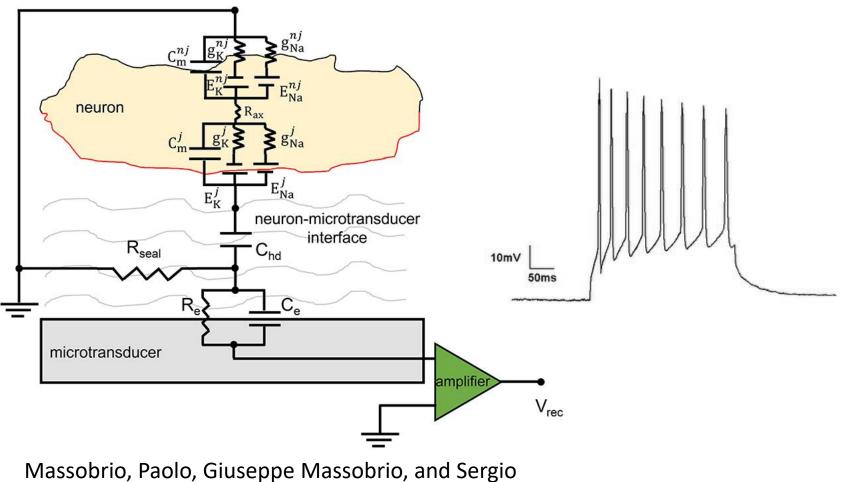

Production of conductive composite electrodes for extracellular recording and stimulation

August 2019, ICAS 2019 David Cheneler, John Hardy, Allan Rennie Lancaster University, UK

Multielectrode arrays (MEAs)


- MEAs are arrangements of electrodes allowing the targeting of several sites in parallel for extracellular recording and stimulation
- Used by bioscientists to understand fundamental biological processes (e.g. ageing)
- Commonly used in the fields of neurobiology and cardiac electrophysiology

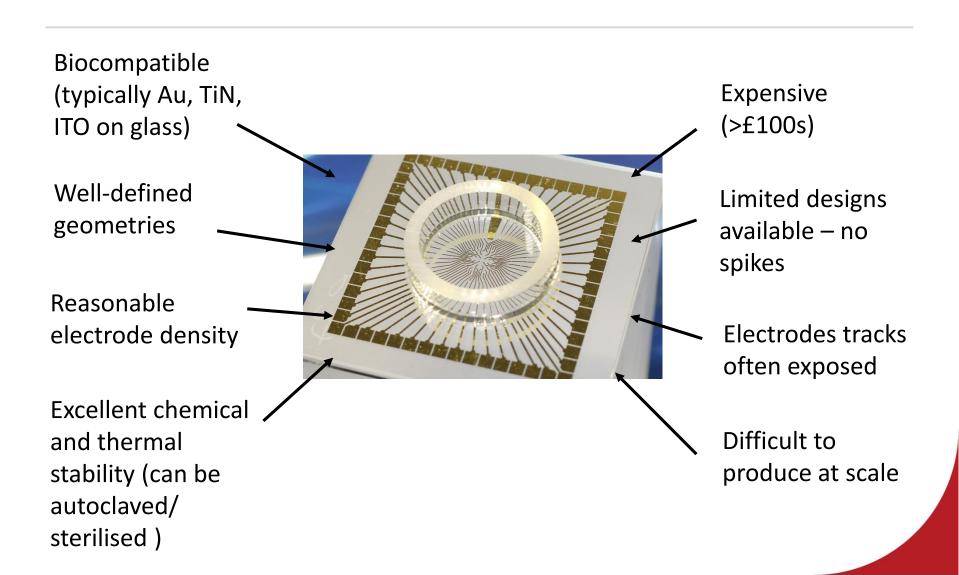
Source: Multi Channel Systems

Cellular stimulation and recording

Martinoia. *Frontiers in neuroscience* 10 (2016): 282.

Typical neurobiological applications

- In vivo implantable devices for deep brain stimulators (Parkinson's disease)
- *In vitro* single-cell cultures or acute brain slices
- Drug testing; safety pharmacology studies
- Neuroregeneration
- Developmental biology
- Microencephalograms (EEG)
- Microelectroretinograms (ERG)

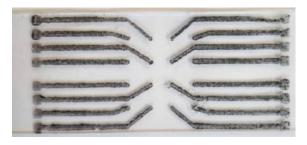


- Allow placement of multiple electrodes (better spatial resolution compared to patch clamp techniques)
- Able to set up controls within same experimental setup
- Can record simultaneously from multiple sites, or select different recording and stimulations sites
- Non-invasive

Current technology

Economic implications

- Existing technologies are very expensive:
 - MEAs with 8 or more electrodes $cost \ge £100$
 - Can reuse a few times depending on coatings
 - Centre for Process Innovation's National Industrial Biotechnology Facility to monitor and optimise fermentation processes use disposable cuvettes incorporating 2 electrodes costing ca. £100 each in machines holding up to 100
- Fabrication is very expensive:
 - Clean room, sputtering machine, mask aligners, spinners, lift-off and photoresists, masks, metals, etc. ≥ £1M
 - Compared to multi-material printer, e.g. J750 Stratasys ~£250k

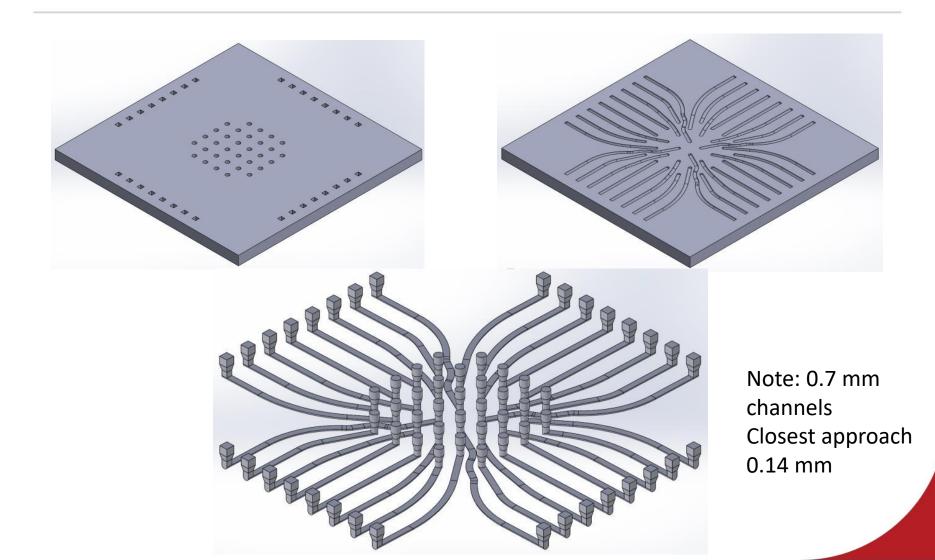

- Fused filament fabrication (FFF) of conductive filaments
 - PLA/carbon black filament from Proto-pasta
 - PLA/graphene from Haydale
 - Deposited using Ultimaker 2 and multi-material Z-Morph
 - Insufficient resolution
- Block printing and screen printing
 - Curable polyimide polymer thick film silver conductor (ESL Electroscience)
 - Allowed for use of glass substrates
 - High productivity
 - High curing temperature >320°C
 - Issues with repeatability and robustness

Issues

- Conductive PLA printed inside a clear PLA substrate on Z-Morph had indistinct layers
- Irregular surface result from block printing using conductive silver paste on glass
- Smearing of ink during manual screen printing of fine detail

Additive manufacturing strategy

- Multi-material printing based on FFF due to lack of commercially available conductive inks for direct writing of electrodes
 - Insufficient resolution and interconnects observed
- Strategy: to combine direct write and additive manufacturing by printing channels that can be filled with conductive materials
- Issue: conductive materials difficult to extrude through channels.
- Solution: Modify viscosity and use open channels

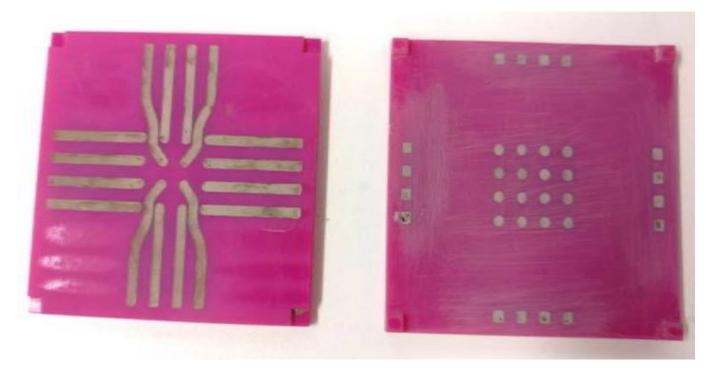

Electrode impedance

- Low impedance is necessary to achieve good signal-to-noise ratio (>5:1 preferred)
- Impedance of 30 µm TiN microelectrodes is < 100kΩ (250-400 kΩ for smaller electrodes)
- Charge transfer depends on surface area and thickness of the electrode-electrolyte double layer
 - Often limited by electron and ion transfer rates in the coating
- Impedance between electrodes dependent on height and spacing of electrodes

MEA layout

Tested electrode materials

- Conductive carbon nanotubes (CNT) and polydimethylsiloxane (PDMS)
 - Two part PDMS (Sylgard 184, Dow Corning) with 20% CNT (by mass), degassed and cured at 80°C for one hour.
 - Resistance: $152 \text{ k}\Omega \pm 111 \text{ k}\Omega$
- Conductive silver paste (Sigma Aldrich)
 - Silver paste dispersed in α -terpineol
 - Viscosity high so diluted with additional α-terpineol at ratio of 3.35:1 (paste:α-terpineol) by mass to aid injection


Conductive silver paste

- Particle size: 200nm (80%), <5µm (20%)
- Solid content: > 75%
- Viscosity: 100,000-300,000 (cps) @ 0.4rpm
- Curing Condition: 120-150 °C for 30-60 min
- Flash point: 88 °C
- Dispersion matrix: α-Terpineol
 - Major constituent of aroma of lapsang souchong tea due to pine smoke drying process!

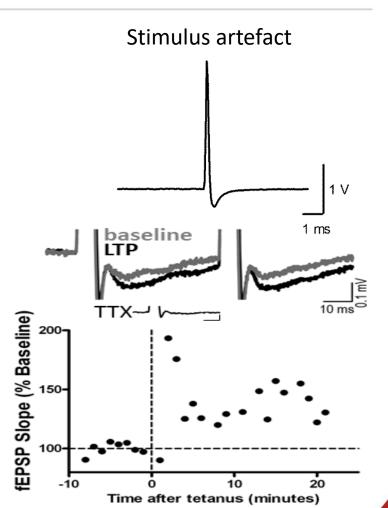
Filled tracks

Diluted paste was injected directly into channels and excess removed. Fill was reduced by evaporation of solvent. Repeated fills after evaporation was required.

Interface

- Silver paint was used as an alternative to chemical or vapourdeposited platinum black on the surface, as well as the joining medium between the two parts.
- The structure after evaporation of the dispersing agent was a deposit of micro- and nano-particles, with 80% of particles being 200nm in diameter and the remaining 20% <5 μm in diameter.
- Dispersed in 2-methoxy-1-methylethyl acetate, n-butyl acetate
- Excellent surface conductivity used as replacement for solder
- Alcohol resistant, esp. ethanol, for cleaning

- Print top-half and bottom-half CAD model on Stratasys J750 105 minutes for 10 MEAs
- Remove any support material with high pressure water cleaner – 30 minutes
- 3. Mix 25g containers of silver paste with 9.3ml of acetone per container and pour into syringes 30 minutes
- Inject paste into channels 5 times (average number of injections) 30 minutes per injecting session, 120-minute wait between sessions
- Evaporate any remaining dispersing agent in over at 80°C for 60 minutes


- Surface finish top and bottom parts to remove any dried paste spilled 30 minutes
- Apply silver paint to end of each channel on bottom part and each corresponding connector/electrode on top part, and a small drop of superglue to each corner of bottom half – 20 minutes
- 8. Clamp and leave to dry for 360 minutes
- 9. Apply silver paint to top surface for 10 minutes
- 10. Cure MEA at 120°C for 10 minutes

This results in an average time of about 24 hours to manufacture a batch of 10 MEAs at a cost of £35.57 per MEA

 MEAs used to stimulate nervous tissue ex vivo in the laboratory of Frances Edwards with Damian Cummings at UCL.

Trials

- fEPSPs were recorded by electrode placed in CA1 stratum radiatum in response to a 20 ms, 20V square stimulation pulse applied to CA3 stratum pyramidale/oriens
- The plot shows that these responses stay stable over time (within biological variation).

Acknowledgments

UCL:

• Dr Damian Cummings & Professor Frances Edwards

MEng Researchers:

- Amelia Edwards
- Chris Hann
- Henry Ivill
- Hanna Leeson
- Larysa Tymczyszyn

EPSRC

Engineering and Physical Sciences Research Council

Funded by:

- EPSRC Internship for Experiencing Research
- BBSRC IBCarb BIV Enzymatic Tailoring of Polysaccharides for use in Next-Generation Additive Manufacturing of Bioelectronic Tools and Technologies Underpinning Biological Research - with UCL and Neudrive Ltd

Contact

Dr David Cheneler CEng SFHEA FIMMM

d.cheneler@lancaster.ac.uk

+44 (0)1524 594578

http://www.lancaster.ac.uk/engineering/about/people/david-

<u>cheneler</u>

Engineering Engineering Building Lancaster University Lancaster United Kingdom LA1 4YW