence that the document is in cj than this
expected value, and close to 0 when the presence of wi brings no significant
evidence about the presence of cj . A natural way to fulfill this requirement
is through standardizing. We thus (independently) standardize each of the m
dimensions of A so that the resulting matrix S is such that the distribution
of the elements in its columns has zero mean and unit variance, i.e.,

sij ← zj(aij) =
aij − µj
σj

(3)

where zj denotes the function that returns standard scores (a.k.a. z-scores) for
column j (i.e., for the random variable which takes on values {a1j , . . . , a|V|j}),
with sample mean

µj =
1

|V|

|V|∑
i=1

aij (4)

and sample standard deviation

σj =

√√√√ 1

|V| − 1

|V|∑
i=1

(aij − µj)2 (5)

Note that the resulting random variable which takes on values {s1j , . . . , svj}
is unbiased with respect to the feature prevalence of wi and the prevalence
of class cj . The reason is that the feature prevalence has been factored out
after the L1 normalization of the columns of X, while the class prevalence has
become a constant factor for each column in A, and is thus implicitly factored
out during standardizing.

Function η is thus

η(wi, cj) = zj(w
>
i cj) (6)

where wi ∈ Rn is the L1-normalized column vector of weighted values for
word wi in X and cj ∈ Rn is the binary column vector of class cj in Y. In
Section 4.8 we experiment with functions alternative to the dot product as the
instantiation of function η, including ones that, unlike the dot product, pay
equal attention to positive and negative correlation.

There are additional motivations behind the use of standardizing. On one
hand, the zero-mean property establishes the zero-vector as a natural choice for
any possible future word not encountered at training time, since the zero-vector
would indicate that the word shows no a priori correlation to any of the classes.
(Further considerations regarding the treatment of out-of-vocabulary words
are discussed in Section 4.11.) On the other hand, unit variance guarantees
that all classes contribute approximately equally to the representation, which
reinforces the possibility that the downstream classifier performs well on all
classes.
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For the moment being, let us simply define the projector ψ in Equation 1
to be the identity function (thus forcing r to be equal to m; we will come back
to this in Section 3.1); then S is the resulting WCE matrix. Arranged in rows
are the WCEs, that encode how each word is distributed across the classes in
the codeframe. The WCE matrix S can finally be concatenated with any other
pre-trained word embedding matrix U (as those produced by, e.g., GloVe or
word2vec) to define the embedding matrix E.

3.1 Large Codeframes

The necessity of dealing with large codeframes could easily cause the optimiza-
tion of neural models relying on WCEs to become intractable. The reason is
that, in many applications of text classification, hundreds of thousands of fea-
tures are generated, and the newly added WCEs lie on a (dense) vector space
with as many dimensions as classes in the codeframe. In such cases we might
want ψ to implement a dimensionality reduction technique, thus mapping m-
dimensional vectors into an r-dimensional space, with r < m.

In this work we assume ψ to be implemented via principal component
analysis (PCA), in order to replace S with a low-rank approximation of it. In
the experiments of Section 4, when dealing with codeframes with m > 300 we
choose to retain only the 300 principal components with the largest eigenvalues
(i.e., those explaining the largest variance); in the literature, 300 is indeed a
popular choice for the size of word embeddings. (Somehow abusing notation,
and when clear from context, we will use symbol S to either denote S or
its low-rank approximation, assuming the application of PCA to be implicit
whenever m > 300.)

Alternative ways for implementing ψ might be found in the class of label-
embedding approaches from the extreme multilabel text classification litera-
ture (Bhatia et al., 2015; Hsu et al., 2009; Yu et al., 2014) , or more generally
in dimensionality reduction techniques (Baldi, 2011; van der Maaten and Hin-
ton, 2008).

3.2 Theoretical Framework

Levy and Goldberg (2014) proved that the optimum that word2vec’s SGNS
searches for is attained by a variant of a well-known information-theoretic
measure, the pointwise mutual information (PMI), shifted by a constant factor.
In particular, they proved that the minimum of the SGNS’s loss function
is achieved for word-embeddings wi and context-embeddings qj that, when
stacked in matrix form W and Q, respectively, define a word-by-context matrix

M = WQ> (7)

whose elements satisfy

Mij = wi · qj = SPMIk(wi, qj) = PMI(wi, qj)− log k (8)
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for some constant k. That is, SGNS is implicitly factoring a PMI matrix which
is shifted (SPMI) by a constant factor log k.

Both M and W contain distributed representations of words as their rows.
Levy and Goldberg (2014) also show that, since word vectors in M are high-
dimensional and dense, it is useful to substitute the correlation function SPMI
by one that replaces all negative values with zeros, called shifted positive PMI
(SPPMI), thus making the matrix become sparse, and then applying PCA to
reduce the number of dimensions.7

Accordingly, the word embedding E(wi) for any word wi can be expressed
as

E(wi) = PCAi
r(SPPMIk(wi, q1), . . . ,SPPMIk(wi, qu)) (9)

where u is the number of contexts, SPPMIk is the correlation function between
words and contexts, and PCAi

r is the function returning the ith row from the
r-dimensional decomposition UrΣr of M.

Note that WCEs smoothly fit within this framework. The word-class ma-
trix A from Equation 2 is analogous to the word-by-context matrix M from
Equation 7, with the contexts being defined by all the documents that share
a label. Matrices A and M can both be expressed as the product of a word
matrix by a context matrix. In this respect, SGNS learns dense and latent rep-
resentations for words and contexts in matrices W and Q, respectively, while
WCE directly uses the sparse columns of X1 and Y as the distributional vec-
tors.8

The analogy between Equations 1 and 9 is immediate when considering the
contexts to be defined by the labels, PCAi

r to be an instantiation of a general-
ized dimensionality reduction function ψ, and SPPMIk to be an instantiation
of a generalized correlation function η.

The variant we propose in Equation 6 has one further advantage with
respect to SPPMI, i.e., that it takes into consideration the relative importance
of the word in the document (as quantified by the tfidf weights of matrix X)
instead of simply looking at the presence/absence of the word in the document.
Note also that the number of classes in a codeframe is expected to be much
smaller than the number of possible contexts typically allocated in the M
matrix, and thus imposing sparsity is not necessary in our case. In Section 4.8
we compare our correlation measures with others, including PPMI.

Summing up, while unsupervised word embeddings capture distributional
information about how words relate to other words by mining their contexts

7 PCA is based on (truncated) Singular Value Decomposition (SVD). The SVD of a
matrix M is a factorization of the form UΣV>, in which U and V are orthogonal matrices
containing the left- and right-eigenvectors of M as their columns, respectively, and Σ is a
diagonal matrix containing the eigenvalues of M. That is, PCA is an alternative way of
factoring M w.r.t. Equation 7. The dimensionality reduction is achieved by ordering the
components by decreasing order of eigenvalues, and truncating the matrices. The optimal
rank r approximation of M is thus given by UrΣr which only accounts for the r largest
eigenvalues and their corresponding r left-eigenvectors.

8 Note that the columns of Y are binary, indicating the presence or absence of the label
for each document. It is interesting to look at Y’s binary columns as indicator functions
that decide which elements from X>1 rows contribute to the summation in the dot product.
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of usage, WCEs capture distributional information about how words relate to
the classes by leveraging the data labels. The former is useful for capturing
general word semantics, while the latter is useful for capturing task-dependent
word semantics. Adding WCEs makes thus explicit to the model information
which is relevant for the classification task, so that the model is released from
discovering it by itself during the learning process.

3.3 Regularization

WCEs inject a task-specific pressure into the representation mechanism that
might compromise the data-generating process of training and test documents,
since, unlike when using pre-trained embeddings, words from the training doc-
uments have played a role in the generation of WCEs. Indeed, during prelim-
inary experiments we observed that models operating with a concatenation
of WCEs and pre-trained word-embeddings sometimes incur a much lower
training loss than those using pre-trained word-embeddings only, but the for-
mer tend to perform substantially worse on unseen data (more details on this
in Section 4.6). This case of overfitting makes evident the need for properly
regularizing the model.

In order to perform regularization, we apply a variant of dropout (Srivas-
tava et al., 2014) to the embedding layer. Dropout consists of zeroing random
activations in order to prevent nodes from co-adapting. Since dropout is only
applied in the training phase, the activation values are scaled by (1 − p)−1
during training, with p the drop probability, in order to keep the expected
activation consistent with the test phase.

Supervised dropout applies only to the WCEs. (Cases in which we do not
apply supervised dropout, or in which we instead apply dropout to the entire
embedding layer, are discussed later on as well.) Let E = [U⊕S] ∈ R|V|×(q+r)
represent the entire embedding layer, consisting of the concatenation (here de-
noted by the ⊕ operator) of the unsupervised q-dimensional matrix U and the
supervised r-dimensional matrix S. In order to bring to bear correct expected
activations during test, we compute the scaling at training time as9

D(E) =
[U⊕ (1− p) · d(S)]

1− pr

q + r

(10)

where d indicates dropout and D indicates supervised dropout.
Finally, note that, as can be appreciated from the description above, our

method for generating WCEs is conceptually straightforward, since it comes
down to the matrix multiplication of Equation 2, followed by the pass of stan-
dardization described in Equation 3, optionally followed by dimensionality
reduction (described in Section 3.1), optionally followed by the application
of dropout that we have just described. Yet, as we will empirically show in
Section 4, it is surprisingly effective.

9 Since we undertake a stochastic optimization, this actually applies to batches of data.
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4 Experiments

In this section we describe the experiments that we have carried out in order to
quantify the contribution of WCEs to multiclass text classification. In order to
make all the experiments discussed in this paper fully reproducible, we make
available at https://github.com/AlexMoreo/word-class-embeddings the
code that implements our method and all the baselines used in this work.

4.1 Datasets

In our experiments we use the following six publicly available datasets:

– Reuters-21578 is a popular multilabel dataset which consists of a set
of 12,902 news stories, partitioned (according to the “ModApté” split we
adopt) into a training set of 9,603 documents and a test set of 3,299 doc-
uments.10 In our experiments we restrict our attention to the 115 classes
with at least one positive training example. This dataset presents cases
of severe imbalance, with many classes containing fewer than 5 positive
examples.

– 20Newsgroups is a single-label test collection of approximately 20,000
posts on Usenet discussion groups, nearly evenly partitioned across 20 dif-
ferent newsgroups (classes).11 In this article we use the “harder” version
of the dataset, i.e., the one from which all metadata (headers, footers, and
quotes) have been removed.12

– Ohsumed (Hersh et al., 1994) is a dataset consisting of a set of MEDLINE
documents spanning the years from 1987 to 1991.13 Each entry consists of
summary information relative to a paper published on one of 270 medi-
cal journals. The available fields are title, abstract, MeSH indexing terms,
author, source, and publication type. Following (Joachims, 1998), we re-
strict our experiments to the set of 23 cardiovascular disease classes, and
we use the 34,389 documents of year 1991 that have at least one of these
23 classes. Since no standard training/test split has been proposed in the
literature we randomly partition the set into a part to be used for training
(70% of the documents) and a part to be used for testing (the other 30%).

10 http://www.daviddlewis.com/resources/testcollections/reuters21578/
11 http://qwone.com/~jason/20Newsgroups/. Note that this version of 20Newsgroups

is indeed single-label: while a previous version contained a small set of document with
more than one label (corresponding to posts that had been cross-posted to more than one
newsgroup), that set is not present in this version we use.
12 While some previous papers (e.g., (Tang et al., 2015)) have reported substantially higher

scores for this dataset, it is worth noticing that we use a harder, more realistic version of the
dataset than has been used in those papers. Following (Moreo et al., 2020), in our version
we remove all headers, footers, and quotes, since these fields contain words that are highly
correlated with the target labels, thus making the classification task unrealistically easy; see
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html for further details.
Our results are indeed consistent with other papers following the same policy.
13 http://disi.unitn.it/moschitti/corpora.htm
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– RCV1-v2 is a dataset comprising 804,414 news stories published by Reuters
from Aug 20, 1996, to Aug 19, 1997; for text classification purposes it is
traditionally split into a training set consisting of the (chronologically) first
23,149 documents (the ones written in Aug 1996), and a test set consisting
of the last 781,265 documents (the ones written from Sep 1996 onwards).14

In our experiments we use this dataset in its entirety, and stick to the
standard training/test split described above. RCV1-v2 is multilabel, i.e.,
a document may belong to several classes at the same time. Of the 103
classes of which its “Topic” hierarchy consists, in our experiments we re-
strict our attention to the 101 classes with at least one positive training
example. This dataset is the one with the largest test set in our experi-
ments.

– JRC-Acquis (version 3.0) is a collection of legislative texts of European
Union law written between the 1950s and 2006 (Steinberger et al., 2006).15

JRC-Acquis is publicly available for research purposes, and covers 22 of-
ficial European languages. We restrict our attention to the English subset,
which consists of 20,370 documents. For our experiments, we consider the
13,137 documents written in the [1950, 2005] interval as the training set,
and leave the remaining 7,233 documents written in 2006 as the test set.
The dataset is multilabel and is labelled according to the EuroVoc the-
saurus. We focus on the 2,706 classes with at least one positive element in
the training set. This dataset is the one with the largest codeframe in our
experiments.

– WIPO-gamma is a test collection of patent documents.16 Documents are
labelled according to the International Patent Classification (IPC) taxon-
omy, covering patents and patent applications in all areas of technology.
We focus on the single-label version labelled at the subclass level in the
IPC hierarchy. For our experiments, we extract the abstract field of the
documents (thus discarding the list of inventors, list of applicant com-
panies, claims, and the long description), and follow the train/test split
made available by the WIPO organization. The dataset contains a total of
1,118,299 documents, of which 896,363 (80%) is used as the training set,
and the remaining 221,936 (20%) are used for test. This dataset is the one
with the largest training set in our experiments.

Details of these datasets are given in Table 1. Note that the datasets chosen
cover a broad spectrum of experimental conditions, including single-label and
multilabel scenarios, a number of classes ranging from tens (20Newsgroups)
to thousands (JRC-Acquis), a number of documents from small (Reuters-
21578) to very large (WIPO-gamma), from well balanced datasets (20News-
groups) to severely imbalanced ones (e.g., RCV1-v2), etc. Note also that the

14 Available from http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/

lyrl2004_rcv1v2_README.htm
15 https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis
16 https://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/

dataset/
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Reuters-21578 ML 115 9,603 3,299 12,902 8,250 24,094 1.7M 83.9 314.3 1 2,877
20Newsgroups SL 20 11,314 7,532 18,846 17,184 112,594 3.5M 565.7 56.8 377 600
Ohsumed ML 23 24,061 10,328 34,389 18,238 44,062 6.2M 1,734.3 1,523.6 301 6,729
RCV1-v2 ML 101 23,149 781,265 804,414 24,816 384,327 188.1M 709.9 1,417.2 1 10,282
JRC-Acquis ML 2,706 13,137 7,233 20,370 21,109 141,800 28.3M 25.7 58.6 2 1,151
WIPO-gamma SL 613 896,363 221,936 1,118,299 114,802 395,570 417.8M 1,462.3 4,354.6 1 63,465

Table 1 Details of the datasets we use in this research. Column “Type” indicates whether
the classification is multilabel (ML) or single-label (SL). Column “Vocabulary” shows the
number of words occurring at least 5 times in the training set, while Column “OOV” shows
the number of words occurring in fewer than 5 training documents or exclusively in test
documents. Columns with prefix “Prev” indicate a few statistics about class prevalence in
the training set.

first four datasets (Reuters-21578, 20Newsgroups, Ohsumed, RCV1-v2)
are probably the most popular datasets in text classification research; together
with the fact that they are all publicly available, this guarantees a high level
of comparability (and interpretability) to our results. In our experiments we
concentrate our attention on the classification by topic of long texts, and
leave other dimensions of text classification (e.g., classification by sentiment,
sentence classification, classification of short texts) for future work (see also
the discussion in Section 5.3).

We pre-process text via the default analyzer available in the scikit-learn
framework17 (which applies lowercasing, stop word removal, punctuation re-
moval), and by masking numbers with a dedicated token. For the computation
of the WCEs, we retain all words (unigrams) appearing at least 5 times in the
training set. However, in experiments involving pre-trained embeddings we
also consider those out-of-vocabulary (OOV) words for which a pre-trained
embedding exists; these words are represented by the zero vector in the WCE
space (see Section 3). This is a major advantage of also using pre-trained em-
beddings, which allow neural models to also make sense (at testing time) of
words unseen at training time if they have anyway been encountered during
the pre-training phase (see Section 4.11 for more on this).

4.2 Evaluation Measures

As the effectiveness measure we use F1, the harmonic mean of precision (π)
and recall (ρ), defined as F1 = (2πρ)/(π+ρ) = (2TP)/(2TP+FP+FN), where
TP, FP, FN, are the numbers of true positives, false positives, false negatives,
from the binary contingency table. We take F1 = 1 when TP = FP = FN = 0,
since the classifier has correctly classified all examples as negative.

As defined above, F1 is a measure for binary classification only. For mul-
ticlass classification, we average F1 across all the classes of a given codeframe

17 http://scikit-learn.org/
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by computing both micro-averaged F1 (denoted by Fµ1 ) and macro-averaged
F1 (denoted by FM1 ). Fµ1 is obtained by (i) computing the class-specific values
TPj , FPj , and FNj , (ii) obtaining TP as the sum of the TPj ’s (same for FP
and FN), and then applying the F1 formula. FM1 is obtained by first computing
the class-specific F1 values and then averaging them across the classes.

Regarding these evaluation measures, we will often prefer to report the
relative improvement (expressed as a percentage) that a method equipped
with WCEs obtains with respect to the same method not using WCEs. The
relative improvement of method A over method B in terms of evaluation metric
E is obtained as

RI(A,B,E) =
E(A)− E(B)

E(B)
(11)

4.3 Supervised Learners for Classifier Training

We test the contribution of WCEs to text classification using a “traditional”
(i.e., non-neural), high-performance learner (support vector machines), two
supervised deep learning classifiers (LEAM and fastText), and three popular
architectures based on deep neural networks (convolutional neural networks,
long-short term memory networks, and attention models). 18

For each such system we explore different variants, corresponding to differ-
ent ways of instantiating the embedding matrix E. As the pre-trained embed-
dings we use the biggest set of GloVe vectors made available, and consisting of
2.2M 300-dimensional word embeddings generated from a text corpus of 840
billion tokens.19 (In Section 4.9 we report results of using differently charac-
terized embeddings beyond GloVe embeddings.) The variants we explore are
the following:

Random: randomly initialized trainable embeddings (their dimensionality is op-
timized from the range {50, 200, 300} on a validation set).

GloVe(static): static pre-trained GloVe embeddings.
GloVe(trainable): trainable vectors initialized with pre-trained GloVe em-

beddings.
GloVe+Random: trainable embeddings initialized as the concatenation of pre-

trained GloVe embeddings and random embeddings. The random embed-
dings are chosen to have the same dimensionality as WCEs. This config-
uration serves for control purposes, in order to ensure that any possible
relative improvement brought about by the use of WCEs cannot merely
be attributed to the presence of more parameters in the embedding layer.
For the sake of comparability we thus apply supervised dropout to the
randomly initialized part of the embedding. This serves the purpose of

18 Note that these deep models are here not meant to be used as baselines, but to serve as
vehicles on which to test WCEs. In other words, the actual baseline for any model equipped
with WCEs is the same model not using WCEs.
19 http://nlp.stanford.edu/data/glove.840B.300d.zip
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rejecting the possibility that any improvement we measure for WCEs is
actually explainable in terms of regularization only.

GloVe+WCEs(static): static concatenations of pre-trained GloVe embeddings
and WCEs.

GloVe+WCEs(trainable): trainable embeddings initialized with the concate-
nation of pre-trained GloVe embeddings and WCEs.

We perform hyperparameter search via grid-search on the validation set, inde-
pendently for each combination of type 〈dataset, architecture, variant〉.20 The
hyperparameters to be optimized are dependent on the architecture, and are
explained in the sections below.

4.3.1 Support Vector Machines with asymmetric costs

The problem of training a classifier via SVMs with asymmetric costs is stated
as the empirical risk minimization problem (Cortes and Vapnik, 1995; Morik
et al., 1999)21

minimize:
1

2
||w||2 + C+

n∑
k=1

ξk[yk = +1] + C−

n∑
k=1

ξk[yk = −1]

over: w, b, ξ1, . . . , ξn

subject to: ∀nk=1 : yk(w · xk + b) ≥ 1− ξk
∀nk=1 : ξk > 0

where w and b are the parameters (hyperplane and bias) of the separation
functional, ξk are the slack variables for the labelled examples (xk, yk), [·] is
the indicator function that returns 1 if its argument is true and 0 if it is false,
and C+ and C− are two hyperparameters that control the trade-off between
training error and margin for positive and negative examples, respectively
(Morik et al., 1999). It is useful to factor C+ and C− as C+ = CJ+ and
C− = CJ−, so that the asymmetric cost factors are confined to two dedicated
hyperparameters, with J+ (resp., J−) controlling the amount by which training
error on positive examples (resp., negative examples) outweighs error on the
negatives (resp., positives). We follow (Morik et al., 1999) and set the cost
factors so that the ratio J+/J− equals the ratio N/P between the number N of
negative training examples and the number P of positive training examples.22

The trade-off between training error and margin, now confined to C, becomes
the only hyperparameter we tune. Note that, while in other application fields

20 We generate the validation set by randomly sampling 20% of the training set, with a
maximum of 20,000 documents; the rest is taken to be the training set proper. We keep the
training/validation split consistent across all methods.
21 Note that, consistently with (Cortes and Vapnik, 1995; Morik et al., 1999), in this

formulation we assume the class labels yk to be in {−1,+1}, while in Section 3 we had
assumed them to be in {0, 1}; the difference is, of course, unproblematic.
22 In scikit-learn this is achieved by setting J+ = n/(mP ) and J− = n/(mN), and

corresponds to setting the parameter class weight to “balanced”.
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the kernel to employ is considered an important parameter to optimize, in
text classification it is customary to employ the linear kernel, since there are
theoretical arguments for its optimality in these contexts (Joachims, 2001); we
thus use the linear kernel without further ado.

Although the application of SVMs to text classification dates back to (Du-
mais et al., 1998; Joachims, 1998), SVMs are still considered among the strongest
baselines for text classification.23 Having set the asymmetric cost factors, the
most influential hyperparameter for SVMs is C. We choose the best value for
C from the set {10−3, 10−2, . . . , 10+3} by performing 5-fold cross-validation
on the full set of labelled documents (i.e., the training set proper plus the val-
idation set); we perform the optimization of C independently for each class.24

In the experiments of this paper we use the implementation of SVMs available
in scikit-learn.25 We leave the rest of the parameters set to their default
values.

The field of supervised word embeddings in deep learning has some connec-
tions with supervised term weighting (STW) functions in bag-of-words models
(Debole and Sebastiani, 2003) (see Section 5.1 for a broader discussion). Al-
though STW has not shown consistent improvements over unsupervised func-
tions such as tfidf, we include them in our experimentation for completeness.
In brief, STW schemes replace the “idf” factor of tfidf by a factor based on
the class-conditional distribution of the word, and apply some aggregation
function to combine the different scores obtained for each class. We report ex-
periments using ConfWeight (Soucy and Mineau, 2005) as our STW function,
with MaxPooling as the aggregation function, since (in experiments that we
do not report for the sake of brevity) this turned out to be the top-performing
strategy from a pool of 6 popular STW functions26 and 3 aggregation func-
tions27.

Since SVMs do not cater for word embedding fine-tuning, we only report
experiments involving sets of static embeddings. Specifically, for SVMs we
report the following experiments:

23 Somehow surprisingly, though, several relevant related works where SVMs are used as
baselines (see, e.g., (Grave et al., 2017; Jiang et al., 2018; Zhang et al., 2015)) do not report
the details of how, if at all, they tune the SVM hyperparameters.
24 Using k-fold cross-validation (k-FCV) on the full set of labelled documents is a more

expensive, but stronger, way of doing parameter optimization than using a single split be-
tween a training set and a validation set, because k-FCV performs k such splits. We here
use k-FCV for SVMs and single-split optimization for all the other deep learning -based
architectures because it is realistic to do so, i.e., because SVMs are computationally cheap
enough for us to be able to afford k-FCV, while neural architectures are not.
25 This implementation relies on liblinear. See https://scikit-learn.org/stable/

modules/generated/sklearn.svm.LinearSVC.html for further details.
26 The STW functions we have considered include chi-square, information gain, gain ra-

tio, pointwise mutual information (Debole and Sebastiani, 2003), ConfWeight (Soucy and
Mineau, 2005), and relevance frequency (Lan et al., 2009).
27 Given a word w, a codeframe C = {c1, . . . , cm}, and a STW functions f that generates a

list of scores S = (f(w, c1), . . . , f(w, cm)), we consider the following aggregation functions:

averaging
(

1
m

∑
c∈C f(w, c)

)
, averaging weighted by class prevalence

(∑
c∈C f(w,c)p(c)∑

c∈C p(c)

)
where p(c) is the prevalence of class c, and max-pooling (maxc∈C{f(w, c)}).
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SVM-tfidf: a SVM-based classifier trained on the tfidf matrix X defined in
Section 3;

SVM-tfcw: a SVM-based classifier trained on the STW matrix generated via
ConfWeight and MaxPooling (as discussed above);

SVM-GloVe: a SVM-based classifier trained on the projection XU, with U the
pre-trained GloVe embeddings;

SVM-GloVe+WCEs: a SVM-based classifier trained on the projection XE, with
E = [U⊕ S] the concatenation of pre-trained GloVe embeddings and WCEs.

SVM-BERT-finetuned: a SVM-based classifier trained on the document em-
beddings produced by fine-tuned BERT (more on this in Section 4.3.2).

SVM-BERT-finetuned+WCEs: a SVM-based classifier trained on the concate-
nation of document embeddings produced by fine-tuned BERT and the
projection XS, where S is the WCE matrix introduced in Section 3.

4.3.2 BERT fine-tuning

The paper that introduces the BERT language model (Devlin et al., 2019) de-
scribes its use in supervised tasks as a two-step process. The first step consists
of the pre-training phase, in which the actual language model is fit on very
large amounts of text via a costly training process. The second step consists
of the fine-tuning phase, in which the pretrained BERT model is extended
via a few task-specific parameters. The entire network is trained, via a much
faster process than the one used in pre-training, on a task-specific training
set, thereby fine-tuning all the BERT parameters, plus the task-specific ones,
on the task of interest. In the case of classification the additional parameters
consist of a single dense layer that takes as input the embedding returned by
BERT for “[CLS]”, a token that is always appended at the beginning of any
input text with the specific purpose of serving as a representation of the con-
tent of the entire text. This layer returns a probability distribution over the
labels.

The fine-tuning process is computationally cheaper than the pre-training
process, because most of the model has already been fit, and the computation
required to adapt it to the supervised task is usually limited. This fact allows
to add the rich amount of general knowledge about language captured during
the pre-training process (ideally to be run once for all), to many downstream
supervised tasks. Note that the computational cost of fine-tuning the model is
still orders of magnitude higher that any other learning approach used in our
study, since the number of parameters involved in the fitting process is very
large (110 millions for the BERTbase model we used).

The BERT fine-tuning approach has obtained state-of-the-art results on
many supervised tasks; for this reason we include it in our experiments. We
use simpletransformers28 and the BERT-base-uncased model29, which has
been pre-trained by Devlin et al. (2019) on a collection of English text (con-

28 https://github.com/ThilinaRajapakse/simpletransformers
29 https://huggingface.co/bert-base-uncased
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sisting of Wikipedia and a large collection of books) for a total of 3,300M word
occurrences, requiring four days to be fit on 16 TPUs.

We also use BERT in a different set of experiments (see Section 4.9), in
which we experiment with the contextualized word embeddings that BERT
generates for each token in the document (in contrast to only using the “[CLS]”
token).

4.3.3 LEAM

We report experiments for LEAM (Wang et al., 2018) (discussed in Sec-
tion 2.2).

LEAM works by computing a compatibility matrix G in which element Gij

represents the compatibility between the ith label and the jth word in the in-
put sequence, as quantified via the cosine similarity between the corresponding
label embedding and word embedding.

The compatibility scores are then convolved so as to bring to bear word
order dependencies into the model. A max-pooling and a softmax operators
are later used to convert the compatibility scores into an array of attention
coefficients that scale each word in the input. The document embedding is
obtained by averaging the (scaled) word embeddings, and the classification
scores are then computed by a final feed-forward layer.

For our experiments we use LEAM’s official implementation30, that we
modify to adopt early-stopping as the convergence criterion. We leave all
the hyperparameters set to their default values. We explore all combinations
involving training vectors (Random, GloVe(trainable), GloVe+Random, and
GloVe+WCEs(trainable)), since LEAM requires that the embedding matrix
be trainable.

4.3.4 fastText

We report experiments for fastText31 (Bojanowski et al., 2017; Grave et al.,
2017), a system which we have already discussed in Sections 1 and 2.2.

We select hyperparameters via grid-search optimization on the validation
set. Following (Bojanowski et al., 2017; Grave et al., 2017), we let the learning
rate vary in {0.05, 0.10, 0.25, 0.50} and the number of epochs in {5, 10}. Some
of our datasets (20Newsgroups, JRC-Acquis, Ohsumed, and Reuters-
21578) are comparatively smaller than those tested in the original article;
in those cases we let the number of epochs vary on {5, 50, 100, 200} (we ob-
served drastic improvements when using 100 or 200 epochs, but no further
improvement when going beyond 200).

In our experiments we only consider the case in which fastText operates
with unigram features. While fastText has been found to deliver better results

30 https://github.com/guoyinwang/LEAM
31 Note that by fastText we here mean its “supervised” mode, that is, fastText as a

classifier. The set of embeddings that fastText produces when working in “unsupervised
mode” are later used and discussed in Section 4.9, along with other sets of embeddings.
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when using bigrams, the adoption of bigrams would likely lead to similar im-
provements for the rest of the methods being compared (Wang and Manning,
2012), and might only blur the purpose of this comparison.

For fastText we only report experiments involving sets of trainable vectors
(namely, the combinations Random, GloVe(trainable), GloVe+Random, and
GloVe+WCEs(trainable)), since fastText is implicitly a method for learn-
ing embeddings, and thus does not cater for static vectors. In the case of
GloVe+WCEs(trainable), we do not apply supervised dropout, since we stick
to the official implementation.32

4.3.5 Task-Oriented Convolutional Neural Networks

We include TCNN, a method proposed in (Lei et al., 2019) that uses TOR em-
beddings within a CNN. In particular, we report experiments using TCNN-WP
(i.e., using the so-called Word Probability metric as the word-class correlation
function) since it yielded best results in the experiments of (Lei et al., 2019).

TCNN-WP consists of a CNN operating with pre-trained embeddings con-
catenated with TOR embeddings. Since we also use CNN to test our WCEs
(see Section 4.3.6), we use the same configuration in the interest of a fair
comparison. Regarding the configuration tested in (Lei et al., 2019), the one
we use differs only in the set of pre-trained embeddings (we use GloVe em-
beddings instead of word2vec embeddings), the window length of the filters
(we used filters of sizes {3, 5, 7} while they used sizes {2, 3, 4, 5}), and the
optimizer (we use Adam instead of Adagrad). Any other hyperparameter is
optimized as described in Section 4.3.6. TCNN-WP corresponds to CNN-
GloVe+WP(trainable) in our nomenclature.

4.3.6 General-Purpose Deep-Learning Architectures

Since our goal is to quantify the relative improvement (if any) brought about
by concatenating WCEs to pre-trained embeddings, we adopt the most general
and simple formulation for each of our three deep-learning architectures, and
leave the exploration of more sophisticated models for future research.

Let (xk,yk) be a training instance, with x = [w1k, . . . , wlk] a document
consisting of a sequence of l words (padded where necessary) labelled with
yk ∈ {0, 1}m. Let E ∈ R|V|×r be the embedding matrix, containing |V| r-
dimensional word embeddings ei ∈ Rr (where embeddings may either be
initialized randomly, using pre-trained embeddings, or concatenations of pre-
trained and supervised embeddings). All the tested architectures use an em-
bedding layer as the first layer on the network, which transforms every input
document xk into xk = [E(w1k), . . . , E(wlk)], where E(wik) is the word embed-
ding in E for word wik. Different models implement different transformations

ok = N(xk;Θ) (12)

32 https://fasttext.cc/
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of the input (as defined below) parameterized by Θ, with ok denoting the
document embedding of xk. Finally, ok is mapped into the space of label
outputs by

ŷk = f(ok ·W + b) (13)

where W and b are the parameters (weight and bias) of an affine transfor-
mation, f is a non-linear function, instantiated as the softmax function for
single-label problems or as the sigmoid function for multilabel problems, and
ŷk ∈ [0, 1]m is a vector of m predicted posterior probabilities, one for each
class. The full set of model parameters to optimize is thus Θ′ = [Θ; W,b].

We initialize the model parameters using the Xavier uniform method de-
scribed in (Glorot and Bengio, 2010). We then train the model by backprogat-
ing the errors, where error is computed as the cross-entropy loss (in the single-
label case) or as the binary cross-entropy loss (in the multilabel case). We
carry out optimization via stochastic gradient descent with the Adam update
rule (Kingma and Ba, 2015). We set the learning rate to 1e-3 and the batch size
to 100 documents, dynamically padding the sequences to l = min {500, lmax},
where lmax is the length of the longest document within the batch.

We train the models for a maximum of 200 epochs, but we apply early
stopping whenever 10 consecutive training epochs do not yield any improve-
ment in the validation set in terms of FM1 . An epoch consists of a full pass over
all the training documents. Since WIPO-gamma is one order of magnitude
larger than the other datasets, we consider an epoch to be over after 30,000
documents (300 batches) have been processed. We dump the model parameters
whenever the value of FM1 on the validation set improves. When the training
epochs are over, we restore the best model parameters and perform one final
training epoch on the validation set.

We consider the following network architectures as alternative implemen-
tations of the transformation N of Equation 12:

– Convolutional Neural Networks. Convolutional Neural Networks (CNN) are
a special type of neural models particularly suited for computer vision, that
apply convolved filters which are robust to position-invariant patterns. In
text-related applications (Collobert et al., 2011; Kim, 2014) a convolution
is the result of the application of a linear filter to a matrix consisting of the
w word embeddings corresponding to the words that appear in a sliding
window of length w, in order to produce a feature map.
A convolutional layer typically contains and applies many filters, each of
which is followed by a non-linear activation function (typically: the rectified
linear unit ReLU(x) = max{0, x}, which is the one we use here) and a max-
pooling operation that takes the maximum value for each filter. The result
is a thus a vector with as many features as there are filters.
We consider one single convolutional layer (Le et al., 2018) with γ output
channels for each window length w ∈ {3, 5, 7} (i.e., 3γ output channels in
total), where γ is a hyperparameter to be optimized on a validation set.
We let γ vary in the range {64, 128, 256, 512}. The final representation is
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a vector ok ∈ R3γ , which concatenates all convolved outputs, followed by
the application of a dropout operator.

– Long-Short Term Memory Networks. Recurrent Neural Networks (RNNs)
(Lai et al., 2015; Rumelhart et al., 1986) are a family of network archi-
tectures specially devised for processing sequential data. RNNs apply the
same computation to each input in the sequence. The internal state hik at
time i is defined recursively as hik = f(h(i−1)k, E(wik);Θ), with E(wik)
the embedding of word wik and Θ parameterizing the recurrent function.
The model is trained by Backprogragation Through Time (BPTT) via un-
folding the recursive computation and sharing the parameters Θ across all
time steps. In this work we adopt the well-known Long-Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) as the recurrent cell. We
apply gradient clipping at ±0.1 in order to avoid exploding gradients. The
size γ of the hidden state is a hyperparameter of the model, to be opti-
mized on a validation set from the range {256, 512, 1024, 2048}. The output
ok ∈ Rγ is the final state hlk produced by the LSTM.

– Attention Models. Attention models (ATTNs) implement criteria that en-
able the model to weight differently (i.e., to pay different attention to)
the contribution of intermediate factors in certain computations. Although
attention mechanisms by their own (Vaswani et al., 2017) constitute nowa-
days an entire family of deep neural models, called transformers (Devlin
et al., 2019; Peters et al., 2018; Yang et al., 2019b), we focus on a sim-
pler formulation, called soft-scaled dot-product attention mechanism (Lu-
ong et al., 2015).
This attention mechanism takes all hidden states Hk = [h1k, . . . ,hlk] pro-
duced by a RNN (we use the LSTM here as well) and the document em-
bedding ok = hlk, and computes a vector of attention weights over all
intermediate states, i.e.,

ak = softmax(o>k Hk) (14)

and produces a new output o′ ∈ Rγ as a weighted sum

o′k =
∑

aik∈ak

aikhik (15)

As for LSTM, for the hidden layer γ we choose the size from the range
{256, 512, 1024, 2048} that performs best on the validation set.

4.4 Results

Tables 2 and 3 report the FM1 and Fµ1 results we have obtained. Since neural ar-
chitectures use a random inizialization of the parameters, our results for them
are averages across 10 runs. Most of the SVM-based configurations we use here
(more precisely: all but SVM-BERT-finetuned and SVM-BERT-finetuned+WCEs)
are deterministic, and thus excluded from the test of statistical significance,
which requires the repetition of random trials. In all cases we also report
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the results of paired sample, two-tailed t-tests at different confidence levels
(α = 0.05 and α = 0.005) in order to assess the statistical significance of the
differences in performance as measured by the averaged results.
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SVM

tfidf .670 .397 .673 .584 .636 —
tfcw .667 .391 .669 .595 .629 —
GloVe(static) .635 .277 .505 .495 .531 —
GloVe+WCEs(static) .678 .291 .629 .493 .556 —
BERT-finetuned (static) .665 ±.004 .389 ±.004 .694 ±.003 .695 ±.003 .652 ±.012 —
BERT-finetuned+WCEs (static) .707 ±.004 .325 ±.010 .725† ±.002 .680 ±.002 .652 ±.011 —

BERT BERT-finetuned (trainable) .684 ±.003 .141 ±.004 .731 ±.004 .685 ±.018 .404 ±.022 .357 ±.007

TCNN GloVe+WP(trainable) .691 ±.002 .285 ±.006 .689 ±.004 .474 ±.007 .528 ±.013 .428 ±.016

LEAM

Random .653 ±.009 .320 ±.003 .619 ±.009 .482 ±.009 .510 ±.024 .519 ±.010
GloVe(trainable) .686 ±.004 .362 ±.005 .690 ±.004 .575 ±.008 .580 ±.019 .518 ±.011
GloVe+Random .685 ±.003 .361 ±.005 .680 ±.004 .565 ±.007 .571 ±.023 .526 ±.018
GloVe+WCEs(trainable) .695 ±.003 .390 ±.004 .696 ±.003 .569 ±.007 .584 ±.015 .543 ±.009

fastText

Random .614 ±.003 .312 ±.006 .609 ±.002 .523 ±.001 .511 ±.009 .513 ±.002
GloVe(trainable) .640 ±.003 .330 ±.005 .627 ±.002 .548 ±.001 .529 ±.008 .547 ±.003
GloVe+Random .640 ±.003 .331 ±.004 .624 ±.002 .548 ±.001 .528 ±.008 .547 ±.002
GloVe+WCEs(trainable) .693 ±.002 .348 ±.005 .655 ±.002 .491 ±.001 .569 ±.008 .571 ±.001

CNN

Random .636 ±.005 .318 ±.004 .666 ±.004 .446 ±.010 .518 ±.011 .453 ±.013
GloVe(static) .670 ±.003 .318 ±.003 .657 ±.006 .491 ±.010 .505 ±.016 .444 ±.013
GloVe(trainable) .691 ±.003 .323 ±.005 .698 ±.005 .515 ±.015 .537 ±.013 .479 ±.014
GloVe+Random .694 ±.003 .308 ±.023 .692 ±.008 .506 ±.008 .559 ±.010 .444 ±.007
GloVe+WCEs(static) .703† ±.003 .331 ±.007 .699 ±.004 .515 ±.007 .600 ±.016 .391 ±.007
GloVe+WCEs(trainable) .706††±.004 .346 ±.003 .706 ±.005 .523 ±.008 .611 ±.014 .424 ±.013

LSTM

Random .426 ±.014 .191 ±.012 .567 ±.011 .349 ±.017 .371 ±.023 .473 ±.015
GloVe(static) .624 ±.007 .213 ±.007 .646 ±.014 .509 ±.013 .458 ±.034 .444 ±.116
GloVe(trainable) .629 ±.008 .185 ±.009 .655 ±.025 .398 ±.140 .469 ±.040 .512 ±.013
GloVe+Random .591 ±.087 .184 ±.006 .653 ±.006 .456 ±.017 .462 ±.026 .507 ±.017
GloVe+WCEs(static) .652 ±.047 .273 ±.008 .688 ±.013 .555 ±.016 .569 ±.018 .505 ±.009
GloVe+WCEs(trainable) .660 ±.010 .247 ±.007 .684 ±.013 .500 ±.014 .532 ±.057 .534 ±.008

ATTN

Random .554 ±.004 .204 ±.071 .572 ±.004 .367 ±.011 .467 ±.016 .491 ±.011
GloVe(static) .624 ±.004 .249 ±.006 .649 ±.005 .546 ±.006 .524 ±.021 .498 ±.028
GloVe(trainable) .626 ±.005 .240 ±.006 .643 ±.012 .468 ±.018 .495 ±.052 .527 ±.020
GloVe+Random .623 ±.006 .242 ±.006 .636 ±.006 .455 ±.011 .521 ±.011 .530 ±.005
GloVe+WCEs(static) .682 ±.004 .310 ±.006 .681 ±.003 .508 ±.010 .594 ±.020 .512 ±.013
GloVe+WCEs(trainable) .659 ±.005 .283 ±.009 .676 ±.004 .527 ±.014 .566 ±.016 .533 ±.008

Table 2 Classification performance in terms of FM1 . Boldface indicates the best absolute
result for each dataset, while green cells indicate the best result locally to a specific neural
architecture. Symbols †† and † indicate the methods, if any, whose performance is not
statistically significantly different with respect to the best result obtained by any neural
approach according to a two-tailed t-test at different confidence levels α = 0.05 and α =
0.005, respectively, i.e., given the p-value p, we use †† whenever p > 0.05, we use † when
0.005 < p ≤ 0.05, or no symbol if p ≤ 0.005.

Various facts emerge from these results. First, beating well-optimized “tra-
ditional” baselines, such as SVM-tfidf, is not easy (especially in terms of
FM1 ). This has already been noticed in past literature (Wang and Manning,
2012), and has recently stimulated debate (Lin, 2019; Yang et al., 2019a). For
SVMs, our results for 20Newsgroups and Reuters-21578 are in line with
those reported for the same datasets by Bekkerman et al. (2003). These au-
thors found that the adoption of more sophisticated supervised representations
helps SVMs to improve over simple tfidf features in 20Newsgroups but not
on Reuters-21578, and argued that in this latter case a considerably high
accuracy is achievable by simply using a handful of highly correlated words
for each class (something that is already well represented in a bag-of-words
model). Notwithstanding this, we should observe that SVMs, in their standard
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SVM

tfidf .679 .525 .702 .808 .881 —
tfcw .677 .521 .698 .803 .877 —
GloVe(static) .649 .404 .544 .702 .791 —
GloVe+WCEs(static) .688 .385 .658 .757 .834 —
BERT-finetuned(static) .672 ±.003 .533 ±.014 .722 ±.002 .847 ±.001 .877 ±.003 —
BERT-finetuned+WCEs(static) .717 ±.004 .478 ±.018 .749 ±.001 .857 ±.001 .887 ±.005 —

BERT BERT-finetuned(trainable) .695 ±.002 .559 ±.005 .748††±.003 .864 ±.001 .886 ±.001 .664 ±.004

TCNN GloVe+WP(trainable) .702 ±.002 .462 ±.008 .716 ±.004 .781 ±.004 .852 ±.003 .651 ±.006

LEAM

Random .661 ±.009 .480 ±.002 .662 ±.009 .747 ±.007 .808 ±.010 .694 ±.003
GloVe(trainable) .697 ±.004 .538 ±.004 .718 ±.002 .804 ±.009 .854 ±.008 .695 ±.003
GloVe+Random .696 ±.003 .532 ±.004 .712 ±.005 .797 ±.007 .845 ±.011 .696 ±.005
GloVe+WCEs(trainable) .709 ±.002 .568 ±.003 .721 ±.003 .817 ±.004 .864 ±.006 .699 ±.002

fastText

Random .622 ±.003 .511 ±.002 .644 ±.002 .772 ±.001 .822 ±.004 .689 ±.001
GloVe(trainable) .649 ±.003 .530 ±.002 .662 ±.002 .781 ±.001 .839 ±.002 .696 ±.000
GloVe+Random .649 ±.003 .530 ±.002 .651 ±.001 .781 ±.001 .839 ±.003 .696 ±.000
GloVe+WCEs(trainable) .704 ±.002 .536 ±.004 .688 ±.001 .769 ±.001 .843 ±.003 .701† ±.000

CNN

Random .644 ±.005 .509 ±.007 .691 ±.005 .746 ±.006 .835 ±.004 .673 ±.004
GloVe(static) .684 ±.002 .527 ±.004 .693 ±.006 .799 ±.004 .848 ±.005 .649 ±.005
GloVe(trainable) .703 ±.003 .528 ±.005 .720 ±.007 .803 ±.009 .857 ±.003 .675 ±.005
GloVe+Random .705 ±.002 .496 ±.020 .720 ±.006 .789 ±.005 .862 ±.002 .662 ±.003
GloVe+WCEs(static) .715††±.004 .509 ±.007 .723 ±.003 .789 ±.002 .858 ±.004 .623 ±.003
GloVe+WCEs(trainable) .717 ±.003 .520 ±.004 .729 ±.004 .792 ±.002 .866 ±.005 .649 ±.005

LSTM

Random .434 ±.013 .226 ±.094 .618 ±.009 .680 ±.015 .699 ±.024 .685 ±.005
GloVe(static) .633 ±.007 .360 ±.015 .687 ±.011 .793 ±.005 .823 ±.011 .662† ±.063
GloVe(trainable) .638 ±.008 .193 ±.063 .686 ±.020 .715 ±.100 .804 ±.018 .701† ±.004
GloVe+Random .604 ±.081 .208 ±.048 .683 ±.004 .743 ±.013 .794 ±.017 .699† ±.005
GloVe+WCEs(static) .661 ±.044 .449 ±.017 .714 ±.009 .807 ±.007 .860 ±.006 .686 ±.004
GloVe+WCEs(trainable) .668 ±.010 .403 ±.009 .709 ±.011 .765 ±.008 .849 ±.007 .703††±.003

ATTN

Random .559 ±.004 .336 ±.112 .620 ±.006 .677 ±.008 .775 ±.009 .690 ±.005
GloVe(static) .634 ±.003 .421 ±.009 .680 ±.006 .797 ±.002 .818 ±.008 .688 ±.012
GloVe(trainable) .634 ±.007 .397 ±.013 .667 ±.009 .744 ±.008 .790 ±.014 .707 ±.007
GloVe+Random .631 ±.006 .384 ±.014 .668 ±.010 .737 ±.007 .813 ±.005 .707 ±.001
GloVe+WCEs(static) .691 ±.004 .489 ±.007 .709 ±.003 .783 ±.006 .858 ±.006 .687 ±.006
GloVe+WCEs(trainable) .668 ±.005 .459 ±.013 .698 ±.005 .773 ±.008 .841 ±.004 .703††±.002

Table 3 Classification performance in terms of Fµ1 .

formulation, do not scale to very large training sets; as a result, we were unable
to train them on WIPO-gamma. Additionally, SVM-tfidf seems to be com-
parable or even better than the supervised version SVM-tfcw. This might come
as a surprise, since any supervised weighting factor should intuitively beat the
“idf” heuristic, which is completely agnostic of the word-class distributions,
especially given that the combination using ConfWeight and max-pooling was
chosen as the best-performing variant from a pool of 6 × 3 = 18 methods.
However, that STW criteria often work no better than tfidf has already been
reported in past literature (Debole and Sebastiani, 2003). This is likely the
reason why no STW function has managed to oust tfidf as a standard in text
classification research (further discussions on this can be found in (Moreo et al.,
2020)).

Concerning neural approaches, a method equipped with WCEs either turns
out to be the best performer, or is comparable (in a statistically signifi-
cant sense) to the best performer, both in terms of FM1 and Fµ1 , and for
all datasets but RCV1-v2, in which BERT-finetuned performed best. Con-
catenating GloVe embeddings and WCEs almost always yields superior perfor-
mance with respect to only using GloVe embeddings, both for static and train-
able pre-trained embeddings, across all models (this applies also to SVMs).
Interestingly enough, concatenating WCEs with the document embeddings
generated by BERT helps to improve the document representation for classi-
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fication, as witnessed by the fact that a SVM trained on this concatenation
(SVM-BERT-finetuned+WCEs) tends to work better than with the BERT em-
beddings alone (SVM-BERT-finetuned) in terms of Fµ1 (in 4 out of 5 cases). For
the FM1 measure there is no clear winner, since SVM-BERT-finetuned works
better in 2 out of 5 cases, while SVM-BERT-finetuned+WCEs works better in
other 2 out of 5 cases; the remaining case (Reuters-21578) ends up in a
tie, since both models score the best global result for that dataset. The BERT
variants yield results that sometimes surpass, by a large margin, all other com-
petitors both in terms of FM1 and Fµ1 ; datasets for which this happens include
Ohsumed, RCV1-v2, and Reuters-21578. Finally, of all the variants that
we test on all 6 datasets, LEAM-GloVe+WCEs(trainable) obtains the best
average results, both in terms of FM1 and Fµ1 .

Table 4 compares, in terms of the relative improvement of FM1 and Fµ1 ,
variants equipped with WCEs against the baselines, i.e., against variants that
either use only GloVe or GloVe+Random or the alternative supervised embed-
dings GloVe+WP(trainable) proposed by Lei et al. (2019). The comparison
is carried out on pairs of variants across all six datasets, and across all the
neural models on which both configurations have been tested. Regarding the
static case, GloVe+WCEs(static) shows a relative improvement of +7.69% in
FM1 and +3.36% in Fµ1 over GloVe(static) on average. Concerning the case
in which the embedding layer is trainable, GloVe+WCEs(trainable) shows
considerable relative improvements over all other variants, both in terms of
FM1 and Fµ1 . The fact that GloVe+WCEs(trainable) also substantially out-
performs GloVe+Random rules out the possibility that the boost in performance
that WCEs add is a mere consequence of adding parameters or regularizing
part of the embedding. A two-tailed paired t-test reveals that the differences
in performance, as averaged across datasets and networks, are statistically sig-
nificant at high confidence level (α = 0.005) in all cases explored in Table 4,
for both FM1 and Fµ1 .

RI(FM1 ) RI(Fµ1 )

GloVe+WCEs(static) vs. GloVe(static) +7.69% +3.36%
GloVe+WCEs(trainable) vs. Random +15.91% +10.02%
GloVe+WCEs(trainable) vs. GloVe(trainable) +5.06% +3.45%
GloVe+WCEs(trainable) vs. GloVe+Random +5.44% +3.95%
GloVe+WCEs(trainable) vs. GloVe+WP(trainable) +7.18% +2.58%

Table 4 Relative improvement, expressed as a percentage, of FM1 and Fµ1 of different
variants across all our datasets and networks.

The superiority of the models also equipped with WCEs cannot be merely
explained by the higher number of parameters in their embedding layer. By in-
specting the execution logs, we find out that approximately 50% of the times
the best hyperparameters chosen by the variants with WCEs were consis-
tent with those chosen by the same variant without them. In such cases, the
GloVe+WCEs(trainable) setting contains exactly the same number of train-
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able parameters as the corresponding GloVe+Random variants, yet it performs
better (with relative average improvements of +5.44% and +3.95% in FM1
and Fµ1 , respectively, and with statistical significance at α = 0.005). For other
approximately 40% of the times, the model selected when using WCEs hap-
pens to be comparatively smaller than when not using them, and only in the
remaining 10% of the cases the variants using WCEs turn out to be larger.

Concerning supervised embeddings, WCEs prove superior to TOR embed-
dings (GloVe+WP(trainable)). Although both types of embeddings build on
top of a similar rationale, WCEs incorporate many mechanisms devised to
counter problematic issues that arise in multiclass text classification. In other
words, differently from TOR embeddings (Lei et al., 2019), our correlation
measure is unbiased towards the word and class prevalences (more on this on
Section 4.8), WCEs are regularized via supervised dropout (more on this on
Section 4.6), and allow for a compact representation in large codeframes. In
this respect, it is worth noting that TOR embeddings for JRC-Acquis have
2,706 dimensions and thus use up a lot of GPU memory. Despite the fact that
in this dataset WCEs have just 300 dimensions, they still perform better.

4.5 Learning Curves

In this section we look at the learning curves for the three deep learning ar-
chitectures when equipped with different types of embeddings. For the sake of
clarity, we plot only three representative variants: Random, GloVe(static) and
GloVe+WCEs(static) (that, for simplicity, we here simply denote by GloVe

and GloVe+WCEs). Unless specified differently, these plots and all the subse-
quent ones are generated with the same, fixed hyperparameters for all variants,
i.e., 256 channels for CNN and 512 hidden nodes for LSTM and ATTN, a su-
pervised dropout probability of 0.5 for GloVe+WCEs, and 200 dimensions for
random embeddings; we run 100 training epochs and deactivate early stop. For
these experiments we choose RCV1-v2, since it is arguably the most widely
adopted benchmark in the literature of text classification by topic. (In simi-
lar experiments that we have run on other datasets we have verified similar
trends.)

Figure 1 shows a grid of plots that visualize learning curves as a function
of the number of epochs for RCV1-v2. The first and second rows display (the
logarithm of) the training and validation loss, respectively, while the third and
fourth rows display the values of FM1 and Fµ1 , respectively, on the validation
set. Columns correspond, from left to right, to the CNN, LSTM, and ATTN
architectures.

There are a few observations that we can make from these plots. Networks
with random embeddings have more parameters to tune than networks which
rely on static pre-trained embeddings (since the latter are fixed, and thus are
not trainable parameters), and thus lower the training loss faster than the rest.
Notwithstanding this, the validation loss is always higher for them than that of
GloVe and GloVe+WCEs, which shows that the presence of random embeddings
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brings about a tendency to overfit the training data. This tendency to gen-
erate overfitting is well countered by the variants that use static pre-trained
embeddings. The knowledge incorporated in GloVe embeddings is generic and
thus consistent for validation documents as well.
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Fig. 1 Learning curves on dataset RCV1-v2

We can also observe that the use of WCEs eases parameter optimization
across the three architectures tested. That is, models equipped with WCEs
reach promising regions of the parameter space faster (i.e., in fewer epochs)
than those not using them.

However, since models relying exclusively on pre-trained embeddings are
anyway connected to class labels through the loss function, it is legitimate to
wonder what is the real contribution of WCEs to the supervised learning task.
Clearly, WCEs are not bringing any new information to the model, since they
are computed using the very same amount of information the learner has when
training a classifier (this is in contrast to pre-trained embeddings, which are
learnt from external data). We conjecture that this has to do with the way
WCEs inject supervised information from the bottom (word level) and the top
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(document level), instead of only from the top, which may favour the gradient
flow. In other words, WCEs may not really be adding any new information,
but are handling the available class label information in a more efficient way.

It is worth noting that WCEs model the correlations between words and
labels globally (at the dataset level) and not locally (at the batch level). Global
word-class dependencies remain reachable to batched optimization only in the
long term. The same principle, according to which the word-class distributions
are mined globally beforehand, and later serve the purpose of a model prior,
was already used in (Moreo et al., 2020) (more details are given in Section
5.1).

4.6 The Importance of Regularization

WCEs directly inject into the model information from the label distribution as
available in the training set. This might somehow compromise the generaliza-
tion capability of the classifier when dealing with future unseen data, for the
reasons discussed at the beginning of Section 3.3. During preliminary experi-
ments we observed that this is indeed the case, and that there is thus a need for
properly regularizing the model. Note though that what we say in this section
exclusively applies to the CNN, LSTM, and ATTN models. In fact, supervised
dropout is not applied in the other models, for the simple reason that, for the
latter, we use the original implementations made available by their authors,
and these implementations do not make use of supervised dropout.

Figure 2 shows the effect of supervised dropout (which, as explained in
Section 3.3, is the device we use for performing regularization) at varying
drop probability rates for the GloVe+WCEs configuration. In the last two rows
of this figure we plot FM1 and Fµ1 as directly computed on the test set of
RCV1-v2 every 10 epochs (last two columns). The rationale behind showing
the values of effectiveness on the test set (instead of on the validation set, as
in Figure 1) is to better illustrate the effect of regularization when dealing
with unseen data: as observed in Section 4.1, news stories in the RCV1-v2 test
set are from a disjoint time window with respect to those in the training set,
which is not true for validation documents, which are randomly drawn from
the original training set.

We can observe that applying no regularization at all (p = 0.0) yields a
faster minimization of the training loss, but also results in poorer generaliza-
tion on unseen data. The model generalizes better for p > 0.0; setting p = 0.5
actually yields the best results. Of course, in general the optimal value for p
has to be explored on a validation set in a case-by-case fashion, but we have ob-
served the setting p = 0.5 to generally entail, across all methods and datasets,
a good tradeoff between loss minimization in training and performance on
validation/test data (this is indeed in agreement with general considerations
regarding dropout as reported in the literature).

However, our use of supervised dropout in the WCE-based variants might,
in theory, make our experimental comparisons unfair, since supervised dropout
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is not used in the baseline methods based on CNN, LSTM, or ATTN. In other
words, it might happen that these latter methods overfit the embeddings (for
the trainable variants) or the layer on top of them, while in the WCE-
based variants overfitting is mitigated by the use of supervised dropout. We
have carried out additional experiments (that we here omit to report in detail
for the sake of brevity) in order to confirm / disconfirm this hypothesis. In
these experiments we compare the effect of dropout on the baselines. Our
results indicate that, in general, applying dropout after the embedding layer,
helps the baselines improve their results, but that this improvement is not
consistent (i.e., sometimes a deterioration occurs instead of an improvement,
and sometimes this deterioration is even large), is not statistically significant,
and is not marked enough as to surpass the performance of the WCE-based
variants. In cases in which applying dropout helps to improve the baselines
by a substantial margin, we have verified that similar improvements would
be observed if dropout were applied to the entire embedding layer (and not
only to the supervised embedding part) in the WCE-based variants as well.
Aside from the fact that applying dropout is often beneficial (but sometimes
harmful) we note that GloVe+Random establishes a perfectly fair baseline in
terms of regularization and number of parameters, that is nonetheless beaten
by WCE-based variants in a systematic way.

4.7 Computational Cost

In this section we turn to analyzing the additional computational cost that
the use of WCEs entails. Directly comparing execution times woud lead to
confusion, since there are many experimental variables that impact on them.
For example, some methods run on CPU (fastText and SVMs) while others
run on GPU (all others); some methods are implemented using PyTorch (CNN,
LSTM, ATTN, BERT) while others use Tensorflow (LEAM) and yet others
are written in plain C++ (fastText) or jointly in C++ and Python (SVMs
are implemented in C/C++ in the liblinear package, which is wrapped in
scikit-learn, which is written in Python).

We thus restrict our attention to methods that adopt early stopping (i.e.,
CNN, LSTM, ATTN, and LEAM33) and compare, for each method, the num-
ber of epochs it took them to converge. For each architecture we focus on the
variants GloVe+Random and GloVe+WCEs(trainable), since they are equipped
with embeddings of the same number of trainable parameters, i.e., of the same
capacity (we have separately verified that our conclusions hold also for the
other variants). Table 5 reports, for each method and dataset, the number of
training epochs before invoking early stopping, averaged across 10 runs. In
most cases, the average numbers of epochs required for GloVe+Random and
GloVe+WCEs(trainable) to converge are not different in a statistically signif-
icant sense. This indicates that using WCEs does not come at a cost.

33 We modified the official implementation of https://github.com/guoyinwang/LEAM to
use early-stop.
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Fig. 2 Effect of supervised dropout regularization in RCV1-v2
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LEAM
GloVe+Random 29.7 ± 5.2 166.2† ± 21.6 23.7 ± 1.6 56.0 ± 10.8 64.8 ± 11.0 122.7 ± 46.7
GloVe+WCEs(trainable) 18.8 ± 2.0 148.6 ± 13.9 24.6†† ± 2.1 33.4 ± 3.1 45.5 ± 6.0 151.9†† ± 35.1

CNN
GloVe+Random 23.3†† ± 4.0 26.3 ± 20.8 13.1 ± 6.5 15.3 ± 5.8 18.8 ± 5.1 51.2 ± 10.4
GloVe+WCEs(trainable) 20.3 ± 3.6 44.4† ± 6.8 16.2†† ± 2.3 22.5† ± 5.1 28.3 ± 6.3 58.2†† ± 15.1

LSTM
GloVe+Random 22.8 ± 10.0 107.4 ± 22.4 17.2 ± 4.7 41.5 ± 10.1 61.0†† ± 7.3 61.0 ± 12.9
GloVe+WCEs(trainable) 24.1†† ± 3.8 137.1† ± 20.7 18.9†† ± 5.5 46.2†† ± 12.3 60.3 ± 14.1 83.6† ± 18.6

ATTN
GloVe+Random 20.9 ± 6.1 109.3 ± 7.2 12.5 ± 5.6 34.5 ± 9.5 56.9†† ± 16.9 72.0†† ± 10.1
GloVe+WCEs(trainable) 21.8†† ± 7.1 133.3 ± 7.9 18.8 ± 1.1 37.8†† ± 4.5 53.9 ± 11.9 67.4 ± 10.4

Table 5 Average number of epochs required for convergence.

Table 6 reports the time required to create the WCEs, which can be broken
down into two components, i.e., (i) the time needed to generate matrix X
(which encodes the bag-of-words model with tfidf weighting), and (ii) the time
needed to subsequently generate matrix S (which contains the WCEs). Most
of the total time is accounted for by the generation of matrix X (1st row
of Table 6); the computational cost of generating the WCEs from matrix X
is almost negligible (2nd row of Table 6), and typically represents less than
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X 2.10s (99.16%) 3.85s (98.95%) 4.74s (97.34%) 14.00s (56.00%) 1.11s (96.78%) 4m 39.00s (91.56%)
S 0.02s (0.84%) 0.04s (1.05%) 0.13s (2.66%) 11.00s (44.00%) 0.04s (3.22%) 25.79s (8.44%)

Total 2.12s 3.89s 4.87s 25.00s 1.15s 5m 5.00s

Table 6 Total time required by the computation of WCEs (X indicates the “weighted
bag-of-words” matrix mentioned at the beginning of Section 3, while S indicates the WCE
matrix of Equation 3).

10% of the total time. The higher times clocked for JRC-Acquis and WIPO-
gamma are due to the application of PCA, which is not necessary for the
other datasets (see Section 3.1). The total times (last row of Table 6) are, in
all cases, much smaller than the times needed for optimizing the models.

4.8 Other Measures of Correlation

In this section we explore other correlation measures as alternative ways for
computing the WCEs. In other words, we explore alternatives to the use of
the dot product for instantiating the η function of Equation 6. For this, we
use well-known functions from information theory or statistics that have been
routinely used for feature selection purposes in text classification, including
Positive Pointwise Mutual Information (PPMI – see Footnote 3), Information
Gain (IG), Chi-square (χ2), and ConfWeight (CW) (Soucy and Mineau, 2005).
In preliminary experiments we had carried out using these functions we had
indeed found that standardizing the resulting matrix A (Equation 2) improves
accuracy. We thus report the results of using as the η function one that also
performs standardizing, e.g., ηχ2(wi, cj) = zj(χ

2(wi, cj)) (similarly for PPMI
and IG).

Figure 3 compares the classification performance, in terms of FM1 , of the
dot product (as originally used in Equation 2, and here abbreviated as “Dot”)
against PPMI, IG, χ2, and CW. As can be observed from Figure 3, “Dot” is
almost always superior to all other functions, or at least comparable to the
best-performing function, across all datasets and network architectures. Other
functions behave irregularly across experiments; for example, PPMI seems to
be the most competitive method for WIPO-gamma, but is a weak one in
Reuters-21578 (this applies to all architectures) and JRC-Acquis (in CNN
and LSTM). Interestingly, the weighting function CW, which proved more
effective than PPMI, IG, and χ2 when combined with SVMs (in experiments
omitted but mentioned in Section 4.3.1), does not show a clear superiority, if
at all, with respect to these weighting functions.

We conjecture that the superiority of the dot product partly depends on
its ability to take non-binary (in our case: tfidf) weights into account, while
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Fig. 3 Classification accuracy (in terms of FM1 ) resulting from the use of measures of
correlation alternative to the one (“Dot”) that we use for generating WCEs.
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PPMI, IG, and χ2 only consider binary presence/absence indicators.34 Ad-
ditionally, the dot product only leverages positive correlations (this is also
true for PPMI), and is thus much faster than other methods that compute
negative correlations at intermediate steps, as is the case of IG and χ2. The
reason is that our tfidf matrix X and the label matrix Y (see Equation 2) are
highly sparse; many machine learning software packages (including the ones
we use) do cater for the presence of sparse matrices, and thus do not explicitly
represent zero values, causing any operation involving non-zero values to sub-
stantially increase computation times. For example, it takes 20s to compute
matrix S for Reuters-21578 when using χ2, while the same only takes 0.04s
when using the dot product (see Table 6).

4.9 Different Pre-trained Embeddings

Up to now, we have tested the performance of WCEs as an extension of
GloVe vectors. It might be interesting to check how well WCEs could perform
when concatenated to embedded representations other than those generated
by GloVe.

Figure 4 shows the results of experiments in which WCEs are concatenated
to different types of embeddings, including pre-trained word2vec35 (Mikolov
et al., 2013b), pre-trained fastText36 (Mikolov et al., 2018), and the con-
textualized embeddings produced by BERT37 (Devlin et al., 2019). Note that
fastText is here used in its unsupervised modality38, i.e., one that learns
word embeddings from the observation of large quantities of unlabelled text.
For BERT, we took the output of the last layer as the contextualized em-
beddings. All the pre-trained embeddings used in this experiment are used
“as they are”, i.e., we do not fine-tuned any of the models and we keep the
embeddings static during the training.39 For the sake of clarity we report the
relative improvement (in terms of FM1 ) that concatenating WCEs brings to
bear with respect to each type of embedding.

34 Though most traditional functions used for feature selection can only use pres-
ence/absence, other metrics exist that work with weighted scores, e.g., the Fisher score.
In initial experiments not described in this paper we have indeed tried to use the Fisher
score, but we have eventually given up, due to the fact that (a) its computation is very
slow, and (b) the classification accuracy that we have observed is not much different from
what can be obtained with the other functions mentioned above, and is often intermediate
between the best and the worst recorded values.
35 Available at https://code.google.com/archive/p/word2vec/
36 Available at https://fasttext.cc/docs/en/english-vectors.html
37 We used the Huggingface’s implementation available at https://github.com/

huggingface/transformers.
38 See https://fasttext.cc/docs/en/unsupervised-tutorial.html
39 More often than not, BERT is used by fine-tuning the entire model to the task at hand.

In this set of experiments we prefer to reproduce a simpler scenario, in which the practitioner
simply uses pre-trained models as made available by the developers of BERT. Fine-tuning
models such as BERT requires a considerable amount of computational power, which might
not be at everyone’s reach. Experiments showcasing how a properly fine-tuned BERT works
(with and without WCEs) on our datasets are illustrated in Section 4.4.
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Fig. 4 Percentage of relative improvement brought about by concatenating WCEs to dif-
ferent types of word embeddings.
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The results show that the improvements brought about by WCEs are not
restricted to the case in which GloVe vectors are used. In the vast majority
of cases the relative improvement has a positive sign. The few exceptions
concern BERT embeddings: they benefit from also using WCEs in most cases,
but not always. Interestingly enough, the largest improvements almost always
occur during the first epochs of training. This supports our belief that WCEs
represent a useful initialization for classification purposes. It also speaks about
the fact that WCEs help bringing to bear corpus-level correlations between
words and labels yet from the very beginning. It is only in the long term
that such correlations become meaningful for methods relying on unsupervised
representations, as witnessed by the fact that the margins of improvement tend
to become thinner as the training progresses.

In the future we plan to validate our WCEs along with other contextualized
vector representations beyond BERT, e.g., (McCann et al., 2017; Peters et al.,
2018; Yang et al., 2019b), sub-word representations (Bojanowski et al., 2017),
character-based embeddings (Kim et al., 2016; Zhang et al., 2015), or high-
dimensional sparse representations (Sahlgren, 2005).

4.10 Visualizing WCEs

In this section we try to gain an understanding on how words represented by
WCEs are topologically distributed in the embedding space, and how WCEs
alter the distribution of pre-trained embeddings once they are concatenated
to them. To do so we use Embedding Projector, a publicly available tool for
data visualization based on the t-distributed Stochastic Neighbor Embedding (t-
SNE) technique (van der Maaten and Hinton, 2008)40, and which allows to map
word embeddings onto a 2-dimensional space. We use its default parameters
(perplexity=18 and learning rate=10) and perform 1,000 iterations. We only
represent 5,000 words, in order to get a clearer visualization; the words we
select are the most predictive ones (as quantified via information gain) for
each class, following a “round robin” policy which selects the same number
of highly predictive words for each class (Forman, 2004). We assign different
colours to the classes, and colour each embedding according to the class for
which it was selected. For this experiment we choose 20Newsgroups (the
dataset with fewest classes), with the aim of keeping the colour coding simple
enough, thus maximizing visual clarity.

Figure 5 shows the distribution of GloVe vectors. The top part shows that,
to some extent, some word clusters seem to correlate with some classes. This
was to be expected, since words relevant to a given class tend to be semantically
related to each other. The enlarged region (bottom) shows how GloVe succeeds
at producing meaningful local structures containing smaller clusters of seman-
tically interrelated words, e.g., {“diet”, “dietary”, “vitamin”}, or {“doctor”,
“medical”, “hospital”}, within class sci.med.

40 https://projector.tensorflow.org/
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Fig. 5 Visualization (best viewed in color) of the space of GloVe embeddings for 20News-
groups (top), and enlargement of the part in the blue square (bottom). Each point repre-
sents an embedding, and (in the top part) each colour represents one of the 20 classes in
the codeframe, and the one the word represented by the embedding is highly predictive of.

Figure 6 shows the distribution of WCEs for the very same words repre-
sented in Figure 5. The visualization shows almost perfect word clusters for
classes (top). This should come at no surprise, since the WCEs explicitly en-
code class structure. As a counterpart, local semantics within clusters vanishes
(bottom), given that WCEs disregard word-word interactions. For example, for
certain pairs of words (e.g., {“attacking”, “attacks”}, {“terror”,“terrorism”}),
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Fig. 6 Same as Figure 5, but with WCEs instead of GloVe embeddings.

the two words happen to lie far from each other within the cluster for class
talk.politics.mideast.

Figure 7 shows the distribution of the concatenation of GloVe vectors and
WCEs for the very same words of Figures 5 and 6. This representation brings
together the best of the two worlds. Globally, a neat class structure emerges,
as imposed by the WCEs (top). Locally, clusters exhibit a meaningful inner
structure, thanks to GloVe vectors (bottom). As an example, relevant words
for class sci.space organize in smaller clusters such as {“moon”, “earth”,
“lunar”} and {“allen”, “grifin”, “dani”}.
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Fig. 7 Same as Figure 5, but with GloVe+WCE embeddings instead of GloVe embeddings.

4.11 Can we Learn WCEs for Out-of-Vocabulary Terms?

In contrast to unsupervised word embeddings, WCEs are inherently task-
dependent, and thus heavily rely on the distribution of the words in the train-
ing set. This means that, for any word encountered at testing time that was
not observed during training, the corresponding WCE will be a vector of zeroes
(or a a randomly initialized vector), and this could harm performance. This
is yet another manifestation of the well-known problem of out-of-vocabulary
(OOV) words, which represents an active area of research in the field of word
embeddings (Garneau et al., 2019).
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Classifiers that make use of pre-trained embeddings do have a chance to
make sense of OOV words (i.e., words not encountered at classifier training
time). When (as is usually the case) pre-trained embeddings are generated from
huge quantities of text, an OOV word is fairly likely to have a corresponding
pre-trained embedding. If this is the case, what is learnt during classifier train-
ing is thus related to this word too, inasmuch as its pre-trained embedding is
at least partly aligned with the embeddings of some words encountered during
classifier training.

In this section we cope with the problem of WCEs for OOV words. Our
idea is to predict the WCE for an OOV word from its pre-trained embedding
(when available), on the grounds that semantically similar words (as observed
in general language use) can be expected to exhibit similar class-conditional
distributions.

We frame the problem of generating the WCE for an OOV word as a
multivariate regression task.41 As from Section 3, let E = [U ⊕ S] be the
embedding matrix, where rows ei = [ui ⊕ si] are the embeddings, consisting
of a concatenation of a pre-trained embedding ui and a WCE si. We train a
two-layered feed-forward network (in the experiments we use 64 units in the
hidden layer, ReLU activation, and 0.5 dropout) to predict the WCE si ∈ S
from the pre-trained embedding ui ∈ U, using the words in the vocabulary
as the training examples. We adopt Mean Square Error (MSE) as the loss
criterion. Once trained, and once an OOV word is encountered, the regressor
is asked to generate the WCE for it, provided this word has a pre-trained
embedding.

We have run experiments, using RCV1-v2 (the dataset that contains the
highest number of OOV words) as the dataset and all the learners of Sec-
tion 4.3, in which we compare the accuracy of two different configurations: (i)
a configuration in which the WCEs of an OOV word is a vector of zeros (which
is the setting we have used so far), and (ii) a configuration in which the WCEs
of an OOV word has been predicted from the pre-trained embedding of the
word, using all the non-OOV words as training examples.

Unfortunately, the differences in classification accuracy between the two
configurations turned out to be barely discernible; in the interest of brevity,
we thus omit to plot them out explicitly. The likely reason of this result is
that, while RCV1-v2 contains no less than 384,327 OOV words, occurring
2,073,278 times in the test set, these represent only 2.16% of the total number
of word occurrences, which means that their impact on classification accu-
racy is minimal. We have separately verified similar results for the rest of our
datasets.

However, in a qualitative (although somehow “anecdotal”) evaluation we
have verified that the predicted WCEs for OOV words look meaningful. In or-

41 Another technique for solving this problem is Latent Semantic Imputation (Yao et al.,
2019). This methods allows filling the missing representation in a vector space (in our case:
in the space of WCEs) by analyzing the neighborhood of the word representation in another
vector space (in our case: the space of unsupervised embeddings) via techniques inspired by
manifold learning.
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der to do this, we looked for OOV words whose predicted WCE displays a large
correlation with some class, i.e., whose WCE is such that the value for some of
its features is high. Some interesting examples of such OOV words include “as-
tronauts”, “invincible”, “battlefields”, “indiscriminate” for class GDEF (which
is about armed forces, defence policy, and defence budget); “windfarm” for
class GENV (about environment, pollution, conservation, green issues); “pneu-
matic” and “prostatectomy” for class GHEA (dealing with health and diseases).

We also found many misspelled words whose predicted WCE displays a
large correlation with some class, e.g., “sellling” and “exchang” for classes C311
(domestic markets, sales and imports) and C312 (external markets and ex-
ports); “emploment” for class C41 (all management issues); “manufatures” for
class E12 (monetary/economic policy and intervention, interest rates), among
others. This is interesting, because the ability to make sense of misspelled
words is important for many text management applications. Incidentally, these
findings also speak about the ability of GloVe to model rare words.

Surprisingly, we have also found new correlations for non-English words,
like Spanish words “aseguradora” (insurer) for class E121 (money supply),
and “mantenimiento” (maintenance) for class E313 (inventories and stocks of
manufacturing raw materials).

Concerning the qualitative analysis we have presented, it is fair to mention
that this experiment is preliminary. More sophisticated methods for predicting
supervised OOV representations could well lead to significant improvements.
This is something we plan to delve deeper into in our future research.

5 Discussion

5.1 Term Semantics: From Unsupervised to Supervised

In Section 1 we have touched upon the connections between WCEs and fastText,
and argued that the two methods are the supervised counterparts of SPPMI
and word2vec, respectively. These are just the most recent examples of a trend,
in the field of extracting word semantics from data for text classification pur-
poses, that over the years has seen a move from unsupervised to supervised
techniques.

The first interesting example of this trend is that of word clustering. In
the ’90s, word clustering was advocated, among others, as a means to im-
plement dimensionality reduction for text classification purposes, according
to the idea that clusters of semantically related words, instead of individual
words, would serve as features. While standard unsupervised techniques were
initially used (Lewis, 1992), the field slowly moved to using supervised ones,
such as distributional clustering by class distribution (DCCD) (Baker and Mc-
Callum, 1998; Bekkerman et al., 2003). While unsupervised word clustering
has the simple goal of grouping together semantically related words, DCCD
has the goal of grouping together words that are discriminative for the same
classes; as such, it constitutes a technique for building special-purpose word
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clusters, i.e., ones that are to be used for text classification only, and only for
the specific codeframe on which they have been trained.

The second interesting example is that of term weighting. In text classifi-
cation, and also in other tasks such as text search and text clustering, term
weighting serves the purpose of emphasizing the importance of words that
are deemed to be more important in describing the semantics of the docu-
ments they occur in. While standard unsupervised techniques were initially
used (Yang and Chute, 1994), supervised term weighting (STW) techniques
later started to gain prominence (Debole and Sebastiani, 2003), based on the
notion that the words that should weigh more in representing a document are
not the ones that are rarest in the collection, but the ones which are most cor-
related with the labels of interest. As in the case of DCCD, STW techniques
leverage the class labels of the training documents, and generate document
representations that have a special-purpose nature, i.e., should be used only
for the specific text classification task on which they have been trained. The
notion of STW is brought one step further in learning to weight (Moreo et al.,
2020), where the STW function is not given but is learnt from data.

5.2 WCEs with few training data

How many training examples are needed in order to obtain good-quality WCEs?
Can WCEs be used with small training sets?

A specific study to estimate the gain in performance that WCEs bring
about as a function of the number of training examples is something we have
not carried out (and that we plan to do in future work). However, our exper-
iments suggest that WCEs can bring about benefits even when there are few
training examples. One such indirect piece of evidence is in our experiments
on the Reuters-21578 dataset as evaluated according to FM1 , as reported in
Table 2. Reuters-21578 is known to contain a very large number of classes
with very few training examples (down to 1 example per class), and FM1 is
known to reward those classifiers that perform well also on the rare classes
(unlike Fµ1 , which rewards those classifiers that perform well especially on the
frequent classes). The fact that, on Reuters-21578, WCEs bring about ben-
efits in terms of FM1 (e.g., from .804 to .849 for LSTM, from .790 to .841 for
ATTN) is an indication that they are beneficial for rare classes too.

5.3 Known Limitations

In this article we have focused our attention on multiclass classification by
topic. Other classification scenarios remain unexplored. Two important such
scenarios include (i) simple binary classification, and (ii) classification by di-
mensions other than topic, such as, e.g., sentiment classification (an active area
of research where deep learning is already showing interesting results (Zhang
et al., 2018)).
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In their current form, WCEs are not suitable for binary classification. The
reason is that, since the dimensionality of WCEs is the number m of classes in
the codeframe of interest, in binary classification the dimensionality of WCEs
would be 1, which indicates that WCEs would convey very little information
to the classification process.42 One possible strategy to counter this problem
might be based on increasing the number of classes artificially. A possible
approach to do so might gain inspiration from the structural learning frame-
work (Ando and Zhang, 2005). This strategy would consist of adding new
classes that account for the presence or absence of certain highly predictive
words for the task (i.e., adding to Y new columns corresponding to binary
versions of columns in X for highly predictive words), and then computing
the WCEs across them (a similar intuition has been explored in (Moreo et al.,
2016)). However, preliminary experiments we have conducted along this vein
are still inconclusive.

In addition to this, WCEs depend on the labelled data from the training set,
and thus might depend on the prevalences of the classes in the codeframe. This
might compromise their contribution to tasks characterized by the presence
of prior probability shift, i.e., by the fact that the prevalence of a class in the
training data is substantially different from the prevalence of the same class in
the unseen data. This might make the use of WCEs problematic for tasks such
as text quantification (González et al., 2017), which indeed targets scenarios
characterized by prior probability shift.

6 Conclusions

In this article we have presented word-class embeddings (WCEs), i.e., dis-
tributed representations of words specifically designed for multiclass text clas-
sification. The hypothesis underlying the present study is that the class-condi-
tional distributions of a word defines a fingerprint that might help to refine
its pre-trained representation for applications of multiclass text classification.
The extensive empirical evaluation we have conducted indeed confirms this
hypothesis.43

42 The fact that WCEs are not suitable for codeframes containing just a few classes is
the reason why all the datasets we have chosen for our experiments are for classification by
topic (CBT). While WCEs are not inherently about CBT, it is a matter of fact that large
enough codeframes are mostly to be found in CBT (e.g., when classifying text according to
domain-specific taxonomies / thesauri). Other classification tasks of a non-topical nature
are often characterized by codeframes consisting of two or three classes; examples of this
are classification by sensitivity (Sensitive vs. NonSensitive) (Berardi et al., 2015), sentiment
classification (Positive vs. Neutral vs. Negative) (Pang and Lee, 2008), or classification by
subjectivity (Subjective vs. Objective) (Riloff et al., 2005).
43 While in this paper we have focused on classification, we should note that WCEs are

straightforwardly applicable to regression tasks too. One reason why we exclusively con-
centrate on classification is that, in the realm of text, classification is a way more popular
task than regression. In other words, there are many more applications of text classification
than of text regression, which also means that there are fewer publicly available datasets
for experimenting on text regression. A second reason why we have focused on classification
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WCEs are a straightforward (or: “frustratingly easy” (Daumé, 2007)) im-
plementation of a conceptually simple idea. They are meant to expand, and
not modify, pre-trained word representations that model general language us-
age. Although this implies adding some parameters to the model, we have
seen that this additional cost is negligible in practice; they contribute to the
classification task far more than they complicate the model.

We have investigated, also with the aid of a visualization tool, how these
new embeddings alter the topology of the embedding space when WCEs are
concatenated to embeddings pre-trained on generic, unlabelled text corpora.
Our findings suggest that the new representation adds global class structure
while preserving local word semantics, and is thus better suited for the classi-
fication task.

Unsupervised word embeddings are known to encode a mixture of the
senses of polysemous words (Camacho-Collados and Pilehvar, 2018). We think
WCEs indirectly help to disambiguate relevant domain-dependent words. The
word-class distribution might uncover the meaning of a word prevalent in the
domain of interest, thus leaving a domain-specific mark on the resulting repre-
sentation. This information might be thought of as a form of task-dependent
word bias, which reframes the general-purpose word meaning through the lens
of the codeframe of interest.

In future work we will try to provide solutions for the limitations discussed
in Section 5.3. For instance, the fact that WCEs might not perform optimally
in scenarios characterized by distribution shift might be addressed by rescal-
ing each word-class correlation by the updated class prevalence estimates as
computed by a quantification method robust to distribution shift, such as the
one discussed by Saerens et al. (2002). Other directions worth exploring would
be that of modelling, in sentiment classification contexts, the sentiment prior
of words across different domains (e.g., reviews of books, music, films, kitchen
appliances, etc.), thus producing word-sentiment embeddings with as many di-
mensions as there are source domains available. This would hopefully help in
cross-domain sentiment classification tasks (Blitzer et al., 2006; Moreo et al.,
2016). It should similarly be interesting to investigate the implications of this
idea on multi-task learning (Caruana, 1993), where each task might contribute
with a dedicated task-specific embedding to the representation for other tasks.
We would also like to validate WCEs in scenarios having to do with shorter
texts, e.g., tweet classification, or question type classification. Finally, we have
started investigating the use of WCEs in multi-lingual TC (Moreo et al., 2021),
since WCEs are naturally aligned across languages inasmuch as the codeframes
are common across all language-specific training sets.

is that most text regression tasks are not multiclass, i.e., there is a single class (or “con-
cept”) of interest and the regressor must label a document with a real-valued score for that
concept. “Single-class regression” is the regression equivalent of binary classification, and in
Section 5.3 we have argued that WCEs are not suitable for binary classification; for the very
same reasons they are not suitable to “single-class regression”. For all these reasons, in this
paper we restrict our interest to (multiclass) classification.
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