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ABSTRACT The big data availability of Radio Access Network (RAN) statistics suggests using it for
improving the network management through machine learning based Self Organized Network (SON)
functionalities. However, this may increase the already high energy consumption of mobile networks. Multi-
access Edge Computing can mitigate this problem; however, the machine learning solutions have to be
properly designed for efficiently working in a distributed fashion. In this work, we propose distributed
architectures for two RAN SON functionalities based on multi-task and gossip learning. We evaluate
their accuracy and consumed energy in realistic scenarios. Results show that the proposed distributed
implementations have the same performance but save energy with respect to their correspondent centralized
versions and benchmark solutions. We conclude the paper discussing open research issues for this interesting
emerging field.

INDEX TERMS Distributed Learning, Edge Intelligence, Energy Efficiency, Green AI, Mobile Networks.

I. INTRODUCTION

MOBILE communications have become part of our
daily lives. However, the fifth generation (5G) of

mobile technology is expected to introduce a new revolution
by bringing enhanced broadband services everywhere, smart
vehicles and transportation, and complex human machine
interactions (e.g., extended reality) [1], [2]. Such a connected
society will generate a considerable amount of data: CISCO
estimates that the internet traffic will increase up to 805
ZB by 2021 [1], with an annual growth rate of 20.6 ZB in
2021. Big data availability and processing will be the key
driver for the booming of the Artificial Intelligence (AI),
whose application is expected to significantly enrich people’s
lifestyle, improve human productivity and enhance social
efficiency.

Nevertheless, various reports indicate that mobile net-
works already have a huge carbon footprint and the situation
is worsening: their energy consumption is expected to reach
the 51% of the worldwide electricity generation by 2030 [3].
Consequently, an energy sustainable design of next genera-
tion mobile networks architecture and algorithms represents
one of the key requirements of 5G and beyond in order to
ensure cost effectiveness and reduce the negative impact on

the environment.

As a key driver that boosts 5G performance, Self-
Organizing Networks (SON) functionalities represent an im-
portant building block enabling an automatic network man-
agement. By learning from the experience and adapting to
the changing environment, SON functionalities are able to
maximize the efficiency of the network, while at the same
time reducing the operational costs. 5G cellular networks
are characterized by extremely dense and heterogeneous
deployments, such that coverage and capacity are increased.
In addition, the high diversity of mobile devices and appli-
cations, further complicates the network architecture and its
management. In this context, current and next generation net-
works generate a massive amount of measurements, control
and management information [4], [5]. This huge amount of
information could be efficiently utilized to address the 5G
network management challenges. Recently, the evolution in
computational capabilities, has allowed to take advantage
of Machine Learning (ML) and novel Deep Learning (DL)
solutions to tackle multiple problems in different disciplines.
In mobile networks and its evolution toward the 6G wireless
communications paradigm, the possibilities now available for
ML implementations are infinite and pave the way to an
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evolved vision of Next Generation SON to be able to address
intelligent end-to-end solutions [6].

There is a complexity downside, though, that normally
is not taken into account when picturing this intelligent,
autonomous and DL-based Next Generation SON. In fact,
DL is based on Artificial Neural Networks (ANNs) of many
neurons and layers that need a big amount of data in order
to learn the huge number of parameters they are composed
of. This represents an extremely high computational com-
plexity, which requires an equally high energy consumption.
For example, training a single Natural Language Process-
ing (NLP) ML model is equivalent to 284 tons of carbon
dioxide emission, i.e., five times the lifetime emissions of
an average car [7]. Therefore, both industry and academia
need to consider the trade-off between the improvement in
the performance and the energy consumed for a sustainable
design of AI solutions, which is the aim on the emerging
Green AI [8]. From an ethical perspective, the environmental
costs have been included among the nine main requirements
and practical specifications for a transparent development
and implementation of AI [9]. In particular, the energy re-
quired from an AI solution, as well as its model sensitivity to
hyperparameters, should be investigated in order to provide a
comprehensive evaluation.

To respond to such energy needs, whilst meeting the rate
and latency requirements of the underlying services, the
next cornerstone in the mobile network domain is repre-
sented by the integration with Multi-access Edge Computing
(MEC), which amounts to performing computation right at
the network edge [10]. By empowering Base Stations (BSs)
with processing capabilities, MEC will avoid unnecessary
communication latency, enabling faster responses and higher
privacy for end users. Moreover, MEC solutions allow con-
suming 25% less energy than conventional data centers [11]
by reducing the need of communications and the dimension
of the cooling system. However, adding MEC processes to
Mobile Network Operators (MNOs) will further exacerbate
their electrical power consumption, which is already respon-
sible of a major part of their operational expenditures [12].
Hence, the integration of mobile network and edge comput-
ing domains needs a proper sustainable design. To do so, we
advocate an energy-aware design of the radio access segment
and the computing infrastructure of the mobile network based
on the edge intelligence (EI) [13], [14], which enables dis-
tributed computing of ML models at the network edge. EI
will facilitate the management of data coming to the edge,
like Internet of Things (IoT), human and machine based. In
particular, the scope of EI is to distributively train ML models
(training) and run ML models (inference) [13]. Several solu-
tions have been already proposed to this respect [13], mainly
with the focus of parallelizing the models. In addition, EI has
been already identified as one of the key missing elements in
5G networks and it is expected to become a key enabling fac-
tor for future 6G networks [15]. Consequently, we consider
that an accurate study of the different distributed learning
solutions in terms of accuracy and energy consumption, is

of paramount importance for their efficient and energy-aware
application.

Another paradigm which is attracting interest in the
community is represented by the Multi-Task Learning
(MTL) [16]. MTL aims to leverage useful information con-
tained in multiple related tasks to improve the generalization
process of all the tasks and to boost the performance. Thanks
to the online, parallel and distributed principles, in conjunc-
tion with dimensionality reduction, MTL models can be used
to speed-up the learning process, by sharing training models
of high dimensional spaces, among multiple tasks.

In this work, we focus on studying the energy and accu-
racy performance of EI solutions for SON functionalities. In
detail, we investigate distributed ML paradigms that can rely
on the data acquired by the network elements, collected at
the edge, and distributively perform the training. We compare
them against centralized implementations, where data are
transferred from the edge to a central entity performing the
training and finally distributing actions to be taken at the
edge. Without loss of generality, we consider two Radio
Access Network (RAN) use cases: handover decision and
the selection of the initial Modulation and Coding Scheme
(MCS). We believe that these use cases can benefit from the
introduction of sophisticated DL solutions, taking into ac-
count all the historical information available at all the layers
of the protocol stack, which brings added value in terms of
users’ Quality of Experience (QoE). To do this, we set up a
realistic cellular scenario using a high fidelity, full protocol
stack, end-to-end network simulator, ns-3, and we extract
statistics from all the layers of the RAN protocol stack. In
order to exploit the temporal characteristic of the extracted
data, we adopt ML models based on Recurrent Neural Net-
work (RNN). In particular, we consider different Long-Short-
Term-Memory (LSTM) architectures for implementing pre-
dictors based both on single-task and multi-task paradigms.
To parallelize the training of the two uses cases, we adopt
MTL, which has been implemented through Autoencoders
(AEs). For the distribution of training, among various op-
tions, we propose Gossip Learning (GL) paradigm [17], [18],
which allows to perform training by peer-to-peer information
exchange, thus enabling a full asynchronization and total
decentralization. As a result, the contributions of the paper
are summarized in the following list:

• Design of distributed learning architectures using GL
and MTL.

• Design of predictors for testing two RAN use cases
with both single-task and multi-task paradigm, and in
distributed and centralized version.

• Performance evaluation in realistic scenarios of the pro-
posed distributed solutions both in terms of accuracy
and consumed energy and comparison with respect to
their correspondent single-task and centralized versions.

• Discussion of the main open issues to be addressed for
enabling an effective and energy sustainable develop-
ment of EI techniques in mobile networks.
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We present a set of results, which demonstrate that prediction
can be successfully performed in distributed fashion. More-
over, we prove that the approach based on QoE outperforms
traditional solutions from network performance perspective
for both use cases compared with state-of-the-art algorithms
(i.e., considering instantaneous signal strength for the han-
dover and taking the most conservative option for the MCS).
In addition to that, regarding the energy consumption, we
show that the distribution of training process based on GL,
allows to save energy, without compromising the prediction
performance. Similarly, MTL also results beneficial in terms
of used energy when multiple tasks have to implemented.
These results are novel, and valid for two different RAN use
cases that we have considered, and to the best of the authors’
knowledge still have not been discussed in the literature.

The rest of the paper is organized as follows. In Section II,
we discuss the background. In Section III, we introduce the
methodology considered in this paper, including the problem
statement and an overview of the different ML solutions used.
In Section IV, we describe the generation of the database.
In Section V, we analyze the achieved performance in terms
of error behavior during the training, QoE and energy con-
sumption. In Section VI, we present open research challenges
concerning the integration of the edge computing into future
mobile networks. Finally, in Section VII, we draw our con-
clusions.

II. BACKGROUND
The architectural availability of edge computing resources
to execute AI directly at the edge, lately has been attract-
ing significance attention, also due to Ultra-Reliable Low
Latency Communications (URLLC) scenarios, like factory
automation, autonomous driving, remote surgery, and aug-
mented/virtual reality. In fact, locating the data processing
in proximity of its origin, e.g., at the edge, offers manifolds
benefits, that can be classified in these four Key Performance
Indicators (KPIs):

• Computation: the algorithms work with local informa-
tion, which implies a reduced amount of data and, thus,
the use of less demanding hardware, both in terms of
computational and memory requirements. On the other
hand, it will require the use of specific techniques for
distributing the training and inference models.

• Communication: proximity allows to reduce the trans-
mission hops of the data, and hence network congestion.

• Privacy: distributed data permits to keep it safer locally,
which prevents leakage [19].

• Energy: the advantages in computation and communi-
cation enable to reduce the energy consumption of the
whole system.

In order to efficiently exploit data on the edge, the edge
intelligence paradigm, also called edge AI [13], [14], aims
at evaluating distributed solutions to run ML models (the
inference phase) and to train ML models (the training phase).

For what concerns the inference at the edge, the main
problem is the limited resources of the devices. In this case,

the solutions aim to relax the computational requirements of
the model during the inference phase. In model compression,
some of the weights can be pruned according to a specific
policy, e.g., their magnitude [20], the energy [21]. In model
early-exit, the inference is performed only with a subset of
the network, according to the latency requirements. Whereas,
partition [22] and input filtering [23] represent interesting
solutions for reducing the computational complexity on the
device model, which relay on pre-processing the data on the
device and perform the inference on the edge.

With respect to the training phase, the main problem of
a distributed solution is the convergence of a consensus,
i.e., how fast and whether the training can be considered
finalized. This problem is related to how the gradient is
synchronized and updated. The most popular solution for
distributed training is represented by the Federated Learn-
ing (FL) [24]. In this solution, the server is in charge of
combining the results of the training of a shared model with
specific Stochastic Gradient Descent (SGD) methods, such as
the Selective SGD [25]. However, the SGD methods are not
optimized for working with unbalanced and non independent
and identical distribution (iid) data. The frequency of the up-
dates of the model at the central server is also an open issue.
Too frequent updates allow to relax the hardware constraints
of the edge, but result in a higher risk of unreliable network
communications. Another interesting solution is the Knowl-
edge Transfer Learning (KTL) [26], where a teacher network
is trained with general data and then student networks are
retrained on a more specific local dataset. This allows to
reduce the resource demand at the edge devices. Similarly,
GL [17] [18] allows for a total decentralized paradigm and
is based on randomized gossip algorithms. GL works by
finding the convergence towards a consensus among nodes,
by exchanging information in a peer-to-peer fashion, thus
removing the requirement on centralized nodes or variables,
as for FL and KTL. Moreover, the full decentralized and
asynchronous nature of GL makes it a valuable approach
for RAN SON functionalities, since it allows to limit the
coordination among the nodes and to reduce the complexity
of the management architecture on interfaces like X2/Xn,
which are usually characterized by high latency and low
bandwidth.

Regarding the possible applications, AI will play an impor-
tant role also for providing solution to the resource manage-
ment problem in edge computing, the so called Intelligence-
enabled Edge Computing (IEC), which is complementary to
the problems presented above, where the issue is how to carry
out the ML process on the edge, or AI on the Edge (AIE).
Typical examples of IEC are Radio Resource Management in
wireless networking, computation offloading strategies and
services placement and caching. In this case, the challenges
are on the model definition, which often has to be defined
as a tractable Markov decision process, on the algorithm
deployment, since it has to work on-line. Consequently, a
trade-off between optimality and efficiency has to be found.
In case of Radio Resource Management (RRM), individual
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rule-based algorithms can be replaced by a general-purpose
learning framework capable of autonomously generating
complex algorithms specialized for each RRM functionality.
This type of framework, when based on DL applied to the raw
network data, can be able to improve the feature-engineered
solutions based on standard ML designed to solve specific
tasks in a restricted environment and, possibly, solve multiple
tasks [27].

Up to now, the work has been mainly concentrated on
IEC and, in particular, on RRM optimization solutions for
improving the performance of the system in edge-computing
architectures, mainly on IoT scenarios. In this case, ML
has been applied to improve the resource allocation and
the spectrum management for offloading computational-
intensive tasks from resource-limited machine-type devices
to powerful edge servers [28], [29].

Regarding AIE, some work has been already published
in the area of wireless communications, especially on FL
for IEC [30]. FL has been applied in [31] to learn the
statistical properties of vehicular users for ultra-reliable low-
latency vehicular communications. Authors in [32] applied
FL to learn the locations and orientations of the users in
wireless virtual reality networks for minimizing the breaks
in presence. A device scheduling problem for heterogeneous
resources in MEC based on FL has been proposed in [33].
In [34], a FL based approach has been used for mobile packet
classification, which allows mobile devices to collaborate and
to train a global model, without sharing users’ sensitive in-
formation. The authors demonstrate its effectiveness in terms
of classification performance using three real-world datasets.
Energy-efficient radio resource allocation for enabling FL in
an edge scenario has been investigated in [35] by adapting the
communication to devices’ channel states and computation
capacities so as to reduce their energy consumption while
guaranteeing learning performance.

Another ML paradigm that can help in reducing the imple-
mentation complexity without sacrificing ANN’s universal
function approximation property is represented by MTL [36].
As KTL, MTL is animated by the human learning principle
of transferring the acquired knowledge: often people apply
some ability, learned from previous tasks, to help learn a
new task. In MTL, all the tasks are treated with the same
priority and the objective is to improve the performance of
all the tasks. Whereas, in KTL, the target is to improve the
performance of a specific task with the help of a source task.
An example of usage of MTL in mobile communications
is represented by [37], where multi-task Sparse Bayesian
Learning (SBL) has been applied for learning time-varying
sparse channels in the uplink for multi-user massive MIMO
systems. Results showed that it is possible to considerably
reduce the complexity and the required time for the conver-
gence with negligible sacrifice of the estimation accuracy.
In [38], multi-task deep ANN framework for non-orthogonal
multiple access (NOMA), namely DeepNOMA, has been
proposed for treating non-orthogonal transmissions as mul-
tiple distinctive but correlated tasks.

In this work we would like to evaluate jointly the two AI
MEC paradigms by investigating the performance of AIE
solutions with a specific IEC application (i.e., the two RAN
SON functionalities). In particular, for AIE we consider GL
as a distributed training model together with MTL and we
study their performance both in terms of prediction accuracy
and wasted energy, which have not been done till now in these
scenarios to the best of our knowledge.

III. METHODOLOGY
A. PROBLEM STATEMENT
In this work we consider next-Generation Node B (gNB)
architecture [39], where each BS will be composed of a
Central Unit (CU) and one or more Distributed Units (DUs),
which have computation capabilities to store the different
algorithms of the protocol stack as defined in the Open RAN
(O-RAN) paradigm [40]. In detail, we rely on the concept of
decoupling the Control-Plane (CP) from the User-Plane (UP)
into RAN for bringing in the CP embedded intelligence by
introducing the RAN Intelligent Controller (RIC). Without
loss of generality, in this paper we focus on two RAN SON
use cases for the RIC: Handover Decision (HD) and Initial
MCS Selection (IMS). We selected them in such a way that
they are sufficiently different tasks of the RAN, and they are
traditionally handled by different layers of the protocol stack.
In particular, handover management is normally handled
by Radio Resource Control (RRC) functions, whereas the
selection of the MCS is a Medium Access Control (MAC)
layer problem. We do that to derive conclusions as general as
possible from the solutions proposed for these use cases. We
consider that both use cases will benefit from an ML oriented
approach, as we discuss in the following.

Regarding the HD, in standards and literature, mobility
algorithms are traditionally based on standard events defined
by 3GPP specifications [41], e.g., the A3 or A2 event, and are
mainly focused on the optimization of event trigger param-
eters, e.g., Hysteresis, Time-to-Trigger and Cell individual
Offset [42]. In this respect, many ML solutions have been
proposed to dynamically adjust online these parameters [4].
However, all the solutions present the same limitation: they
consider only some representation of the signal power for
evaluating which decision to make, but not the actual per-
ceived QoE after the decision. A typical problem of HD
in urban scenarios is the presence of many obstacles, that
may cause that the handover to the strongest neighbor cell
is successful but, a while after, the transmission is deeply af-
fected. In such cases, traditional handover approaches based
on instantaneous signal strength are not able to provide a
satisfactory solution, since they cannot take advantage of
available data to gain experience and make smarter decisions.
Those approaches are likely to severely affect the QoE of the
users, due to the unpredicted cell outage [43].

Similarly, for what concerns the IMS, the initial MCS
adopted by a device when starting a connection is commonly
selected in a very conservative fashion, e.g., by taking the
MCS with the lowest spectral efficiency. In this way, the first
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TABLE 1: Implemented solutions.

Centralized Distributed
Use case

Single-task Multi-task Single-task Multi-task

HD ST-HD MT-HD GL-ST-HD GL-MT-HD
IMS ST-IMS MT-IMS GL-ST-IMS GL-MT-IMS

communication will be delivered with the lowest bit error
probability independently from the device’s position, which
is usually unknown at the beginning. However, for those UEs
that are in good coverage, this solution penalizes their initial
performance.

We propose different ANN architectures to estimate the
QoE that the users are perceiving, based on the data that are
generated by the BS during its normal operation. We extract
data from the complete protocol stack, from the transmis-
sion related parameters of the PHY layer (e.g., transmission
power, Reference Signal Received Power, hybrid automatic
repeat request feedback) to the ones of MAC (e.g., MCS,
resource blocks usage, retransmissions, protocol data unit
size and delay), up to application layer (e.g., inter packet
delay, instantaneous throughput). In particular, our ANNs
are designed to predict the QoE parameters of the two use
cases: i) the time to finalize the download for HD and ii) the
throughput perceived in the initial window for IMS.

The ML models that we propose are based on LSTM, so
as to exploit the temporal characteristic of the data extracted
from the mobile network. These solutions have been im-
plemented in both centralized and distributed architectures.
In the rest of the paper we will focus on the following
architectures:

• centralized: where all the local data are collected in a
common server to perform the training of the LSTM-
based solutions.

• distributed: where the data are maintained at the BS
premises for being processed by the local MEC server.
Only the model parameters are exchanged by the differ-
ent BSs after performing the local training.

• multi-task: adopted for enhancing the efficiency of the
training phase of the two use cases. MTL relies on a
shared AE based on LSTM for learning the most rel-
evant features and predictors implemented with Multi-
Layer Perceptrons (MLPs).

As benchmark, we consider the single-task architecture,
where two dedicated LSTM predictors are used to estimate
the time to finalize the download and the initial throughput
perceived, respectively.

An example of the reference scenario architecture is pro-
vided in Fig. 1. The centralized solutions, placed in the cen-
tral cloud server of Fig. 1, are: single-task LSTM predictor
for HD (ST-HD), single-task LSTM predictor for IMS (ST-
IMS), multi-task LSTM-AE with MLP predictor for HD and
IMS (MT-HD and MT-IMS, respectively). The correspond-
ing distributed extensions based on GL, deployed on the

  

EI Connection

Centralized Connection

Central Cloud Server

MEC Node

MEC Node

MEC Node

FIGURE 1: Reference scenario architecture.

edge directly at the BS premises in left part of Fig. 1, are:
single-task LSTM predictor for HD (GL-ST-HD), single-task
LSTM predictor for IMS (GL-ST-IMS), multi-task LSTM-
AE with MLP predictor for HD and IMS (GL-MT-HD and
GL-MT-IMS, respectively). Summarizing, in this work we
have considered the implementations reported in Table 1.

Our focus in this paper is on adapting and evaluating
the distributed framework specifically in an EI scenario for
RAN management SON functionalities. This includes the
evaluation of two sensitive aspects: i) the behavior of the ML
models, when considering GL and MTL paradigms, and ii)
the assessment of the used energy with each architecture.

In what follows, we present the GL, MTL and LSTM based
architectures together with their background information.

B. GOSSIP LEARNING
GL has been designed to handle the special cases of peer-
to-peer data processing of distributed data for managing
sensitive content that is better to process locally. The main
idea behind GL is to avoid any synchronization among the
nodes, so there is no need of any centralized entity in charge
of managing the training phase. This allows to have a more
robust algorithm, since it prevents the single point of failure
problem and do not requires the synchronization among all
the nodes and the central entity at each distributed training
step. Moreover, GL guarantees a low communication over-
head, since it needs a reduced number of messages to be
exchanged and of a reduced size, i.e., only the model param-
eters have to be exchanged instead of the local database.

The generic skeleton of GL involves three main compo-
nents: an implementation of random walk, an online learning
algorithm and ensemble learning [17]. In this paper we con-
sider a specific implementation of the GL, where the online
learning method is SGD for all the ML models.

Algorithm 1 provides the generic skeleton of the GL
framework. The same algorithm is run at each node in the
network. The algorithm consists of an active loop of periodic
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Algorithm 1 Skeleton of the Gossip Learning algorithm

1: procedure MAIN
2: currentModel← InitModel()
3: loop
4: wait (∆)
5: p← SelectRandomPeer()
6: send currentModel to p
7: end loop
8: end procedure
9: procedure ONRECEIVEMODEL(m)

10: currentModel←Merge(m, currentModel)
11: end procedure

  
BS3

BS6

BS2

BS1
BS4

BS5

m(BS1)

m(BS1,BS5)

m(BS1,BS5,BS2)

m(BS1,BS5,BS2,BS4)

m(BS1,BS5,BS2,BS4,BS3)

m(BS1,BS5,BS2,BS4,BS3,BS6)

START

END

FIGURE 2: Example of GL organization of compute nodes.

activity, and a method to handle the reception of incoming
models. We assume that the length of the period of the
loop ∆ is the same at all nodes. The original GL model is
designed for working with fully distributed data, where each
node is assumed to own a single, private data point, as for
peer-to-peer application, e.g., recommender systems. In this
case, nodes perform only one step of the learning process at
each loop cycle, according to the available data. However,
this may not be the case in many scenarios, where a single
node might have multiple useful data points, such as image
classification and our case. To this respect, the study in [44]
shows that training on multiple data points provides a clear
advantage over the original protocol, as models see more data
in the same number of iterations, and thus converge faster.
Therefore, we consider the extension proposed in [44], which
propose to call multiple times the SGD on different data
points, i.e., implementing at each node multiple training steps
sequentially every loop cycle. In particular, we consider to
perform the local training on the whole dataset generated by
one BS in one loop cycle, thus the maximum number of steps
of the algorithm will be the number of BSs. For simplicity, in
the implemented version, nodes have been randomly ordered
during the initialization, instead of distributively generating
the random sequence during the algorithm. In this way, nodes

are aware of when they receive a new model and to which
node send the updated version. The active loop is initiated
at the same time in all the nodes, and the stopping criteria
is when the nodes reach a consensus. The consensus is
usually dependent on the specific problem to be solved, e.g.,
the requested prediction loss. In our case, we consider as
consensus the finalization of the training phase from all BSs.
This allows us to compare the distributed approach against
the centralized, since they have been trained with the same
amount of data.

An example of the execution of the GL algorithm in a cell
with 6 BSs is provided in Fig. 2. During the initialization,
we pick up a random sequence for the distributed training,
i.e., {1, 5, 2, 4, 3, 6}. This sequence will be used by the nodes
to send their updated local model, as in Algorithm 1. In this
case, the algorithm initiates in BS1, which starts training the
model through SGD with its entire local dataset according the
specific ML model: the LSTM predictor for GT-ST-HO and
GT-ST-IMS, and the LSTM AE and the MLP for GT-MT-
HD and GT-MT-IMS. After this, BS1 randomly sends the
parameters of the model to another node, in our case BS5.
BS5 initializes its internal local model with the parameters
received by BS1 and performs the training with its local
dataset. The trained parameters are then randomly passed to
the next node, BS2. This procedure is repeated until the last
BS in the sequence has performed its local training, i.e., BS6.

C. MULTI-TASK LEARNING
The general motivation of the MLT is to obtain some un-
derlying functions for prediction, which can define what
good predictors should be like. The critical issue is to obtain
such functions by simultaneously taking various prediction
problems into consideration. Traditional MTL methods as-
sume that all the tasks are related and their dependencies
can be modeled by a set of latent variables. However, in
many real-world applications not all tasks are related, and
enforcing erroneous (or non-existent) dependencies may lead
to negative knowledge transfer/sharing.

In this work, we consider the Multi-Task Autoencoder
Model (MTAM) [45]. MTAM extracts multiple features from
the data thanks to the AE for the prediction of the two RAN
tasks. The prediction is based on a MLP model, which is
a standard class of feedforward ANN. The MTL paradigm
has been proposed with the aim to enhance parameters es-
timation; however, in our study, we are more interested in
its computational efficiency, since it allows to share the AE
training phase among the different tasks.

Autoencoders are used in representation learning to learn
a representation of the input in a feature space in unsu-
pervised manner. We consider a sequence-to-sequence au-
toencoder [46], since our dataset consists of time-series se-
quences. The objective is to reconstruct the data samples
using an encoded representation of the input sequence. An
autoencoder is made of an encoder and a decoder. Let
X = RD be the input space and F be the feature space.
An encoder is a function φ : X → F that has to learn the
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FIGURE 3: MTL architecture diagram.

prominent characteristics and generate an encoded version of
the sample in the feature space F . Alternatively, the decoder
is a function ψ : F → X that aims to reconstruct the input
using the internal representation. Formally, given a sample
sequence x(n), the autoencoder is a function ΦAE : φ ◦ ψ
that outputs x̂(n)

ΦAE(x(n)) = x̂(n). (1)

When trained with sufficient samples, the architecture is able
to learn the reconstruction of the normal samples with a low
reconstruction error.

For the implementation of both the encoder and the de-
coder, we adopt LSTM cells, according to their capability of
extracting the temporal dependencies from one instance to
another. In detail, the encoder and the decoder architectures
have been chosen through simulation trials and evaluation,
and each one consists of two layers of LSTM cells, respec-
tively. The first layer of the encoder ENC1 has NENC1

=
84 cells and the second layer ENC2 has NENC2

= 100 cells,
which represents the dimension of the learned representation,
or codeword, of the AE. The decoder is symmetrical: DEC1

has NDEC1 100 cells and the second layer DEC2 has
NDEC2

= 84 cells. Both encoder and decoder use tanh activa-
tion function, sigmoid recurrent activation function and Adam
optimizer with mean square error minimization function for
the training. The MLP used for the prediction has two fully
connected layers. The first layer MLP1 contains NMLP1 =
84 neurons and the second layer MLP2 has NMLP2 = 42
neurons. Leaky ReLU activation function is used for hidden
layers while linear activation is applied at the output layer.
In addition, RMSProp optimizer with mean square error
minimization function is used for the training. The resulting
number of trainable parameters of each model based on MTL
according to the hyperpameters of above are 235,620 for the
AE and 6,774 for the MLPs. The input sequence will be
described in Section IV. The diagram of the predictors based
on the MTL architecture is depicted in Fig. 3.
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FIGURE 4: Simulation scenario.

D. LSTM SINGLE-TASK PREDICTOR

When used for performing a prediction, the LSTM algorithm
receives a traffic sequence of length W at time n, x(n) =
[x(n),x(n + 1), ..,x(n + W − 1)], and tries to predict the
traffic sample at time n+W , x̂(n+W )

ΦPRED(x(n)) = x̂(n+W ). (2)

We consider a stacked architecture that includes multiple
LSTM layers. The number of concatenated cells in the first
layer indicates the number of observations of the data, which
in our case corresponds to the window length W . By doing
so, LSTM are capable of learning long-term dependencies
from the input time series, while solving the vanishing-
gradient problem that affects standard RNN [47]. This ca-
pability is due to the structure of the basic LSTM cells (or
units) that includes gates to regulate the learning process.

Through simulation trials and evaluation, we have selected
four stacked layers combining three LSTM layers and a
final fully connected output layer. The LSTM layers (re-
spectively LSTM1, LSMT2 and LSMT3) have NLSTM1

= 84, NLSMT2 = 42 and NLSMT3 = 21 cells. The final
fully connected layer uses linear activation function and its
output consists of the prediction. RMSProp optimizer with
mean square error minimization function is used for the
training. According to these hyperparameters configuration,
the number of trainable parameters of each model based on
the LSTM predictor are: 83,346 for ST-HD and GL-ST-HD,
84,106 for ST-IMS and GL-ST-IMS. The input sequence will
be described in Section IV.

IV. DATABASE DESCRIPTION

In order to test the proposed solutions, we use a syn-
thetic database generated with a simulator. In detail, we
implemented a realistic simulation scenario through the ns-
3 LENA LTE (Long Term Evolution) - EPC (Evolved Packet
Core) simulator [48]. A macro cell outdoor scenario has been
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considered with a network consisting of three-sectorial BSs.
Each sector has a cluster of User Equipments (UEs) located at
random positions and moving following a predefined mobil-
ity pattern. In order to mimic the communication challenges
of an urban scenario, and generate random coverage patterns,
we introduce obstacles in the scenario, thus generating mul-
tiple coverage holes, as shown in Fig. 4. Each UE performs
a Transmission Control Protocol (TCP) file transfer to a
remote host in downlink and uplink directions. Different
databases have been generated in order to test the different
ML architectures: DB-ST-HD and DB-ST-IMS for the single-
task HD and IMS solutions, respectively, and DB-MT for
the MLT. For the cases of single-task LSTM prediction of
HD use case (ST-HD) the database is created for collecting
info on this specific task. Therefore, the simulations are
designed for performing deterministic handovers to different
potential neighbors. In this scenario, we observe that the
maximum number of neighbors a UE can perceive is 8;
therefore, each run is repeated 8 times to measure the file
download time when the handover is performed to one of
the possible neighbor BSs. For every simulation run, a UE
picks a random starting position in the cluster and a random
angle in the range of [0◦, 360◦] to move away from the
source BS following a straight line. Regarding DB-ST-IMS,
the simulations are designed for retrieving the throughput in
the firsts 20 ms window when using the initial MCS. Without
loss of generality, we analyze three MCS (0, 14 and 28) for
generating this database, since they substantially differ in
spectral efficiency and allow us to highlight their behavior
according to the position of the UEs with respect to the
BS. Finally, for generating DB-MT, the simulations are a
combination of the two cases of above. In fact, the database
DB-MT is common for the two tasks; therefore, each run
is repeated 24 times for each user: 8 times to measure the
download time and 3 times to measure the initial throughput.
The data obtained from these simulation campaigns for each
UE are stored in the form of a dataset, according to the format
described in what follows.

We design the solutions of the two RAN use cases as
a regression problem, where we need to estimate the QoE
expected for performing handover to a specific target cell
and the initial throughput when starting a new connection.
Therefore, the algorithms are adopting the supervised learn-
ing paradigm, which implies that a labeled dataset is needed.
In fact, in supervised learning, each entry is a pair consisting
of an input object and the correspondent desired output value,
e.g., the label. In our case, the inputs of these datasets consist
of the configuration parameters and the set of features, and
the outputs are the QoE parameters perceived. For what
concerns the features, we extracted 84 measurements from
all the layers of the LTE protocol stack. We gather the
measurements using some logs/traces already available in
ns-3, e.g., those available for RLC (Radio Link Control)
and PDCP (Packet Data Convergence Protocol), and other
new custom trace sources at RRC (Radio Resource Control),
MAC and PHY, obtained by leveraging the tracing system of

ns-3. The input features, for our dataset, are extracted with
the periodicity of 200 ms in order to be consistent with the
approximate periodicity with which UE measurements are
reported from UEs at the RRC level. This dataset can be
expressed as a 3D matrix X:

X =


x1,1 x1,2 · · · x1,m

x2,1
. . . · · · x2,m

...
... xi,j

...
xn,1 xn,2 · · · xn,m


where the feature vector of size 84 is xi,j ∈ X, 1 ≤ i ≤ n,

and 1 ≤ j ≤ m. The upper limit of n can be computed
by multiplying the total number of UEs with the maximum
neighbor BSs to handover and/or the initial MCS to explore,
and the total number of simulation runs. Whereas m defines
the duration of the time series to be analyzed (i.e., the number
of samples in the total simulation time, 40 sec, when sam-
pling each 200 ms), which corresponds to number of time-
steps that the LSTM processes to perform the prediction.

Regarding the simulation scenario, we consider 7 three-
sectorial BSs, which corresponds to 21 sectors, and 10 UEs
per sector, which results in a total of 210 UEs in the whole
simulation field. For an exhaustive description of the simu-
lation scenario and parameters, the reader can refer to [49].
During the simulations, it may happen that some of the data
are not available, because UEs might experience a Radio
Link Failure (RLF) when forced to handover to a BS with
poor channel conditions. In those cases, we do not have
data since the user is not connected, and consequently, we
removed the affected entries. According to this, the number
of entries of the databases for the overall simulation scenario,
i.e., the parameter n, are: 33,500 for DB-ST-HD, 29,648
for DB-ST-IMS and 33,662 for DB-MT. These values cor-
respond to the databases used for the centralized solutions,
since they aggregate the data of all BSs. On the other hand, in
the distributed versions, each node processes only the entries
generated by the corresponding BS sector, which implies that
the local databases dimension is smaller, i.e., approximately
the 21st part of the dimensions for correspondent centralized
databases.

V. RESULTS
The implementation of the proposed ML architectures re-
lies on Keras and Tensorflow as backend. In particular, we
adopted the fast LSTM implementation by Nvidia CUDA
Deep Neural Network (CuDNN) library for Graphics Pro-
cessing Units (GPUs) [50]. The used server has the following
specs: 4 GPUs GeForce RTX 2080TI (4.352 cores 11 GB), 2
Central Processing Units (CPUs) Intel Xeon 6230 (20 cores)
2,1 GHz, 192 GB DDR4 2933 MHz of memory, 2 disk of
2TB SATA3 6GB/s.

A. TRAINING PHASE
The datasets have been randomly divided into training and
validation sets, using a split ratio of 0.75 and 0.25, respec-
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FIGURE 5: Validation losses for single-task architectures.

tively. We train and validate the algorithms using the training
and validation sets to minimize the reconstruction error over
200 epochs, in the case of the AE, or prediction error, in the
case of the predictors. The loss function used to train the
algorithm is the mean square error (MSE) and the RMSProp
algorithm is used to optimize the learning process. The
GL based solutions have been analyzed during its learning
process among the nodes, i.e., analyzing the error of the ML
model when different number of nodes have been visited and
have performed their local training.

We start analyzing the single-task architectures and we
present the validation errors over the number of visited
nodes in Fig. 5. The centralized versions are presented as
a horizontal line, since they are trained on the aggregated
databases. The validation errors of both GL-ST-HD and
GL-ST-IMS have an oscillating behavior when varying the
number of visited nodes. The specific value change according
to the GL training order; but the range and the oscillations
are similar regardless the different random sequence that
can be used. Therefore, we report the results only for one
sequence during its learning process. GL-ST-HD and GL-
ST-IMS have in general worst validation errors with respect
to the correspondent centralized solutions. In detail, for what
concerns HD use case, the GL-ST-HD solution presents both
higher and lower values of validation error with respect to
ST-HD. The GL-ST-HD has many values of lower validation
error with respect to ST-HD in the middle of the training
phase, i.e., when the number of nodes that have performed
the training is between 7 and 18. Similarly, for the IMS
use case, the values of validation error of the GL-ST-IMS
solution are varying with the number of visited nodes and
the values of high validation errors are concentrated at the
beginning and at the end of the training phase. The higher
validation errors for the distributed solutions at the beginning
(i.e., when the number of visited nodes is low) is expected,
since the model has been trained with a reduced number
of samples. However, when the number of visited nodes
is increasing, the distributed solutions still present higher
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FIGURE 6: Validation losses for multi-task architectures.

validation errors in many steps. Moreover, the final validation
errors of GL-ST-HD and GL-ST-IMS are higher with respect
to the correspondent centralized versions. This phenomenon
depends on the quality of the datasets, i.e., whether data are
iid. If the data distribution changes while learning, the new
data will interfere with already acquired knowledge. In this
case, the model might experience performance degradation
at previously learned concepts (i.e., the relation between the
inputs and outputs of the model) when trained sequentially on
learning new concepts, the so called Catastrophic Forgetting
(CF) [51]. This is due the fact that SGD is sequentially
applied to the local datasets; whereas, in the centralized
version, SGD is executed on the randomized aggregated
dataset, which has higher iid properties.

Considering the multi-task architectures, Fig. 6 reports the
validation errors with respect to the number of visited nodes.
In this case, the oscillations of the validation error are higher
with respect to the single-task, especially after 7 nodes,
where both GL-MT-HD and GL-MT-IMS experience only
one value of validation error below the correspondent central-
ized solutions, MT-HD and MT-IMS, respectively. The same
considerations done for the single-task architectures apply
also in this case. In addition, comparing Fig. 5 with Fig. 6,
we can see that there is no correlation among the peaks of
high validation error between the single-task and the multi-
task architectures. This implies that the data generated by
each BS and the variation of validation error during the GL
training are not correlated.

In this work we limit our study to the demonstration that
a distributed learning implementation using GL is returning
similar network performance compared to a centralized so-
lution, as presented in Section V-B. Therefore, we do not in-
vestigate CF issue in more depth. However, we consider that
CF has to be carefully investigated when applying distributed
solution; thus, in Section VI-A we discuss some open issues
on training when data cannot be assumed iid.
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B. NETWORK PERFORMANCE
The network performance evaluation of these models is per-
formed in a supervised offline fashion similar to [52], and
detailed in what follows. We compare the network perfor-
mance of benchmark solutions against the ones obtained with
the predictions based on the centralized architectures and
the correspondent distributed. To do this, we consider the
distributed version when the training is finalized, i.e., the GL
algorithm has visited all the nodes, in order to have trained all
the models with the same amount of data. The results based
on the centralized architecture are equal to the distributed, so
we can claim that the difference in validation error does not
affect the prediction accuracy for the considered use cases.
According to this, we only report the results of the distributed
approaches for sake of brevity.

For the HD use case, we compare the real time to download
for each UE, obtained after selecting the target cell providing
the lowest predicted time to download, to the one achieved by
using a benchmark approach, i.e., A2-RSRP based handover
algorithm. In particular, to perform this evaluation we con-
sider a test dataset generated with two extra simulation runs
obtained using a seed value for the random number generator
which was not used to build the training and validation
datasets. For IMS use case, we evaluate the performance of
the initial MCS, following an offline strategy, as we did for
HD use case, considering a new testing dataset. We evaluate
three different MCSs for each UE to get the correspondent
predicted initial throughput. Then, for each UE we select the
MCS, which results in the higher initial throughput and we
compare it to the benchmark approach (i.e., select always
MCS 0).

In Table 2, we report the results on the HD use case
obtained with the A2-RSRP, the GL-ST-HD and the GL-
MT-HD. As we can see, both GL-ST-HD and GL-MT-HD
outperform the benchmark solution in terms of number of
UEs that are able to finalize the download and, among these,

TABLE 2: Offline evaluation HD use case.

no. of UEs finalizing % of UEs decreasing
the download the download time

A2-RSRP 78 -
GL-ST-HD 88 92
GL-MT-HD 90 81

TABLE 3: Offline evaluation IMS use case.

% of UEs with % of increment of
improved performances initial throughput

GL-ST-IMS 100 73.35
GL-MT-IMS 81.9 74.47

the download time is also reduced in most cases. We have
analyzed the behavior of the UEs that have a better down-
load time from signal strength perspective. In particular, we
have evaluated the behavior of the handover algorithm in
the different cases from Reference Signal Received Power
(RSRP) perspective, which is stored in the database as it
is collected by the UEs for all the neighbors independently
from the handover solutions adopted. In Figure 7 we plot the
RSRP as a function of the epoch time perceived by one of the
UEs that have resulted with lower download time. The UE
started attached to sector 13 until epoch 73 where it reaches
an obstacle and it looses the connection, i.e., a Radio Link
Failure (RLF) occurs. At epoch 80, the UE has already passed
the coverage hole, and the A2-RSRP algorithm detects that
sector 15 has the best RSRP and perform a handover to
sector 15. Differently, GL-ST-HD and GL-MT-HD exploit
the experience extracted by the data to select as target sector
for the handover the cell that provide the best long term QoE,
i.e., sector 14.

The results on the IMS use case are presented in Table 3.
Results show that GL-ST-IMS and GL-MT-IMS outperform
the baseline. In this case, GL-MT-IMS has a lower number of
UEs with improved performance with respect to the GL-ST-
IMS. Since this phenomenon happens also in the centralized
version, the reason can be a low degree of relation among
the two tasks, which jeopardizes the prediction performance
of the IMS use case. In fact, in this case, the two tasks are
learned simultaneously, thus CF does not represent an issue.
It is to be noted that, even all the algorithms present lower
validation error for the IMS use case with respect to HD,
the specific MCS selection problem might require a higher
precision to properly work.

C. ENERGY AND COMMUNICATION KPIS ASSESSMENT
In what follows, we investigate on the consumed energy
by the different architectures for performing the training. In
particular, we are interested in evaluating the energy figures
of the distributed solutions with respect to the centralized
ones. To do so, we use the Machine Learning Emission
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FIGURE 8: Energy (in black) and GHG emissions (in italic and green) assessment, the percentages in brackets refer to the
savings when using the distributed solution with respect to the correspondent centralized.

Calculator (MLEC) [53] and Green Algorithms (GA) [54]
tools, which can provide the used energy according to the
type of used hardware, the amount of used memory and the
execution time. MLEC takes as input the details regarding
the training of an ML model (i.e., the type of GPU, and the
training time) and gives as output the approximate amount of
Wh. GA is designed to have a wider application and removes
the restrictions on the hardware and applications of MLEC.
To do this, GA considers the running time, the number,
type and process time of computing cores (CPU or GPU),
the amount of used memory and the power draw of these
resources. In detail, the energy consumption E (in KWh) is
calculated as:

E = t× (nc × Pc × uc × nm × Pm)× 0.001, (3)

where t is the running time (hours), nc the number of
cores and nm the size of memory available (gigabytes),
uc is the core usage factor (between 0 and 1), Pc is the
power draw of a computing core and Pm the power draw
of the memory (Watt). By providing the region where the
training is performed, MLEC and GA can also estimate the
approximate amount of Carbon Dioxide Equivalent (CO2e)
produced. In this work we adopted a carbon efficiency of
0.432 kg/kWh, which is the 2014 yearly average value ac-
cording to the Organization for Economic Co-operation and
Development (OECD). The results are presented in Fig. 8
and provide the KWh used by each architecture (in black)
and the correspondent Greenhouse Gas (GHG) emissions in
terms of CO2e (in green and italic). We can see that the
GL based solutions always reduce the energy consumption,

especially in the single-task paradigm, where GL-ST-HD
can reach up to 29% of energy savings according to GA.
The lower energy savings of MTL can be motivated by the
higher complexity of its architecture (242,394 parameters)
with respect to the single-task (83,346 parameters). However,
the different implementations of the two solutions affect the
amount of work performed with their parameters. A more
in-depth investigation on the relation between the consumed
energy and their parameters for each proposed solution might
help in clarifying this phenomenon; however, we consider it
is out of the scope of this evaluation and we left it for future
work.

In addition, we would like to observe that, the MTL ar-
chitectures facilitate a more energy-efficient paradigm since
the training of the AE is common for all tasks. In fact, we
calculate that the energy consumed by the MLP is around 5%
of the whole MTL solution: therefore, adding a new task in
MTL would imply a marginal increment, i.e., the 5% of GL-
MT-HD or GL-MT-IMS. Alternatively, for the single-task
based architectures, it implies to train another LSTM model
from scratch. Thus, MTL favors scalability with respect to
number of SON use cases that can be handled in parallel
by the RAN. For instance, considering MLEC values of GL
architectures, the sum of the used energy by GL-ST-HD and
GL-ST-IMS is 1.21 KWh, whereas with MTL the two tasks
would consume 1.15 KWh (i.e., 1.09 KWh + 5%). In case
we added a third task with energy consumption equal to the
average of the HD and IMS tasks, the single-task paradigm
would require approximately 1.82 KWh, whereas MTL only
1.2 KWh. Thus, the single-task presents a linear increment
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in energy expenditure with respect to the number of tasks,
whereas MTL increments of only 5%.

Finally, it is also worth mentioning that the amount of
data involved in the communication has been dramatically
reduced. In the centralized version, 40 GB have to be trans-
mitted to the central cloud, whereas in the GL versions the
total amount of data exchanged when passing the model
parameters is: 7 MB for GL-ST-HD and GL-ST-IMS, 21 MB
for the AE and 1.5 MB for the MLPs of GT-MT-HD and
GT-MT-IMS. This translates in further energy savings, since
less data have to be transmitted and less demanding storage
hardware is needed at the edge with respect to a centralized
cloud solution. According to [11], these energy savings in the
communication and storage are of the 25%.

VI. OPEN ISSUES AND FUTURE DIRECTIONS
In this work, we presented a comparison between centralized
and distributed architectures for implementing two RAN
SON functionalities. The results highlight that the distributed
solutions are viable and cost-effective. However, several is-
sues are still open on this field and need a proper investiga-
tion, both theoretical and applied, in order to efficiently use
ML models in a distributed manner. In the following, a few
fundamental research problems are presented and discussed.

A. SEQUENTIAL TRAINING
As seen in Section V-A, the GL presents good performance
in terms of prediction accuracy for the scenario consid-
ered. However, the variation of the error during the training
phase suggests that the sequentially learning might suffer
from the problem of non-iid data sources. In this case, an
ANN experiences CF and tends to lose information from
previously learned data as information relevant to the new
data are incorporated. Continual Learning (CL) [55] is a
branch of ML aiming at handling this type of situation. CL
investigates the ability of ML models to learn consecutive
tasks without forgetting how to perform previously trained
tasks. Therefore, CL can apply not only to GL but also to
KTL and MTL, when the learning phase of the different
tasks is performed at different steps. The main idea of CL
is remembering only essential concepts and identifying the
potential source of interference in the data. In order to do
this, CL implements different memorization approaches that
incorporate new knowledge and protect them from modifica-
tion, in detail:

• Dynamic Architecture: the ANNs create new weights
automatically that will learn new tasks, whereas trained
weights are frozen to protect memories.

• Rehearsal: this class of algorithms identifies a subset of
training data as memory, which maintains knowledge
from past learning experiences.

• Generative Replay: where the goal is to learn generative
models for generating artificial samples as memory of
past learning experiences.

• Regularization: the loss is defined to constrain weight
updates in order to retain knowledge from previous

tasks.

In the GL algorithm, CF can be addressed also through an
early-stop solution, which allows to interrupt the GL training
phase as soon as the desired level of error has been reached.
This may also increase the energy efficiency of the system. To
do so, the trade-off between the original GL algorithm, where
a single SGD is performed at each round, and the evaluated
solution, where the entire local database is processed at each
round, should be evaluated in order to study the training
behavior of the different solution as function of the accuracy,
energy and communication performance.

The incremental paradigm of the sequential training phase
can be used also for managing more complex scenarios, i.e.,
with higher number of BSs and/or with data distribution
modifying in time (e.g., changes in scenario as new obstacles
or deployment of new BSs). In fact, CL based solutions aim
at finding working algorithms for agents which learn from
an evolving environment and that need to learn continually
to adapt to unseen situations and remember already learned
solutions to known situations.

Finally, also the local databases require a more in-depth
investigation of their iid properties so as to evaluate the GL
training phase in terms of the energy and accuracy. This will
help to discover noisy data and filter them accordingly for
improving the final accuracy or implementing the rehearsal
CL memorization solution.

B. DISTRIBUTED ML SOLUTIONS

As presented in Section II, several ML solutions are available
for distributing the training phase: FL is attracting the atten-
tion, but KTL can be also an interesting field of research. On
this matter, it is of paramount importance to investigate on
the different performance of the distributed ML solutions in
terms of accuracy, latency, energy and communication KPIs
in order to be able to choose the proper solution for the
different applications. FL can help in having a stricter control
on the distributed training process thanks to its centralized
management of the model, thus facilitating the optimization
of accuracy and latency. However, the information exchanged
between nodes and the central entity is higher with respect to
GL and need more strict requirements in terms of latency and
reliability.

On the other hand, KTL can improve the energy efficiency
of the system by exploiting the transfer of the already ac-
quired knowledge. This is not always possible, as in many
cases it is impracticable to identify a source model since
the data stored at the nodes are of equal importance, or the
hierarchical distribution among the nodes is not known a-
priori.

Finally, all distributed ML solutions that implement a
sequential learning have to deal with the CF problem. Con-
sequently, all the challenges presented in Section VI-A have
to be properly evaluated for each solution.
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C. DEEP REINFORCEMENT LEARNING SOLUTIONS

Reinforcement Learning (RL) based solutions also represent
a viable approach to investigate, especially considering their
extension through DL. In particular, Deep ANN can be used
as approximation function to solve the RL problem when a
huge number of variables has to be considered, as in our case.
The main problem of DRL-based solutions is represented by
the training phase, in which the algorithm needs to interact
with the environment during its learning process. To do this,
the off-line paradigm implements the training in a model of
the environment, e.g., with simulation tools. However, the
model of the environment has to be carefully designed for
having a limited gap with respect to the real environment
in order to be able to perform a valuable training. On the
other hand, in the on-line training, the direct interactions
with the environment can jeopardize the system operations
and consequently, the exploration has to be carefully guided,
such as with Upper Confidence Bound (UCB) [56] and Ex-
ponential weight algorithm for Exploration and Exploitation
(EXP3) [57] solutions.

D. GREEN AI

The field of Green AI is very recent and still there is
not a common agreement among the researchers on how
to perform the energy assessment of the ML solutions, as
presented in [8]. MLEC and GA represent two valuable tools,
but provide energy figures which are hardware dependent,
and, thus, they do not allow for a fair comparison between
different models as well as to decouple the model contri-
butions from hardware improvements. Another useful metric
is represented by the Floating-Point Operations (FPO). FPO
directly computes the amount of work done by a machine
and is agnostic to the specific hardware, but it does not
consider the implementation of the model and its memory
consumption, which may often lead to additional energy and
monetary costs [58].

The number of parameters of the model (i.e., the internal
variables of the model whose values can be estimated from
data) is an important metric. In fact, it is independent from the
hardware and is highly correlated with the memory consump-
tion. However, different algorithms make a different use of
their parameters (e.g., deeper ANN and wider ANN), which
implies that a similar number of parameters might correspond
to a different amount of work. Finally, another aspect to be
considered is the model sensitivity to hyperparameters, i.e.,
all the parameters related to the configuration that are exter-
nal to the model and whose value cannot be estimated from
data. An example of such analysis is the characterization of
the model tuning time, which could reveal inconsistencies
in time spent tuning baseline models compared to proposed
contributions. This sensibility is especially important when
proposing a model that has to be re-trained for its application,
such as re-training on a new domain or fine-tuning on a new
task.

VII. CONCLUSION
In this paper, we have presented distributed architectures
for two RAN SON functionalities based on multi-task and
gossip learning animated by the big data availability of BS
statistics at the edge. We considered the handover decision
and the initial MCS selection use cases. We evaluated the
proposed solutions considering both their accuracy and con-
sumed energy in realistic scenarios. Results prove that the
proposed distributed implementations of the two RAN SON
functionalities allow to increase the energy-efficiency of the
system while maintaining the same network performance
with respect to their correspondent centralized versions. Fi-
nally, we have discussed some open research issues that have
been identified during this work and can be generalized to the
emerging interesting field of edge intelligence.

ACKNOWLEDGMENT
The research leading to these results received funding by the
Spanish Government under project TEC2017-88373-R (5G-
REFINE) and Generalitat de Catalunya under grant 2017
SGR 1195. It was also supported by Huawei Technologies,
Sweden AB.

REFERENCES
[1] Cisco Systems Inc., “Cisco Visual Networking Index: Global Mo-

bile Data Traffic Forecast Update, 2016 – 2021,” White Paper,
http://www.cisco.com/, Feb. 2017.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[3] A. Andrae and T. Edler, “On global electricity usage of communication
technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.

[4] J. Moysen and L. Giupponi, “From 4G to 5G: Self-organized network
management meets machine learning,” Computer Communications, vol.
129, pp. 248–268, Sep. 2018.

[5] N. Baldo, L. Giupponi, and J. Mangues, “Big Data Empowered Self
Organized Networks,” in Proceedings of the 20th European Wireless
Conference, May 2014, pp. 1–8.

[6] S. Ali et al., “6g white paper on machine learning in wireless communica-
tion networks,” arXiv:2004.13875, 2020.

[7] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp.
3645–3650. [Online]. Available: https://www.aclweb.org/anthology/P19-
1355

[8] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,”
arXiv:1907.10597, 2019.

[9] F. Woudstra, “Ethical Guidelines for Transparent Development and
Implementation of AI - an Overview,” Filosofie in Actie blog, 2020.
[Online]. Available: https://www.filosofieinactie.nl/blog/2020/4/9/ethical-
guidelines-for-transparent-development-and-implementation-of-ai

[10] INTEL White Paper, “Real-world impact of mobile edge computing,”
2016.

[11] E. Ahvar, A. Orgerie, and A. Lébre, “Estimating energy consumption of
cloud, fog and edge computing infrastructures,” IEEE Transactions on
Sustainable Computing, pp. 1–1, 2019.

[12] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok, “The global footprint
of mobile communications: The ecological and economic perspective,”
IEEE communications magazine, vol. 49, no. 8, pp. 55–62, 2011.

[13] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelli-
gence: Paving the last mile of artificial intelligence with edge computing,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

VOLUME 4, 2016 13



M. Miozzo et al.: Distributed and Multi-Task Learning at the Edge for Energy Efficient Radio Access Networks

[14] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge
intelligence: The confluence of edge computing and artificial intelligence,”
arXiv:1909.00560, 2019.

[15] E. Peltonen et al., “6g white paper on edge intelligence,”
arXiv:2004.14850, 2020.

[16] Y. Zhang and Q. Yang, “A survey on multi-task learning,”
arXiv:1707.08114, 2017.
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