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Abstract

Lately, it has been shown [1] that an average color camera can detect the subtle color

variations of the skin (caused by the cardiac cycle) – enabling us to monitor the pulse

remotely in a non-contact manner with a camera. Since then, the field of remote photo-

plethysmography (rPPG) has been formed and advanced quickly in order the overcome

its main limitations, namely: motion robustness and low signal quality. Most recently,

deep learning (DL) methods have also appeared in the field – but applied only to adults

so far. In this work, we utilize DL approaches for long-term, continuous premature infant

monitoring in the Neonatal Intensive Care Unit (NICU).

The technology used in NICU for monitoring vital signs of infants has hardly changed

in the past 30 years (i.e., ECG and pulse-oximetry). Even though these technologies have

been of great importance for the reliable measurement of essential vital signs (like heart-

rate, respiration-rate, and blood oxygenation), they also have considerable disadvantages

– originating from their contact nature. The skin of premature infants is fragile, and

contact sensors may cause discomfort, stress, pain, and even injuries – thus can harm the

early development of the neonate [2], [3]. For the well-being of not exclusively newborns,

but also every patient or subject who requires long-term monitoring (e.g., elders) or for

whom contact sensors are not applicable (e.g., burn patients), it would be beneficial

to replace contact-based technologies with non-contact alternatives without significantly

sacrificing accuracy. Therefore, the topic of this study is camera-based (remote) pulse

monitoring – utilizing DL methods – in the specific use-case of infant monitoring in the

NICU.

First of all, as there is no publicly available infant database for rPPG purposes cur-

rently to our knowledge, it had to be collected for Deep Neural Network (DNN) training

and evaluation. Video data from infants were collected in the Ist Dept. of Neonatology of

Pediatrics, Dept. of Obstetrics and Gynecology, Semmelweis University, Budapest, Hun-

gary and a database was created for DNN training and evaluation with a total length of

around 1 day.
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Two state-of-the-art DNNs were implemented (and trained on our data) which were

developed specifically for the task of pulse extraction from video, namely DeepPhys [4]

and PhysNet [5]. Besides, two classical algorithms were implemented, namely POS [6] and

FVP [7], to be able to compare the two approaches: in our dataset DL methods outper-

form classical ones. A novel data augmentation technique is introduced for rPPG DNN

training, namely frequency augmentation, which is essentially a temporal resampling of

a video and corresponding label segment (while keeping the original camera sampling

rate parameter unchanged) resulting in a modified pulse-rate. This method significantly

improved the generalization capability of the DNNs.

In case of some external condition, the efficacy of remote sensing the vital signs

are degraded (e.g., inadequate illumination, heavy subject motion, limited visible skin

surface, etc.). In these situations, the prediction of the methods might be inaccurate or

might give a completely wrong estimate blindly without warning – which is undesirable,

especially in medical applications. To solve this problem, the technique of Stochastic

Neural Networks (SNNs) is proposed which yields a probability distribution over the

whole output space instead of a single point estimate. In other words, SNNs associate a

certainty/confidence/quality measure to their prediction, therefore we know how reliable

an estimate is. In the spirit of this, a probabilistic neural network was designed for pulse-

rate estimation, called RateProbEst, fused and trained together with PhysNet. This

method has not been applied in this field before to our knowledge. Each method was

evaluated and compared with each other on a large benchmark dataset.

Finally, the feasibility of rPPG DNN applications in a resource-limited environment

is inspected on an NVIDIA Jetson Nano embedded system. The results demonstrate

that the implemented DNNs are capable of (quasi) real-time inference even on limited

hardware.
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Chapter 1

Introduction

Photoplethysmography (PPG) is a non-invasive, optical technique that measures the

blood volume variations in the living skin. The underlying phenomenon is that at every

heartbeat the heart pumps blood into the vasculature (situated in the superficial layers

of the skin), therefore its volume increases, which in turn results in more light absorp-

tion. In consequence, the absorption and scattering of light change synchronously with

the cardiac-cycle which can be detected with a photodetector. Utilizing this, different

physiological variables can be derived such as pulse-rate, respiration-rate1 or pulse-rate

variability. In addition, with the analysis of the measured PPG-waveform different car-

diovascular conditions can be obtained, for example, arterial diseases like arterial stiffness

and aging. Furthermore, a fortunate optical property of the blood enables us to measure

its oxygen-saturation (SpO2) level, that is the oxygenated and deoxygenated blood ab-

sorbs light differently at different wavelengths. The widely used pulse-oximeter devices

are based on these principles.

An average pulse-oximeter consists of two light-emitting diodes (LED) and a photode-

tector, those are in contact with the skin. The ideal wavelengths for SpO2 measurement

are in the visible red (650-750 nm) and in the near-infrared (NIR) (850-1000 nm) range

– as these wavelengths have the largest contrast regarding the blood in oxygenated or

deoxygenated state. In those commercial wristbands which measure only the pulse-rate,

green light (510-560 nm) is applied for illumination because this yields the largest PPG-

signal. There are two possible setups for such contact devices: they can be either in

transmissive or in reflective mode. In the former one, the LED and the photodetector

are on the opposite side of the skin (attached for example to the finger or to the earlobe)

and the photodetector measures the transmitted light through the skin. In contrast in

1Light absorption is also modulated by respiration.
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reflective mode, the light source and the detector is on the same side of the skin (for

example, attached to the wrist or to the fingertip) and the detector records the reflected

light from the skin.

Another common technique with which we can detect cardiac events is electrocar-

diography (ECG) which measures the electrical activity of the heart – and is considered

to be the ground-truth for heart-rate measurement. Although they correlate most of

the time (and often used interchangeably), in this study we will distinguish between the

ECG derived heart-rate (HR) and the PPG derived pulse-rate (PR) for consistency and

clarity. HR stands for the rate of the electrical activity of the heart and PR stands for

the rate of blood volume changes in the vascular system. The distinction is important,

for example in case of certain heart problems when the heart muscles cannot effectively

push enough blood through the cardiac-system at each contraction, thus the pulse-rate

will be less than the heart-rate – or the PR might be even totally absent while the HR

shows normal activity. Despite the fact that it is widely used, cheap and reliable, the

problem with ECG devices is that they are even more obtrusive than PPG devices: they

require adhesive electrodes to be attached to the chest.

These technologies have hardly changed in the past 30 years, since the advent of

these methods because both ECG and PPG are generally reliable and inexpensive tech-

niques. However, these devices have also considerable disadvantages originating mainly

from their skin-contact nature. The wires do not allow free movements which can be

uncomfortable during long-term continuous monitoring (e.g. sleep monitoring, Intensive

Care Unit (ICU)). Furthermore, the sensor is in contact with the skin which may be

even damaging if the patient has fragile skin – especially in the case of newborns in the

Neonatal Intensive Care Unit (NICU) or burn patients. Therefore in many situations, it

would be beneficial to replace contact-based technologies with non-contact alternatives.

There are five fundamentally different approaches that enable remote monitoring of

cardiac activity without skin contact: ballistocardiography (BCG) which is based on the

measurement of skin or body displacement caused by heartbeats; capacitive electrocar-

diography which is the unobtrusive alternative of ECG; infrared thermography which

utilizes the thermal changes of the body; electromagnetic induction based monitoring

which measures the biological impedance caused by thoracic volume variation; and finally,

remote-photoplethysmography (rPPG) which is the remote, non-contact counterpart of

PPG. Most of these methods are not practical because they are expensive and/or bulky

except rPPG, which can operate with an average RGB-camera (e.g. webcam, mobile
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camera) – therefore this is the most active and quickly advancing field. It also serves as

the topic of this thesis.

Compared to the pulse-oximeter – which is the most common contact-PPG device

– the rPPG setup differs in building blocks and in the geometric arrangement of these

elements but fundamentally relies on the same principles: in the rPPG system the LED

is replaced with an ambient or dedicated widefield lightsource (e.g. sunlight, fluorescent

lamp, incandescent lamp, halogen lamp, etc.) and the detector is replaced with an

"array of photodetectors" aka camera – hence the title of this thesis "Camera-based

pulse monitoring...". These elements are placed on the same side of the skin, but of

course away from it, thus it is non-contact. This falls into the previously mentioned

reflective category because the camera detects the reflected light from the skin, but in

this case, it is illuminated and monitored remotely (in contrast with conventional PPG

devices). Although this measurement is very similar to contact-PPG, for the sake of

consistency we differentiate between their outputs: the contact device results in the PPG-

signal, and the remote setup yields the rPPG-signal. The main difference between them

is the origin of the detected photons: the contact device collects light that has traveled

through relatively deep vasculature (arterioles), while the remote camera records the light

that has traveled through much shallower tissue depths (mainly capillaries). Finally, the

Signal-to-Noise Ratio (SNR) of the rPPG-signal is much smaller and also more sensitive

to environmental noise (e.g. body motion, illumination variation), therefore it is more

challenging to design such algorithms that can cope with these factors. Nonetheless, it

may be possible to achieve a similar performance with an rPPG setup.

For such a contactless system – besides clinical healthcare applications which were

already mentioned – there are many areas where it could be employed. For example, it

could be integrated into already existing home healthcare monitoring systems designed to

monitor elderly or infants with cameras. The ability to estimate the pulse-rate would be

a useful, important feature of the system. Remote sleep monitoring is also feasible with

an infra-camera [8] mounted above the bed to analyze sleep quality. Another potential

application would be a vehicle-driver monitoring system which could recognize tiredness

(so could alert the driver not to fall asleep) or predict heart-attack and could warn

her/him to pull off the road, thus preventing possible traffic accidents.

In this study, we focus on the specific application case of neonate monitoring in the

NICU and apply deep learning tools in order the attain rPPG-signal and/or pulse-rate

from video recordings.
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1.1. Problem Statement

Monitoring of vital signs is an essential part of standard care for neonates in the

NICU, where pulse-rate (PR) is one of the most critical parameters (besides respiration-

rate and blood oxygenation). Current non-invasive methods require sensors connected

to the skin surface. For example with ECG, adhesive electrodes are attached to the

chest and PPG also requires contact. Despite the fact that these technologies have been

of great importance for the reliable measurement of essential vital signs, they also have

considerable disadvantages – originating from their contact nature. The skin of premature

infants is really fragile and sensitive, therefore direct contact should be minimized. For

example, allergic reactions can occur that can lead to severe damage to the skin of

newborns. In addition, the ability to move freely is impaired in long-term monitoring.

There are also cases when doctors choose not to monitor at all when the neonates are

extremely premature and a contact device would cause permanent damage.

In summary, contact methods can cause stress, pain, and discomfort which in turn

can also have a negative impact on cognitive development [2] and parent-child bonding

[3]. For the well-being of not exclusively newborns but also every patient or subject who

requires long-term monitoring, it would be beneficial to replace contact-based technologies

with non-contact alternatives without significantly sacrificing accuracy.

In recent years, the field of rPPG has emerged and advanced quickly to address this

problem. The involved research community is ever-increasing and proposed several rPPG

algorithms [6] which aim to catch up with the traditional contact-based systems regarding

performance and reliability, so far unsuccessfully, but with promising results. The main

hindrances are the orders of magnitudes lower SNR compared to contact-PPG and the

sensitivity for environmental artifacts like body motion and illumination variation. Many

methods have been proposed to surpass these limitations, most of them are intricately

composed of many distinct (but interconnected) and sometimes computationally expen-

sive algorithmic components [8] (e.g. Region of Interest (RoI) detection, RoI tracking,

signal extraction, and combination, etc.) which is undesirable for a real-time application.

In the case of many other computer vision tasks, deep learning (DL) based solutions

already exceeded the classical counterparts. Similarly, their application in the field of

rPPG could also bring surprises. Just recently, different neural network architectures

have been proposed for this task [4], [5], [9] with promising results. The main advantage

of a deep neural network (DNN) is that it can learn sophisticated nonlinear relationships.
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In addition, it encapsulates each processing step within itself and functions in an elegant

end-to-end fashion (which is software-technically much simpler and also more stable).

Common arguments against DL are that DNNs are resource-intensive, they require a

large amount of labeled training data and they function as black-boxes – their intrinsic

mechanism is unknown. Although they are computationally expensive, their internal

operations are highly optimized by modern frameworks (e.g. PyTorch, Tensorflow) – it

would be important to investigate their inference speed on average hardware. On the

other hand, there are also techniques with which the inner properties of a DNN can be

inspected or constrained/guided.

Therefore, the main motivation of this thesis is to contribute to the development of

deep learning based rPPG systems, particularly for NICU application. The objectives

and contributions of this work are presented below.

1.2. Objectives

• The creation of a neonatal database for neural network training and validation.

• The implementation, application, and comparison of existing rPPG neural networks

(and algorithms) on the created dataset.

• The proposal of a method with which the reliability of the estimate can be defined.

• The examination of applicability in a resource-limited environment.

1.3. Contributions

The main contributions of this thesis are listed below:

1. The construction of training and benchmark dataset for neonate monitoring in the

NICU.

2. The implementation of existing rPPG DNNs (DeepPhys [4] and PhysNet [5]), their

evaluation and comparison on our dataset.

3. The proposal of a new kind of augmentation technique, the frequency augmentation

for rPPG DNN training.

4. The comparison of DL approach with other algorithmic methods (FVP [7] and

POS [6]) on our data.
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5. The proposal of Probabilistic Neural Networks as a solution to the problem of

estimation reliability. Based on this idea the development of a probabilistic rate

estimator network (RateProbEst).

6. The measurement of inference speed of PhysNet, DeepPhys, and RateProbEst on

NVIDIA Jetson Nano embedded system. In other words, the investigation of the

applicability of rPPG DNNs in real-time cost-efficient applications.

1.4. Thesis Structure

The structure of the thesis is presented here.

Chapter 2 In this chapter, the study is put into context by discussing the background.

First, a general introduction to the field of rPPG is presented focusing on (1) the funda-

mental physical phenomenon (light-tissue interaction), (2) the properties of video-camera

observation, and (3) the signal processing approaches. After that, the related work is dis-

cussed. Finally, a detailed mathematical formulation of the problem follows: (i) a linear

and a non-linear skin reflection model is introduced (which model light-tissue interac-

tion), (ii) two classical algorithmic methods2 are derived based on the linear model and

(iii) the deep learning approach is formulated. The latter is followed by the introduction

of probabilistic neural networks as a solution for the prediction uncertainty problem.

Chapter 3 In this chapter, the methods which I utilized throughout this study are

presented. First the process of data collection, then the different loss functions and

augmentations applied for neural network training, then the neural networks themselves,

and finally the process of evaluation is described.

Chapter 4 In this chapter, the results are presented and interpreted. First, the created

database is discussed. After that, the performance of different neural networks and

training techniques are analyzed. Then the DL approach is compared with a standard

classical algorithmic approach on our database. Finally, the feasibility of application in

a resource-limited environment is inspected.

Chapter 5 In this chapter, a summary of the set goals and final achievements is pre-

sented. Furthermore, possible future directions are discussed.

2namely PBV [10] and POS [6] core rPPG algorithms
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Chapter 2

Background

It was first shown by Verkruysse et al. [1] in 2008 that periodic blood volume changes

can be detected with an average color camera under normal ambient lighting conditions

– which initiated the field referred to as remote-PPG (rPPG). Although these changes

in skin color are subtle and imperceptible to the naked human eye, a camera is able to

detect them. They also observed that the green color channel contains the strongest

rPPG-signal. Blood absorbs blue light the most, followed by green and red, but their

depth of penetration (into the skin) follows just the opposite order. Considering these

two factors, the green camera channel (the golden mean) happens to contain the most

pulse information. Later on, Corral et al. [11] obtained consistent results with this,

they measured the backscattered rPPG-signals from the human forehead for wavelengths

ranging from 380 nm to 980 nm (see Figure 2.1).

If we look more closely at the physical and biological origin of the rPPG-signal, we

find that it is highly controversial, even today. The most basic and obvious idea is

that the detected light which is coming from inside the skin is getting modulated by

the blood volume changes in the vasculature due to the cardiac-cycle, but Kamshilin

et al. [12], [13] argued that the green light – which has the largest pulsatility – do not

reach subcutaneous vasculature and proposed a new physiological model of light-tissue

interaction. According to this model, the pulsatile pressure of the arteries compresses and

decompresses the density of capillaries in the dermis, thus modulating the blood volume

in the capillary bed, which in turn modulates the backscattered green light. The latest

study [14] supports the (former) volumetric hypothesis with living skin experiments and

Monte Carlo simulations of rPPG-amplitude in visible light and infrared. They found

that green wavelengths probe dermal arterioles while red and IR wavelengths also reach

subcutaneous vasculature.

7
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Fig. 1: a) The modeled relative PPG spectrum by Hülsbusch [8] and the derived absolute PPG spectrum, b) The measured absolute PPG
spectrum of Corral [12] and the derived relative PPG spectrum. All spectra have been scaled to 1 for their peak locations.

Here HC1,C2,C3 are the responses of the three channels
respectively and I(λ) is the spectrum of the illuminant.

Kanzawa et al. [13] measured the skin reflectance of 50
subjects in the visible and NIR section of the light spectrum.
The subjects in [13] have different skin-melanin concentrations
and their skin-color is classified into three categories; “bright”,
“mongoloid” and “dark”, which we have interpreted as skin-
types II, III and V, according to Fitzpatricks scale [14], and we
shall use this interpretation in the continuation of this paper.

Since motion affects all color channels equally under uni-
form white illumination, the normalized vector describing the
motion induced color variations is: [0.58, 0.58, 0.58], further
referred to as ‘motion vector’ (not to be confused with a vector
describing displacement). For motion robustness, the inner-
product between this motion vector and the pulse vector ~Pbv
should be small to be able to discriminate between signals
in the direction of the pulse vector and signals which have a
different orientation.

Predictions of the pulse vector in visible light with an
RGB camera performed by De Haan [10], showed that the
PPG amplitude spectrum of Hülsbusch provides more accurate
predictions compared to Corral’s spectrum. The simulated
pulse vector using Hülsbusch’s deviated only 4◦ from the mea-
surements, while simulations using Corral’s curve were 7◦ off.
We repeat the predictions in NIR with both spectra for the two
camera setups, which are later compared to the measured pulse
vectors to verify which spectrum provides the most accurate
predictions. This PPG spectrum is subsequently employed for
the simulations of the dedicated LED-illumination described
in Section II-C.
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Fig. 2: a) Skin reflectance spectra of three skin-categories measured
by Kanzawa [13], b) Transmittance spectra of a tungsten halogen
lamp and the incandescent light bulbs in the experimental setup.

In order to compare the predicted results with the measured
pulse vectors, a large dataset comprising recordings of 40 par-
ticipants with skin-pigmentation concentration levels ranging
from 45 to 600 (on a scale of values from 0-999), is created.
The participants are asked to sit still with their head fixed
by a head-rest to prevent motion affecting our measurements.
Informed consent is obtained for each participant prior to
the recordings. After recording, a rectangular bounding-box
is manually annotated and tracked by the CSK algorithm of
Henriques et al. [15]. The spatial means of all pixels within
the ROI are calculated for every frame. By concatenating
these values, traces for every camera channel in the setup are
constructed.

To acquire ~Pbv, the ratios of the relative PPG amplitudes
in the channels have to be measured. First, the traces of the
camera channels are mean-centered normalized within a time-
window by:

~C(i)n =
1

µ(~C(i))
~C(i) − 1, for i = 1,2,3, (6)

where the vectors have length 64 and µ(~C(i)) corresponds
to the (temporal) mean of the vector. Next, the normalized
channel traces are band-pass filtered, [0.6-3] Hz, to eliminate
noise. A pulse-signal is constructed by performing PCA on the
filtered channel traces, where potential involuntary motion and
noise present in the traces are separated from the pulse-signal.
By using an overlap-add procedure with a Hanning window on
the time-windowed traces of 64 samples, traces for the entire
recording time of 120 seconds are constructed. Finally, ~Pbv is
obtained after normalization of the inner-products between the
constructed pulse-signal and the three channels.

B. Monochrome Cameras

By employing appropriate optical filters, desired light wave-
lengths can be exposed to the sensor of a monochrome camera
where other wavelengths are blocked. Since the goal is to
attain motion robustness, filters have to be selected such
that the inner-product between ~Pbv and the motion vector is
minimal. This criterion is analogous to maximizing the angle
between both vectors, with a maximum of 90◦ correspond-
ing to an inner-product of zero. To determine which filter

Figure 2.1: [11] The pulsatile amplitude along the spectrum for a rPPG setup, the green

light is the optimal. The absolute rPPG amplitude (the AC component of the pulse sig-

nal) denoted with blue color and the relative rPPG amplitude (AC over DC (AC/DC)

component ) denoted with red.

After discussing the fundamental phenomenon, let us turn our attention to the pro-

cessing of the detected data. The camera-signal measured from the skin results in the

raw rPPG-data (i.e. sequence of uncompressed images) which is the input of the rPPG-

function which calculates the rPPG-signal, or less formally the pulse-signal. The input

(rPPG-data) is 4-dimensional: spatial dimensions (H x W, height and width); temporal

dimension (D, number of frames); and color channel dimension (C, most often red, green,

and blue, i.e. C=3). Another important property is the time distance between frames, i.e.

the frame rate (aka frames per second, FPS) of the recording. The sampling frequency

has to be at least twice the frequency of the signal to be observed, this is the minimal

condition to be able to measure a periodic signal with a given frequency, also known as

the Nyquist–Shannon sampling theorem.

Let’s assume an RGB-camera for the sake of simplicity. In this case, the rPPG-data

can be considered as a spatio-temporal RGB-signal. This is contaminated with environ-

mental and sensor noise, the former arises mainly from body motions and illumination

variation, the latter is the intrinsic quantization noise of the camera. Environmental

noise appears synchronously on each color channel, while sensor noise is independent

between channels. In consequence, the sensor noise can be eliminated with spatial av-

eraging or by temporal filtering, while environmental noise can be eliminated with the

linear combination of the color channels. In general, with n number of independent linear
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equations (n−1) terms can be eliminated, thus 2 environmental artifacts can be removed

mathematically in the case of an RGB-camera.

The goal of the rPPG-function is to design a projection that separates the pulsatile

component from the environmental artifacts. One way is to apply general signal-source

separation methods like Principal Component Analysis (PCA) or Independent Compo-

nent Analysis (ICA) – here we assume that pulse and noise come from independent

sources. Another way is the model-based approach where we fabricate biometric signa-

tures utilizing the biophysical fact that pulse has well defined characteristic color variation

direction in RGB space – these are introduced based on the (simplistic linear) skin optical

reflections model. And finally, we can train DNNs to learn sophisticated, even nonlinear

relations in order to extract pulse. In the following, these options and the related work

will be discussed in more detail.

2.1. Related Work in rPPG

The main concern with rPPG is the low signal-to-noise ratio (SNR) and its lack of

robustness against the subject motion – since motion also induces intensity variations

which corrupt the rPPG-signal. Several core rPPG algorithms have been proposed that

aim to solve this issue by extracting the pulse-signal information from the color channels.

As mentioned before, in the case of three color channels, two artifacts (e.g. motion-

induced artifacts, illumination variation artifacts) can be eliminated theoretically.

First, blind source separation techniques were utilized in 2011: PCA-based [15] and

ICA-based [16], which assumes that the observed signal is composed of independent

sources. After that, numerous more sophisticated (model-based) core algorithms were

developed based on prior knowledge of intrinsic color feature of the pulse signal, for

example, the “Pulse Blood-volume Vector” PBV [17] and the “Plane Orthogonal to Skin”

POS [6] method.

These are only the core algorithms that extract the pulse signal from the color chan-

nels, however, there are many other steps: Region of Interest (RoI) detection [18]; RoI

tracking; and combining the signals arising from distinct skin locations. Vogels et al.

proposed a fully automated framework for sleep monitoring [8] that includes all process-

ing steps and also able to measure blood oxygenation (SpO2). Their algorithm functions

well when there is no vigorous movement. An RoI is selected and a tracker is initialized

automatically based on an elaborate similarity matrix representing skin-pulsatility – it is

a computationally expensive multi-level application.
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A more compact and computationally more efficient algorithm was proposed by Wang

et al. named Full Video Pulse extraction (FVP) [7] that bypasses RoI selection and

tracking, utilizing the color features of the video. The author emphasized its suitability for

long-term monitoring in cases when the background is constant – e.g. monitoring infants

in an incubator, therefore this algorithm is implemented and tested on our database.

Most recently, the popular deep learning approach appeared also in this field [4], [5],

[9], [19], [20]. The first end-to-end convolutional neural network (CNN) was proposed by

Chen et al. named DeepPhys [4] which utilizes attention mechanism: it consists of two

connected streams, the attention stream – which input is a single frame and responsible for

RoI selection – and the motion stream – which input is the normalized frame difference

and responsible for pulse signal extraction. Just recently, Zhan et al. analyzed this

network [21] and concluded that it learns the wavelength-dependent characteristics of

blood absorption color variation to extract physiological signals – as classical algorithms

do –, and that the choice and parameters (e.g. phase, spectral content) of the reference-

signal may be more crucial than anticipated – i.e. the network learns and performs better

if the label is well selected/prepared/aligned.

Spetlík et al. developed two separate convolutional networks [9], one for extracting

pulse signal from video and the other for estimating pulse from the previously extracted

signal – with the application of a signal-to-noise ratio (SNR) based loss function.

A 3D-CNN network named PhysNet was introduced by Yu et al. [5] which exploits

not only spatial but spatio-temporal features. This network is completely end-to-end –

there are no pre-processing steps –, its input is a sequence of images and the output is

the corresponding pulse signal.

All deep-learning solutions have been applied only on adult facial videos so far. In

this study, we focus on neonate monitoring using the PhysNet and DeepPhys deep neural

network architectures.

Up to now, only classical algorithms have been used for video-based infant monitoring,

these are reviewed in the following. Camera-based non-contact estimation of heart rate

in the neonatal care unit was first reported in 2012 [22]. In this work, seven infants

were monitored for only 30 seconds with a webcamera 20 cm away from the face and

with special illumination. In another study [23], video camera recordings were conducted

of 19 infants. The camera was placed on a tripod at approximately 1 meter from the

infant and the face region was recorded for up to 5 minutes. RoI was manually selected

and heart rate (HR) was estimated from Fast Fourier Transform (FFT) analysis of the

10



green channel. In 13 of 19 neonates was possible to derive HR estimates for 90% of

the time. These studies were conducted on brief video recordings with ideal conditions

(e.g. controlled illumination, resting patient). However, it is at most importance to

analyze the feasibility of the method in a long-term and not controlled fashion, with

real hospital environment and regular light conditions – and most importantly, without

affecting patient care. With these in mind, Villarroel et al. [24] directed their study, that

contains the analysis of around 25 hours long “valid camera data”. The video recording is

labeled as “valid camera data” outside the following occurrences: (1) regular interaction

between the clinical staff and the baby; (2) clinical interventions; (3) baby taken out of

the incubator to be held by the mother (kangaroo care). In addition to HR and RR, the

relative changes in SpO2 were also measured. The authors concluded that it is possible to

monitor HR, RR, and SpO2 continuously in the neonatal care unit, with clinically useful

accuracy. However, they also reported that even during stable periods (“valid camera

data”) some phenomena prevented the accurate estimation of the vital signs, namely: (1)

major changes in lightning conditions; (2) variations in the baby’s activity pattern (heavy

subject motion); (3) lack of visible skin area (the neonate is covered in sheet). These

factors reduced the time for which they could accurately estimate vital sign values from

24.9 to 20.1 hours. For the remaining part, they could estimate HR, to be more specific:

the root-mean-square error (RMSE) between their estimate and the ECG-derived value

was less than 5 beats-per-minute (BPM). The average RMSE was 3.95 BPM.

The previous methods were not motion-robust and worked only in the daytime (when

visible light is present), therefore M. van Gastel et al. developed a system [25] that func-

tions in near darkness (using custom near infra-red (NIR) illumination and monochrome

cameras with filters) and utilizes modern motions-robust core rPPG algorithm, namely

the PBV [17]. The focus of this study was to compare systems with 2 or 3 wavelengths and

to compare different body parts (face and upper torso) for signal extraction (with man-

ually selected and tracked RoI (Region of Interest)). To this end, the authors created a

dataset with 7 different subjects and a total duration of 134 minutes. They demonstrated

the feasibility of non-contact cardiac monitoring of neonates in NIR and that the upper

torso also contains valuable pulse information. Furthermore, the authors reported that

accurate results were not only obtained for scenarios without motion but also for com-

mon movements of neonates – such as wriggling, turning and respiration induced motion.

However, in the proposed system RoI selection is manual and long-term RoI tracking is

not stable (and itself is a challenge, i.e. not suitable for continuous monitoring).
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Considering all these results and facts, the application of deep neural networks (DNN)

on neonate monitoring is promising, as it is capable to solve all common tasks/issues (e.g.

RoI selection, tracking, motion compensation) internally, in an end-to-end fashion, and

might perform better in motion scenarios (because it can handle non-linear relationships).

Furthermore in classical approaches, facial regions of the infants were generally selected as

RoI, although skin-pulsatility is only slightly lower in the upper-torso region [25] – which

is thus not utilized. In contrast, deep CNNs are capable to learn sophisticated weighted

RoI (attention) maps and “track” them precisely frame-by-frame with great stability.

This motivated us to investigate the application of deep learning techniques for con-

tinuous premature infant monitoring.

2.2. Mathematical Formulation of rPPG

In this section, we introduce the linear and nonlinear skin reflection model [6], [19],

then the classical and DL approach is formulated based on this model. Last but not least,

probabilistic neural networks are introduced for the prediction uncertainty problem.

2.2.1 Skin Reflection Model

Here we use the model proposed in [6] which is based on Shafer’s Dichromatic Reflection

Model (DRM). Assume that the light source has constant spectral composition but the

intensity level is allowed to vary. The camera records skin region only (see system setup

in Figure 2.2). We can define the RGB intensity values of the p-th skin pixel in time

with the following function (which includes physiological, light source and camera sensor

features):

Cp (t) = I (t) · [vs (t) + vd (t)] + vn (t) (2.1)

where Cp (t) denotes a vector containing the RGB intensity values observed by the cam-

era; I (t) is the luminance intensity level, which changes (i) with the light source (ii) and

with the distance between the light source, skin-tissue and camera. In the DRM model

I (t) is modulated by two components (see Figure 2.2): (i) by the specular reflection

vs (t), which is a mirror-like light reflection from the skin surface; (ii) and by the diffuse

reflection vd (t), which penetrates into deeper layers of the skin. The last component

in the equation, vn (t) is the quantization noise of the camera which can be easily elim-

inated by averaging some pixels (for example averaging a 25x25 pixels subarea) – i.e.

downsampling the image, this is the 0th step for each approach:
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where Ck(t) denotes the RGB channels (in column) of the
k-th skin-pixel; I(t) denotes the luminance intensity level,
which absorbs the intensity changes due to the light source
as well as to the distance changes between light source, skin
tissue and camera; I(t) is modulated by two components in
the dichromatic model: specular reflection vs(t) and diffuse
reflection vd(t). The time dependency is due to the body
motion and pulsatile blood; the last component vn(t) denotes
the quantization noise of the camera sensor.

The specular reflection is a mirror-like light reflection from
the skin surface, which does not contain pulsatile information.
As such, its spectral composition is equivalent to that of the
light source. It is time-dependent in the sense that body-motion
will influence the geometric structure between the light source,
skin surface and camera. We write vs(t) as:

vs(t) = us ·
(
s0 + s(t)

)
, (2)

where us denotes the unit color vector of the light spectrum;
s0 and s(t) denote the stationary and varying parts of specular
reflections, more specifically, s(t) is induced by motion.

The diffuse reflection is associated with the absorption and
scattering of the light in skin-tissues. The hemoglobin and
melanin contents in skin-tissues lead to a specific chromaticity
for vd. Meanwhile, vd is varied by blood volume changes and
is thus time-dependent. We write vd(t) as:

vd(t) = ud · d0 + up · p(t), (3)

where ud denotes the unit color vector of the skin-tissue;
d0 denotes the stationary reflection strength; up denotes the
relative pulsatile strengths in RGB channels; p(t) denotes the
pulse-signal. Substituting (2) and (3) into (1), we arrive at:

Ck(t) = I(t)·
(
us·
(
s0+s(t)

)
+ud·d0+up·p(t)

)
+vn(t). (4)

The stationary parts in specular and diffuse reflections can be
combined into a single component representing the stationary
skin reflection:

uc · c0 = us · s0 + ud · d0, (5)

where uc denotes the unit color vector of the skin reflection
and c0 denotes the reflection strength. Thus (4) is rewritten as:

Ck(t) = I0 ·
(
1+ i(t)

)
·
(
uc ·c0+us ·s(t)+up ·p(t)

)
+vn(t),

(6)
where I(t) is expressed as the combination of a stationary part
I0 and a time-varying part I0 · i(t), i.e., the (motion-induced)
intensity variation strength observed by the camera is propor-
tional to the intensity level; i(t), s(t) and p(t) are zero-mean
signals. Note that the specular reflection can be the largest
component by far, overshadowing all other components. We
assume there are means (e.g., a skin classifier) to reject areas
where the specular reflection is dominant. Therefore, we only
consider the pixels k where ud is to a non-negligible degree
determined by the diffuse reflection. In terms of the model (6),
the task of an rPPG algorithm is clear: extracting p(t) from
Ck(t).

Epidermis

Dermis

Hypodermis
Blood vessels

Capillaries

Light source Camera sensor

Fig. 1. The skin reflection model that contains specular and diffuse reflections,
where only the diffuse reflection contains pulsatile information.

III. EXISTING RPPG METHODS

In this section, we review the existing rPPG methods using
the model defined in Section II and analyze their strengths and
weaknesses in pulse extraction.

Existing rPPG methods [2]–[5] (except 2SR [6]) use the
spatially averaged RGB values of skin-pixels to generate
temporal RGB-signals for pulse extraction. The spatial pixel
averaging step can reduce the camera quantization error. Based
on (6), we assume that a sufficient amount of pixels (i.e.,
sensor arrays) are focused on comparable skin-tissues, and
average Ck over the observed skin-pixels as:

C(t) ≈ I0 ·
(
1 + i(t)

)
·
(
uc · c0 + us · s(t) + up · p(t)

)
, (7)

which provides a C(t) where the quantization noise vn(t) is
negligible when the number of skin-pixels is sufficiently large.
However, we note that when this step is performed on a small
skin patch/area with a limited number of pixels, the camera
quantization noise remains large and is thus non-negligible.
We also note that this step assumes that various color vectors
are not dependent on the skin-pixel positions in an image. The
obtained C(t) is essentially the spatial RGB mean. (7) can be
further simplified to:

C(t) =uc · I0 · c0 + us · I0 · s(t) + up · I0 · p(t)+
uc · I0 · c0 · i(t) + us · I0 · s(t) · i(t)+
up · I0 · p(t) · i(t)
≈uc · I0 · c0 + uc · I0 · c0 · i(t) + us · I0 · s(t)+

up · I0 · p(t)

(8)

where the approximation holds because all AC-modulation
terms are much smaller (i.e., orders of magnitude) than the
DC term and thus product modulation terms (e.g., p(t) · i(t))
can be neglected. The approximated result in (8) shows that
the observed-signal C(t) is a linear mixture of three source-
signals i(t), s(t) and p(t). This implies that by using the
linear projection, we can separate these source-signals. Thus
the task of extracting the pulse-signal from the observed RGB-
signals can be translated into defining a projection-system to
decompose C(t).

A. BSS-based methods (PCA/ICA)

The approximation in (8) suggests that Blind Source Separa-
tion (BSS) techniques might be ideal candidates for de-mixing

Figure 2.2: [6] Skin reflection model illustration.

Cm (t) = I (t) · [vs (t) + vd (t)] (2.2)

where Cm (t) contains the RGB values of the downsampled image at the m-th mean-

pixel value and at time-point t. The remaining three terms (luminance level I, specular

component vs, diffuse component vd) can be decomposed into a stationary and a time-

varying part:

I(t) = I0 · (1 + i(t)) (2.3)

vs(t) = us · (s0 + s(t)) (2.4)

vd(t) = ud · d0 + up · p(t) (2.5)

where I0 is the average luminance intensity and i(t) is its variation. In the next equa-

tion, us denotes the unit color vector of light spectrum (mirror like reflection), s0 is the

stationary and s(t) is the varying part of the specular reflection (it is induced by body

motion and illumination changes). In the last equation, ud and d0 denotes the unit color

vector of skin-tissue and the stationary reflection strength which is mainly characterized

by the hemoglobin and melanin content of the skin (which determines the skin color).

Finally, the diffuse component vd(t) is varied by blood volume changes: up denotes the

relative pulsatile strengths in RGB channels and p(t) denotes the Blood Volume Pulse

(BVP) signal. If we substitute equation 2.3-2.5 back to 2.2 we obtain the following:

Cm (t) = I0 · (1 + i(t)) · [us · s0 + us · s(t) + ud · d0 + up · p(t)] (2.6)
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The stationary parts in specular and diffuse reflection can be combined into one com-

ponent (uc · c0 = us · s0 + ud · d0) representing the stationary skin reflection (which

characterizes the perceptible skin color at given illumination source):

Cm (t) = I0 · (1 + i(t)) · [uc · c0 + us · s(t) + up · p(t)] (2.7)

where uc denotes the unit color vector of the skin reflection and c0 denotes the reflection

strength. We can further simplify this equation with performing the multiplication and

neglecting the small terms, i.e. which contain products of two AC parts, e.g. p(t) · i(t)
or s(t) · i(t):

Cm(t) ≈ uc · I0 · c0 + uc · I0 · c0 · i(t) + us · I0 · s(t) + up · I0 · p(t) (2.8)

The approximation holds because the AC-modulation terms are orders of magnitudes

smaller than the DC terms, thus the product modulation terms are so small that they

are probably undetectable by the camera.

Equation 2.8 tells us that the recorded signal is the linear combination of three inde-

pendent source-signals: i(t), s(t) and p(t). The goal of the classical algorithms is to define

such linear projections with which the pulse-signal p(t) can be extracted from Cm(t).

If the task is SpO2 measurement, then the terms containing uc and up are used as

they depend on, and change with deoxy/oxy-hemoglobin concentration variation.

A more realistic model proposed by the creators of DeepPhys DNN architecture [4]

also considers the appearance of BVP effect in the specular and intensity terms:

i(t) = Ψ(m(t), p(t)) (2.9)

s(t) = Φ(m(t), p(t)) (2.10)

Cm(t) ≈ uc · I0 · c0 + uc · I0 · c0 ·Ψ(m(t), p(t)) + us · I0 · Φ(m(t), p(t)) + up · I0 · p(t)
(2.11)

where m(t) includes all the non-physiological variations (e.g. flickering of light source,

complex body motions) and p(t) is the already discussed blood volume pulse (BVP).

Consequently, i(t), s(t) and p(t) are no longer independent source signals. Note that the

BVP has also mechanical effects not just optical (e.g. periodic movement of head or shirt

collar, the small displacement of skin surface, i.e. ballistocardiographic effect), this is the

reason why p(t) appears in Equation 2.9 and 2.10. The interaction between physiological

and non-physiological motion, that is inside Φ(·) and Ψ(·), are usually complex nonlinear

functions. Equation 2.8 assumes linear connection between Cn and p(t), which generally

holds when m(t) is small (i.e. in ideal case when the subject is still, motionless), but in
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most real-life situation the linear assumption will harm the measurement performance.

From another perspective, in this nonlinear model we consider not only the rPPG-signal

(optical in nature), but also the BCG-signal (mechanical in nature) which may result in

higher performance and yields the so called remote BVP-signal (rBVP), but for the sake

of simplicity we will refer to this simply as the pulse-signal.

So far we have only discussed how to extract pulse-signal from one averaged skin

pixel Cm, but we have generally hundreds of them and they (the averaged pixels) act like

independent sensors, therefore they can be effectively combined to increase the signal-

to-noise ratio of the final pulse-signal. Furthermore, the tracking of these averaged skin

pixels is also important, because subject motion result in skin pixel displacement which

corrupts the calculation. A huge advantage of a DNN is that it can learn sophisticated

weight-maps for signal combination and solve all algorithmic steps internally in a compact

and efficient way. In the next section, some core rPPG algorithms are presented which

input is one averaged skin pixel Cm and their output is the extracted pulse-signal p(t).

2.2.2 Classical Algorithmic Approaches

All of the classical algorithms are based on the linear skin reflection model, eq. 2.8.

In the mathematical formulation of classical rPPG core methods, we mainly rely on the

work [6].

Blind Source Separation (ICA/PCA) Equation 2.8 suggest that Blind Source Sep-

aration (BBS) may be ideal for pulse retrieval from C(t). These kind of methods (eg.:

ICA, PCA) can be expressed as follows:

S(t) = W ·C(t) (2.12)

where S(t) denotes the source-signals which consists the pulse and artefacts; W denotes

the de-mixing matrix obtained from PCA or ICA. After the BBS operation we have to

select the most periodic signal from the source-signals S(t) as the pulse-signal. Con-

sequently, periodic movements distort the results of these methods. In addition, BSS

techniques are statistical solutions for signal-processing problems which do not utilize

the unique properties inherent in the specific rPPG task. In the following paragraph, we

show some of these methods which exploit the optical features of skin reflection.

Model-based methods: PBV Model-based methods – in contrast with BSS – make

use of color channel properties. One common step in many of these methods is to eliminate
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the DC-level from C(t), which can be done by temporal normalization:

Cn(t) = N ·C(t) = 1 · (1 + i(t)) + N · us · I0 · s(t) + N · up · I0 · p(t) (2.13)

where N is a diagonal matrix that temporally normalizes C(t) and 1 = [1, 1, 1]T . The

DC removed (centered) signal is defined as:

Cc(t) = Cn(t)− 1 = 1 · i(t) + N · us · I0 · s(t) + N · up · I0 · p(t) (2.14)

The PBV method projects Cc(t) directly to the hand-crafted pulsatile direction:

p(t) ∝ Cc(t)
T · z (2.15)

where z is a vector defining the direction of projection:

z ∝ Σ−1 · upbv (2.16)

where Σ = [Cc(t) ·Cc(t)T ] is a 3x3 covariance matrix estimated from the video content,

[.] denotes temporal averaging and upbv is the prior-known1 pulse blood volume vector.

This method assumes that i(t) and s(t) is not correlated with p(t) in eq. 2.8.

Model-based methods: POS Here we project Cn(t) to the plane orthogonal to 1,

which can be written as:

S(t) = Pp ·Cn(t) ≈ Pp ·N · us · I0 · s(t) + Pp ·N · up · I0 · p(t) (2.17)

where S(t) = [S1(t), S2(t)]
T is the projected RGB-signal to a plane which most likely

encapsulates the pulse direction and Pp denotes a 2x3 projection matrix with rows or-

thogonal to each other and also to 1. This method does not require exact knowledge in

contrast with PBV, but requires only the order of pulsatile strength of the color channels

which in case of an RGB camera is G,B,R. In this case the projection axes (which also

satisfies the orthogonality constraints) can be defined as:

Pp =


 0 1 −1

−2 1 1


 (2.18)

which combines temporally normalized RGB-signals. Finally, to find the exact projection

direction alpha-tuning [10] is applied:

1It can be measured, but depends on illumination light spectrum and camera sensor.
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h(t) = S1(t) +
σ(S1)

σ(S2)
· S2(t) (2.19)

where σ(.) denotes the standard deviation operator and h(t) is the estimated pulse signal

segment.

This is the state-of-the-art core rPPG algorithm with highest overall performance [6],

therefore we have chosen (and implemented) this one to compare it with deep learning

approaches (see in Results section).

2.2.3 Deep Learning Approaches

General Introduction to Deep Learning

The DL approach can handle non-linearity, thus in theory it is able to extract p(t) from the

non-linear model, eq. 2.11. In contrast with the previous methods, in supervised learning

we don’t have hand-crafted, prior-known features but only large models with learnable

parameters and datasets containing input-output pairs on which the optimization of the

model-parameters can happen.

The dataset D is consisted of input-output pairs

D = X × Y = {(xi,yi) | i = 1, 2, . . . , N}

where N is the number of samples in the dataset, X is the input set and Y is the output

domain. We can formalize a deep neural network as a cascade of nonlinear layers:

ŷ = f(x,Θ) = f (l)
(
f (l−1)

(
. . . f (1)

(
x,Θ(1)

)))
(2.20)

where ŷ is the output/prediction, x ∈ X is the input, Θ denotes all the model parameters,

l is the number of layers, f (i)(z(i),Θ(i)) is the ith layer corresponding to a nonlinear

transformation of intermediate activation z(i) (note that z(1) = x) and Θ(i) denotes the

parameters of the ith layer. The function f is a universal function approximator.

We have to define a loss function L(.) which compares the output of the network

with the corresponding label and yields an error measure. Our goal is to tune the model

parameters such that the error is minimized:

Θ∗ = min
Θ
L(f ,Θ,X ,Y) (2.21)

where Θ∗ denotes the learned model parameters. The model architecture f , the quality

and quantity of training dataset D and the choice of objective function L is essential and
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decides the success of model training. After the model parameters are tuned, it is able

to make good predictions for an input which is in the training set (or which is similar to

those in the training set):

f(x,Θ∗) = ŷ ≈ y x ∈ X , y ∈ Y (2.22)

but it is questionable how well it can generalize for samples which are outside of the

training dataset (though there are many generalization techniques to avoid overfitting):

f(x′,Θ∗) = ŷ
?≈ y′ x′ /∈ X , y′ /∈ Y (2.23)

where (x′,y′) is a known input-output pair which is not in the training set and also out

of its distribution. For example, the neural network was trained only on white cats and

then a black cat is given as input, can it still recognize that it is a cat?

The neural network outputs a point estimate ŷ without knowing its certainty which

can be a problem in many cases – especially in medical applications. It would be desirable

to know how accurate the prediction is. It is discussed in the following section.

Uncertainty Estimation in Deep learning

Probabilistic deep learning is a relatively new but exploding research field [26]–[30]

(mainly applied on the problem of self-driving cars [28]) which aims to provide prob-

ability instead of simple point estimates – which is crucial in most medical application,

also in our case (remote monitoring of vital signs) but not yet utilized.

The source of uncertainty can be divided into two components: (1) aleatoric uncer-

tainty which comes from the noise inherent in the observation (e.g. camera noise or

motion noise) and cannot be decreased with more training data; (2) epistemic or aka

model uncertainty which can be reduced if more data were to be collected. We focus on

the former which can handle situations when vigorous movements corrupt the observa-

tion (motion noise): instead of blindly outputting an estimate, it can indicate that the

prediction might be inaccurate.

The easiest way to create a probabilistic neural network is to replace the output

layer with a probabilistic output layer (ProbOut [27]) which replaces point predictions

of deterministic networks by distributions over the output. A neural network is fully

probabilistic when the intermediate activations are replaced by distributions as well, but

it requires major modification on the architecture and training process (also doubles the

number of trainable parameters), thus in this study, ProbOut was applied to estimate

pulse-rate.
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As mentioned, the output of the network is a probability distribution over the output

space y which can be formalized as: f(x,Θ) = p(·|x). The predictive distribution

p(y|x) is restricted to be parametric and let the last layer f (l) predict the parameters of

this distribution. In case of the normal distribution p(y|x) = N (y|µ,v) there are two

parameters: its mean parameter µ decodes the prediction and its variance parameter v

the associated uncertainty. These parameters are calculated by the network:

f(x,Θ) = (µ,v) (2.24)

We want to associate maximum probability to the ground truth value in the output space:

Θ∗ = max
Θ

1

N

N∑

i=1

N [yi | f(xi,Θ)] xi ∈ X , yi ∈ Y (2.25)

If the predicted mean parameter differs from the reference with large confidence (small

variance parameter) that will result in small probability (near to zero) which is strongly

punished, this will tend to increase the variance parameter, but if the predicted mean is

close to the ground truth higher confidence (smaller variance parameter) is preferred as

it will result in larger probability.
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Chapter 3

Methods

3.1. Data Collection

A Basler acA2040-55uc color camera was used for image acquisition with a resolution of

500x500 pixels at 20 frames per second (FPS) and with 12 pixel bit depth. The recorded

frames are saved in raw (uncompressed) binary format. For this, a recording software

is developed using C++ Qt framework along with OpenCV and Basler’s Pylon camera

API. The video-recording was done from a number of different camera angles and optics.

Synchronized reference data for the videos – including the pulse-signal and the pulse-

rate – were provided by the vital sign monitoring systems of the hospital, from both the

Philips IntelliVue MP20 or MP50 models. There is an older recording where we used

a pulse-oximeter reference named EVAL-MECG35 SpO2 Module and manufactured by

Zug Medical Systems SAS which is also suitable for neonatal usecase.

For illumination, ambient light was used – i.e. no dedicated light source was provided,

thus the source of illumination is natural sunlight or the fluorescent lamps of the hospital

(or the combination of the two).

A database viewer and tagger system is developed by another member of our team

to be able to handle the large amount of video.

Another program was developed to convert selected parts of the database to HDF5

file format (DB-to-HDF5) with many conversion options (e.g. resolution, interpolation

method, bit depth etc...) for neural network training and testing. The consideration

behind using HDF5 instead of sequence of images is that it is much easier to handle a

large file than many little ones. Furthermore, HDF5 is able to load data very efficiently,

metadata can be easily added and data can be hierarchically structured internally.
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3.2. Loss Functions

3.2.1 NegPeaLoss

This loss function can be utilized if the network outputs a time signal and corresponding

reference signal is available. A Pearson correlation based loss function was introduced

in [5] which has many benefits over simple pointwise L1 or L2 loss because this con-

siders the temporal nature and correlation of the signals. NegPeaLoss maximizes trend

similarity (i.e. waveform) and minimizes peak location errors. It can be formulated as

follows:

L = 1− T
∑
ŷiyi −

∑
ŷi
∑
yi√(

T
∑
ŷ2i − (

∑
ŷi)

2
)(

T
∑
y2i − (

∑
yi)

2
) (3.1)

where T is the length of the signals, ŷ is the predicted signal, y indicates the ground

truth and
∑

is summing over all elements (i = 1, 2, . . . , T ).

3.2.2 SNRLoss

If the output of the model is a periodic time signal and frequency rate reference is available

then SNRLoss can be applied to train the model. This loss can be written as:

L = − log10




250∑
f=80

S(f)� u(f)

250∑
f=80

S(f)� (1− u(f))


 (3.2)

where S(f) is the power spectrum of the output signal, u is the reference binary template

function containing 1 at the ground truth frequency and 0 at other f frequencies, finally

� denotes element-wise multiplication. The summing is performed over the pulse range,

from 80 BPM to 250 BPM. The precise definition for the reference binary template

function u is the following:

u(f) =





1, if f ∈ [f∗ − δ, f∗ + δ]

0, otherwise
(3.3)

where f∗ is the reference pulse-rate and δ is the acceptance value chosen to be 6 BPM.

Note that the power spectrum calculation consists of differentiable steps, therefore it

is working well with the back-propagation algorithm, thus can be used for training the

neural network.
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3.2.3 GaussLoss and LaplaceLoss

These are loss functions which can be applied in case of a probabilistic output layer –

which estimates the parameters of the probability distribution over possible outputs (i.e.

over the output space). Both the Gauss and Laplace distribution has two parameters,

one of them is the mean µ and the other one determines the broadness of the distribution.

Let’s start with the Gauss (aka normal) distribution:

N (x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(3.4)

where σ2 is the variance. For numerical reasons, we want to minimize the negative

logarithm of this function which can be written in the following form:

LN = e−s · (y − µ)2 + s, with s = lnσ2 (3.5)

where y is the ground truth, µ and σ are the predictions made by the neural network.

Note that this is equivalent to the non-probabilistic L2 loss when s = 0.

The Laplace Probability Distribution Function (PDF) can be written in the following

way:

L(x | µ, b) =
1

2b
exp

(
−|x− b|

b

)
(3.6)

where b is often referred to as the diversity parameter (determining the broadness of

the distribution). Similarly, the objective function is constructed by taking the negative

natural logarithm of the PDF, now resulting in a L1 like loss:

LL = e−s · |y − µ|+ s, with s = ln b (3.7)

Ultimately, these loss functions tend to move the predicted mean µ to the ground

truth and minimize uncertainty s, but this latter parameter (if it takes larger value) can

also suppress the error term of µ prediction – which is beneficial in case of inaccurate µ

estimation – as it is multiplied by e−s .

3.3. Augmentations

Several spatial domain image augmentations were applied and one time domain augmen-

tation was also developed (referred to as frequency augmentation) to improve generaliza-

tion and avoid overfitting.
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3.3.1 Image augmentations

The input of the PhysNet architecture is a sequence of images, thus the same augmenta-

tion is applied for each image in the sequence and the parameters of the augmentations

vary only between different input sequences. The applied augmentations are listed below:

1. vertical flip

2. horizontal flip

3. rotation

4. brightness tuning

5. contrast tuning

6. saturation tuning

The first three is for pose-invariance and the last three is for illumination-invariance. Note

that color (or hue) tuning is not used as it would corrupt the relative pulsatile property

of the color channels.

3.3.2 Frequency augmentation

A novel augmentation method is introduced for periodic time-series signals, called fre-

quency augmentation. This is done by resampling in time (using linear interpolation) a

shorter or longer video back to the (original) fixed network input length (eg. 128 frames

which equal 6.4 sec @ 20 FPS) and changing the reference accordingly. With this, we

can imitate pulse-rates in the whole range from 80 BPM to 250 BPM, consequently, we

can create a training-set with more diverse pulse-rate values, thus the network will not

be biased towards the mean pulse-rate and will handle marginal cases better.

3.4. Neural Networks and Training

For implementation, the PyTorch deep learning framework was used and model training

was conducted on a NVIDIA GeForce RTX 2080 Ti 10GB GPU.

3.4.1 DeepPhys

This network [4] has two inputs for its two computation stream: (1) a single frame for

the attention stream and (2) the normalized difference of two consecutive frames for the
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motion stream, as shown on Figure 3.1. It is trained on the derivative of the pulse signal

because it is an appropriate target for the normalized frame difference input.
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Figure 2: The architecture of our end-to-end convolutional attention network. The current video
frame at time t and the normalized difference between frames at t+1 and t are given as inputs to
the appearance and motion models respectively. The network learns spatial masks, that are shared
between the models, and features important for recovering the BVP and respiration signals.

Then we need to reduce the dependency of CCCl(t) on the stationary skin reflection color uuuc · I0 · c0,
resulting from the light source and subject’s skin tone. In unsupervised learning approaches, the
frames processed usually come from a short time window, in which the term uuuc · I0 · c0 is relatively
constant. However, in a supervised learning data cohort, the term will vary between subjects and
lighting conditions, which will explain the majority of the variance in CCCl(t). This will not only make
it harder to learn to discriminate the real variance of interest p(t), but also depend the learned model
on specific skin tones and lamp spectra in the training data. In (8) uuuc · I0 · c0 appears twice. It is
impossible to eliminate the second term as it interacts with Ψ(·). However, the first time-invariant
term, which is usually dominant, can be removed by taking the first order derivative of both sides
of (8) with respect to time:

CCC ′l(t) ≈ uuuc · I0 · c0 · (
∂Ψ
∂m

m′(t) + ∂Ψ
∂p

p′(t)) + uuus · I0 · (
∂Φ
∂m

m′(t) + ∂Φ
∂p

p′(t)) + uuup · I0 · p′(t) (9)

One problem with this frame difference representation is that the stationary luminance intensity
level I0 is spatially heterogeneous due to different distances to the light source and uneven skin
contours. The spatial distribution of I0 has nothing to do with physiology, but is different in every
video recording setup. Thus, CCC ′l(t) was normalized by dividing it by the temporal mean of CCCl(t) to
remove I0:

CCC ′l(t)
CCCl(t)

≈ 111 · ( ∂Ψ
∂m

m′(t) + ∂Ψ
∂p

p′(t)) + diag−1(uuuc)uuup ·
1
c0
· p′(t)+

diag−1(uuuc)uuus ·
1
c0
· ( ∂Φ
∂m

m′(t) + ∂Φ
∂p

p′(t)) (10)

where 111 = [1 1 1]T . In (10), CCCl(t) needs to be computed pixel-by-pixel over a short time window
to minimize occlusion problems and prevent the propagation of errors. We found it was feasible to

6

Figure 3.1: The illustration of DeepPhys architecture from the original paper [4].

This is a 2D convolutional network with attention mechanism and a fully connected

head. Interestingly, the not so common tanh activaton function is applied and avgpool

instead of maxpool as the authors claim it is more suitable for this specific task. The

appearance stream is responsible to highlight regions from where pulse information can

be extracted with high probability while the motion stream is responsible to detect blood

volume change. The final attention weight maps are multiplied with the motion stream

activations (each channel element-wise) in the middle and also at the end of the network

– which acts as a focus on the important details. The output of the network is a single

point (from the derivative of the pulse signal).

Because of its 2D structure, DeepPhys is really fast compared to the 3D PhysNet

architecture. Moreover, DeepPhys also slightly outperforms PhysNet (at least on one

public dataset) as shown in [5] which is consistent with our results.

For training, the ADAM optimizer and mean absolute error loss (L1 loss) was applied

with a learning rate of 1e-4. It was trained for 60 epochs with image augmentations. The

batch size was set to 128.

3.4.2 PhysNet

This network operates on video input and extracts pulse signal from it. The best perform-

ing neural network variant was picked and implemented from [5], namely PhysNet128-

3DCNN-ED which is a fully 3D convolutional (FCN) architecture with encoder-decoder

structure in time domain and with 128 frames input video length (as its name implies),
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depicted on Figure 3.2. The inputs are first normalized to be in [0, 1] range and then zero

centered (its mean is subtracted) carefully such that the relative color channel information

is not corrupted (what a channel-wise centralization would do).
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Figure 3.2: Illustration of the PhysNet architecture. The input is 128 stacked frames.

Orange color denotes 3D-convolution, red 3D-deconvolution (transposed convolution) and

green average pool layers. At the bottom of each layer the time depth and after the layer-

blocks the spatial resolution is shown. The output is the corresponding pulse-signal.

ELU activation function was used after each convolutional layer instead of ReLU

because it resulted in slightly better performance. Furthermore, we used area based

downsampling instead of linear for getting the 128x128 pixels resolution input, again

because we observed better performance with this setting.

After every convolutional layers, batchnorm and ELU activation function is applied

in this order. The spatio-temporal kernels (Depth, Height, Width) of the convolutions

in the encoder part have a size of [3, 3, 3] with stride 1 and padding 1, but the first

convolution is different with a kernel size of [1, 5, 5]. In the temporal-decoder part the

kernel size of deconvolution is [4, 1, 1] with stride [2, 1, 1] and padding [1, 0, 0] which

results in doubling the depth dimension. The input channel number is 3 (128 stacked

RGB frames) which is increased to 32 and then to 64. The channel number remains

64 until the last convolution which outputs 1 channel. In the encoder part, the time

dimension is squeezed to its quarter and in the decoder part it is stretched back to its
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original size. The output is a vector containing the 1-dimensional pulse signal.

For training, the NegPeaLoss objective function was applied with ADAM optimizer

and learning rate of 1e-4. The model was trained for 15 epochs as the validation loss did

not improved after that. The batch size was set to 8. On another dataset, it was further

trained with SNRLoss, then fused together with RateProbEst and trained together even

further with image and frequency augmentations.

3.4.3 RateProbEst

This network tries to estimate the pulse-rate – with associated uncertainty – from pulse-

signal. It is a 1-dimensional fully convolutional network, see Figure 3.3.
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Figure 3.3: Illustration of the RateProbEst network. The time-depth (D) marked at the

top and the number of channels (C) in the middle. The outputs are the parameters of the

probability distribution.

It consists of 8 convolutional layers with kernel size of 17. Dropout is applied before

each convolution. After convolutions, a batchnorm and ELU activation function follows.

The channel number of the input is 1 (as it is a 1-dimensional pulse-signal). With the

first convolution it is increased to 32, then doubled in every consecutive layer until the

channel number reaches 256. Then it is decreased in the same way to 32. After the 3rd

and 8th convolutional layer, a max pool layer is inserted with a kernel size of 5 and a stride

of 2. Before the final average pool – that outputs the estimated probability distribution

parameters – the output channels of the last (8th) convolutional layer are combined using

another convolution with a kernel size and stride of 1 and output channel of 2. Finally,

the second estimated parameter p2 is inserted into an exponential function thus ensuring

it is non-negative because in the loss function its logarithm will be calculated (i.e. this

is the variance parameter of the distribution which must be positive).

For training, GaussLoss and LaplaceLoss was applied with ADAM optimizer and
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learning rate of 1e-3. The target pulse-rate was converted to Hertz. All of the discussed

image and frequency augmentations were applied. Typically, it is trained together with

(an already pretrained) PhysNet. The learning took place over 60 epochs with batch size

of 8.

3.5. Evaluation Process

Different metrics were computed in order to quantify the pulse-rate estimation perfor-

mance of different methods, namely the followings:

• MEA: Mean Absolute Error between reference and pulse-rate estimate.

• RMSE: Root Mean Squared Error between reference and pulse-rate estimate.

• R: Pearson correlation coefficient of the reference and estimated pulse-rate in time.

• MSNR: Mean Signal-to-Noise Ratio of the estimated signal, where the reference

frequency component is chosen to be "the signal" and the other components to be

"the noise".

In the case of DeepPhys and PhysNet, the output is a signal but the metrics are

pulse-rate based (except the last), therefore it is estimated from the signal via frequency

analysis. First, the pulse-signal was filtered using a 6th order bandpass Butterworth filter

with 80 BPM and 250 BPM cutoff frequencies. Then the Fourier transform of a sliding

window of length 512 samples was computed with a stride of 1 second. A Hamming

window was applied on the sliding window before the Fourier transform to avoid spectral

leakage. The maximum power spectrum component is chosen to be the estimated pulse-

rate.

The mathematical formulation of the MSNR metric is as follows:

MSNR =
1

N

N∑

k=1

{
10 log10

(
Sk(f = f∗)∑
f /∈F ∗ Sk(f)

)}
(3.8)

where Sk is the power spectrum of the kth pulse-signal segment, N is the number of

segments, f∗ is the ground truth pulse-rate and F ∗ = [f∗− δ, f∗+ δ] where δ = 4 BPM .

The sum in the denominator is over the pulse range (from 80 BPM to 240 BPM) except

the reference frequency and its proximity – i.e., possible heart rate variability and small

differences are not punished.
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Chapter 4

Results

4.1. Neonate Dataset

Since at the time of writing this thesis we are not aware of the existence of a publicly

available infant database for rPPG purposes, we started to construct our own.

Data were collected from a Neonatal Intensive Care Unit (NICU) in Hungary, namely

the Ist Dept. of Neonatology of Pediatrics, Dept. of Obstetrics and Gynecology, Sem-

melweis University, Budapest. A total of 400 hours of data were collected (at the time

of writing this study) from 5 infants, which occupies approximately 20 TB of storage

space. From this large amount of recording, only a small fraction is usable for training

and testing. The handling of the videos is done using tags with timestamps which were

added manually to our database based on the consent decision of a group of three tag-

gers. From these tags, we can filter categories which are appropriate for neural network

training. There is approximately 15 hours of data where the following necessary condi-

tions holds: illumination level is acceptable; there is no medical or parental intervention;

there is a clean view of the baby (that is relatively calm); reference data is available.

Besides that, there are 190 hours when a baby is visible, there is no intervention but

also no reference; 120 hours with an empty incubator or dislocated view; 75 hours when

the light conditions do not allow camera-based monitoring. Furthermore, there are other

situations which occur on a regular basis, for them the following tags stands: excessive

movement of baby, caring, blurred image, UV lamp is on, saturated image, feeding.

The adequate data was selected through tags and converted into a HDF5 data struc-

ture for model training. The conversion includes area based downscaling to decrease the

size of the file and to average the camera noise – i.e. it averages subareas. The drawback

of this is that it smooths the edges. We inspected the effect of the different interpolation
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techniques on the training/inference, and the area based turned out to be the best option

(except for the DeepPhys model, which uses bicubic interpolation). The pixel intensities

of the frames are stored in 8 bits (UINT8). The information from the HDF5 files used

for training and benchmarking are included in Table 4.1.

Type Length Date code Available refs. Subject id. Resolution Bit depth

benchmark 15 hours 200101 pulse-rate B 128x128 8

train, test 5 hours 191111 pulse-rate B 128x128 8

train, test 3 min. 190111 pulse-rate, pulse-sig A 128x128 8

Table 4.1: Information about training and benchmark datasets. The Phillips reference

monitors does not provide continuous pulse-signal data – which is indispensable in case

of pulse-signal based training. The dataset in the last row (with date code 190111) was

created using an other reference device which provided appropriate pulse-signal.

As we can see in the Table 4.1, there are two individual subjects (denoted with "A"

and "B") among the datasets, but the longer training-set and the benchmark-set contains

the same infant. In the future, it would be preferable to validate on an independent baby

– which is not seen by the networks during training – for a more authentic evaluation.

The issue with the used Phillips patient monitors is that it sends data in irregular

packets to the receiver and so much data is missing that it is almost unusable. Therefore,

we were forced to work only with pulse-rate reference in case of these datasets.

4.2. Neural Network Performance

In this section, I will show the results regarding the performance of the neural networks

evaluated on our challenging, 15-hour long benchmark dataset.

In general, the evaluation of methods is performed on selected, ideal data where the

illumination conditions are appropriate and subject motion is minimized. In contrast,

here the methods are evaluated on data that contains real situations – as our ultimate

goal is to develop a long-term continuous monitoring system – for example: heavy motion,

low illumination conditions, the head of neonate is covered with a blanket. The results

presented here are the overall performance of the networks in all situations, therefore the

metrics can be misleading, in-depth analysis and explanation is required for understand-

ing. The overall results are shown in Table 4.2 which will be interpreted in the following

subsections. I will shed more light on the details separately for each model and mode
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of training. More details about the evaluation process can be found in Section 3.5. All

corresponding source code is available on GitHub1.

# Arch. Pretrained Trained Augm. MAE [BPM] RMSE [BPM] Corr. MSNR [dB]

1 DeepPhys - 190111-signal img 27,00 42,00 -0,0285 -7,9

2 PhysNet - 190111-signal - 17,00 27,00 0,0028 -6,6

3 PhysNet - 190111-signal img 37,00 49,00 0,055 -8,1

4 PhysNet 190111-signal img, feq 28,00 40,00 -0,173 -8,58

5 PhysNet 190111 191111-hr img, freq 8,62 14,37 0,487 -3,2

6 PhysNet 190111 191111-hr-crop img 6,61 9,67 0,51 -1,25

7 PhysNet 190111 191111-hr-crop img, freq 10,42 16,89 0,268 -3,55

8 RateProbEst 190111, 191111 191111-hr-crop img, freq 7,26 10,15 0,59 -

9 RateProbEst 190111, 191111 191111-hr img, freq 7,22 10,023 0,56 -

Table 4.2: The overall performance of different methods. In the Arch column, the name of

the model is written. The Pretrained column denotes whether the model was pretrained

and if it was then on which dataset (contains the i.d. of dataset). The Trained column

contains the dataset i.d. and reference type used for training. The Augm. column

contains the applied augmentations. MAE is the Mean Absolute Error between reference

and estimated pulse-rates, RMSE is the Root Mean Square Error between reference and

estimated pulse-rates. In the Corr. column, the Pearson correlation coefficients can

be found which describe how well the estimated and reference pulse-rate values correlate

in time. It is not a reliable measure in our benchmark most of the time, because its

value is mainly driven by the models behavior in situations where it couldn’t predict the

pulse-rate (e.g. it returns zeros or random noise or the average). In the last column,

MSNR stands for Mean Signal-to-Noise Ratio, it is computed for the estimated signal,

where the reference frequency component was chosen as the signal component and the

other components as noise. Excluded results are denoted with red color, the explanation

for exclusion is in the text. The results corresponding different training datasets are

separated with vertical line. The best results are highlighted with bold font type in each

section.

4.2.1 DeepPhys

We can see from Table 4.2 that the performance of DeepPhys is comparable to PhysNet

– which was trained on the same data (#2–4). It even outperforms PhysNet#3 and

PhysNet#4 which are the reliable versions (more details about what this "reliability"

1https://github.com/terbed/Deep-rPPG/tree/v1-thesis
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means can be found in the subsequent section). This model was trained on a really small

dataset (3 min.). The disadvantage of this network is that it demands preprocessing steps

like the construction of normalized frame differences (as one of the network input is this).

Because of the specific input it is also harder to train, but the main drawback comes with

the fact that it has got single point output which renders it impossible to train it with

custom loss functions specifically developed for signals like NegPeaLoss or NegSNRLoss

(see in Section 3.2). Another big difference compared to the PhysNet architecture is

that it is a 2 dimensional convolutional network, thus cannot exploit temporal features.

However, we have to note that compared to the small training-set it performs still fairly

well on totally unknown data (see Figure 4.1 and slightly Figure 4.2) and outperforms

PhysNet.

DeepPhys 190111
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Figure 4.1: The spectrogram of DeepPhys model output signal and reference pulse-rate

values on a selected 1 hour interval. The right frequency component of the signal is weak

but follows the reference in majority.

Compared to PhysNet, DeepPhys has a lightweight architecture and runs one order

of magnitude faster (see Section 4.3).
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Figure 4.2: The calculated rate estimates from the output signal of DeepPhys network and

corresponding reference values along the whole benchmark dataset (with enlarged selected

segments).

4.2.2 PhysNet trained on pulse-signal

The corresponding results in Table 4.2 are the rows 2-4. Here the PhysNet model

was trained on pulse-signal reference on the small dataset with NegPeaLoss. Based on

the table mentioned before, seemingly the model without augmentations outperforms the

others. What is misleading here is that this model learned to give the average pulse-rate

in cases when it couldn’t predict the true value (see in Figure 4.3) – which is an undesired

behaviour.

On the contrary, the model trained with augmentations does not return the average

pulse-rate but shoots (more or less) randomly above or below (see in Figure 4.4). This is

the reason why PhysNet#2 seems to outperform PhysNet#4 (see in Table 4.2), but in

fact the latter is more preferable.

It should be emphasized that only a very limited amount of training data was available

so far, but it was enough to train the models to be able to extract pulse-signal from an

independent video which is still impressive.

The network’s ability to generalize greatly benefits from augmentations with which

we can simulate different illumination conditions and posture. These are the static image

augmentations, but another important aspect is the temporal feature of the signal. Most

of the time, we can observe the neonate pulse-rate in the range of 120 BPM to 170 BPM,
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Figure 4.3: The estimated pulse-rates from PhysNet model’s output signal and the cor-

responding reference pulse-rate values on the whole benchmark. This model is trained

without augmentations and learned to give the average pulse-rate value.
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Figure 4.4: The estimated pulse-rates from PhysNet model’s output signal and the corre-

sponding reference pulse-rate values on the whole benchmark. This model is trained with

augmentations, which prevents the model to return the average pulse-rate.

but sometimes it falls out of this range. This means that we have naturally biased data

which could have negative effect on the model prediction in marginal cases – which in
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turn would be the most important situations to indicate (too low or high pulse-rate).

Therefore, we applied frequency augmentation to have a uniform distribution of pulse-

rate values in the training data. The application of such augmentation improves the

overall performance of the network (see Figure 4.5).
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Figure 4.5: The estimated pulse-rates from PhysNet model’s output signal – in case of

image augmentation and additional frequency augmentation – and the corresponding ref-

erence pulse-rate values on a selected time segment. The training of the model benefits a

lot from frequency augmentation.

4.2.3 PhysNet trained on pulse-rate

From now on, the PhysNet network is further trained on a large dataset (1-3 hours)

using the numeric pulse-rate reference with NegSNRLoss. The corresponding results in

Table 4.2 are the rows from 5 to 7. A large leap can bee seen in the performance compared

to the previous models, this can be attributed partly to the orders of magnitude larger

training dataset and to the fact that this training-set contains the subject also used in the

benchmark. On the other hand, NegSNRLoss tends to maximize the spectral energy of

the signal into the right frequency band – and cleans other frequencies not corresponding

to pulse – (see Figure 4.6) that is in line with the post-processing (where we chose the

maximum frequency component as the estimated pulse-rate). This is also evident from

the MSRN metric found in the result table: using this loss function, the MSNR increased

from -8.58 dB to -3.55 dB.

The difference between PhysNet#5 and the following two networks is that the input

of the former is not cropped. To determine the RoI to be cropped a YOLO [31] object

34



PhysNet SNR trained

7.9 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

Time [h]

80

100

120

140

160

180

200

220

240

F
re

q 
[B

P
M

]

-40

-35

-30

-25

-20

-15

-10

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

reference

Figure 4.6: The spectrogram of PhysNet model output signal and the corresponding ref-

erence pulse-rate values on a selected 1 hour interval. Training with NegSNRLoss tends

to maximize the signal energy in the right frequency band.

detector network was used. Our assumption was that cropping the torso and head of the

infant – and so discarding the non-skin parts – would improve the performance – as we

focusing the input of the network on the region of interest. Surprisingly, we can read the

exact opposite from the table: the mean absolute error for the non-cropped version is 8.62

BPM and 10.42 BPM for the other version. The reason behind it might be the fact that

the constructed datasets were already downscaled to 128x128 resolution, consequently

the downscaled image was cropped and then resized back to the input resolution of

128x128. We can anticipate information gain only when we crop on the original image

(500x500) and then downscale that. Nonetheless, we expected an increase in performance

even so because what we did functions like an attention mechanism (without additional

information gain only pruning the irrelevant features). The explanation for the worse

performance might be that the aspect ratio is changing between crops and resizing back

to square resolution lengthen the image. These unstable input features might decrease

the performance of the network. The solution for this issue might be: (1) to crop on the

original (500x500) image; (2) and then pad to square before downscaling it to 128x128.

Regarding augmentations, the situation is the same as it was in the previous section.

Based on Table 4.2 PhysNet#6 – which was trained only with image augmentations

– with a mean absolute error of 6.61 BPM seems to outperform the others – where

additional frequency augmentation was also used – with a mean absolute error of 8.62

BPM and 10.42 BPM. This network performs well close around the average pulse-rate

value but fails further from it (see Figure 4.7). Yielding the average pulse-rate if the

estimation fails is a good strategy to perform well in distance metrics (but undesirable

behaviour for medical use-cases). In contrast, if we apply frequency augmentation, the
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Figure 4.7: The calculated rate estimates from the output signal of PhysNet network and

the corresponding reference. This network was trained only with image augmentations

and performs well around the average pulse-rate, but unable to capture marginal cases

(see 12-13 hours) – which is undesirable.

network is not biased towards the average value but shoots above or below "randomly"

on the whole range if estimation fails (see Figure 4.8) – resulting in larger distance errors

compared to the previous case. All things considered, frequency augmentation happens

to be beneficial again.
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Figure 4.8: The calculated rate estimates from the output signal of PhysNet network and

the corresponding reference. This network was trained both with image and frequency

augmentations and it is more stable for marginal cases.

4.2.4 RateProbEst

This section inspects the results corresponding the rate probability estimator network

which input is the output pulse-signal of the PhysNet network. More precisely, these

results are corresponding to the ensemble of: (1) PhysNet which is responsible for pulse-

signal extraction from video; (2) and RateProbEst which is responsible to estimate a

pulse-rate – with a corresponding confidence (or quality) index – from the output of

PhysNet. These networks were fused and trained together.

The associated results are the 8th and 9th rows in Table 4.2. The difference between

the two alternatives is that the first used a cropped input while the other used the original

video. The considerations behind using a cropped input and the interpretation of the

performance difference between them is the same as what was detailed in the previous

section. From now on, the not cropped versions will be used for fair comparison and

illustration.

Based on the results, using a rate estimator network after the signal extractor network

is beneficial as the mean absolute error decreased from 8.62 BPM to 7.22 BPM and the

correlation increased from 0.487 to 0.56. In addition, using a probabilistic output layer

we can also predict the uncertainty of the estimate shown on Figure 4.9.

In medical applications, it is important to know how reliable the estimated value is,
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Figure 4.9: The output of the RateProbEst network and the corresponding reference.

This network was fused and trained together with PhysNet. With accurate estimation,

the confidence interval decreases and with inaccurate estimation just on the other way

around. At some points, the method fails and mishits with large confidence – the true

value is outside the confidence interval (red) in this case.

which is possible with Bayesian Neural Networks. The introduced RateProbEst network

is the most simple variant: it is an ordinary fully convolutional neural network which

outputs the parameters of the probability distribution function. We can see on Figure

4.9 that it is more or less functional – accurate estimation has small confidence interval

and inaccurate estimation has large confidence interval, thus the true value is within the

confidence interval most of the time. However, there are some points where the method

fails and the true value is outside of the confidence interval. The solution for this problem

might be to apply more advanced Bayesian Neural Network techniques.

4.2.5 Comparison with classical algorithm

In order to compare the performance of neural networks with classical algorithmic

approaches, a pilot study was performed. One of the most suitable state-of-the-art meth-

ods for continuous long-term monitoring was implemented, namely the Full Video Pulse

extraction algorithm [6] (FVP) with the Plane Orthogonal to Skin-tone [6] (POS) core

rPPG algorithm. It has been already applied successfully on neonates in NICU [6]. This
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method eliminates the steps of RoI initialization, detection and tracking. It performs

well in case of static background (because it uses overall color statistics that would be

corrupted by any change in the background) which holds in case of an incubator. We

applied this algorithm on a 5 hour long dataset without success: it could not estimate

the pulse along the whole video. Our dataset was not appropriate for this algorithm. We

observed a systematic background noise which could distract the method2. Therefore, we

developed our own simple method that finds the skin regions based on colors, averages

subareas and then applies the POS algorithm to extract the pulse-signal from the color

channels. We applied this method on our data and it could estimate the pulse-rate – i.e.

the estimate was within 6 BPM distance from the reference – for a total 95 minutes from

5 hours. We also employed the PhysNet network – which was trained with NegSNR-

Loss on different data – and calculated the spectrogram of the output pulse-signal. The

dominant frequency component of the spectrogram followed the reference throughout the

5 hour long data. One half-hour chunk of the spectrogram together with the reference

signal and the estimate of the classical algorithm3 is depicted on Figure 4.10.

Figure 4.10: A half-hour chunk of the spectrogram of the output pulse-signal of Phys-

Net along with the reference (black line) and the estimate of the classical algorithm (red

dashed line). The segments where the classical algorithm could predict the true value

(continuously for at least 1 minute) are denoted with green color above the time axe. The

dominant frequency of the spectrogram follows the reference.

From this, we conclude that the deep learning approach is more stable on our data.

In contrast to the study of Wang et al. [7], the FVP algorithm was not able to extract

pulse from our videos at all. The other classic method which also utilizes the POS

2Note that at this time the YOLO network was not yet applicable, which could solve this issue by

selecting the RoI.
3A one minute moving average was also applied on the estimate as a post-processing step.
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algorithm was able to estimate the pulse-rate in some sections, but the PhysNet network

outperformed it.

The explanation for its observed superior performance compared to classical methods

may be that: (1) it can utilize also BCG information; (2) it can select more sophisticated

RoI; (3) it was optimized on the given subject. The first two assumptions require further

confirmations.

4.3. Resource Limited Environment

If our goal is to develop a system that is able to do predictions in real-time and also

cost efficient, it is really important to inspect its running time on an average hardware.

Our choice was the NVIDIA Jetson Nano which is an embedded system with a 128-

core Maxwell GPU, Quad-core ARM A57 @ 1.43 GHz CPU and 4 GB 64-bit LPDDR4

25.6 GB/s memory (that is shared between CPU and GPU). This device is developed

specifically for deep learning applications and it is in the low price range (among the

similar other options): at the time of writing this thesis, it costs around 100 dollars.

For comparison, the Raspberry Pi model 4 with a Quad core ARM A72 @ 1.5GHz CPU

and 4GB LPDDR4-3200 SDRAM memory – but without GPU – costs around 70 dollars.

Additionally, the inference time was also measured on a 2.6 GHz Quad-Core Intel Core

i7 (2012) CPU.

All the previously applied networks were evaluated regarding the inference speed.

Multiple inputs can be computed in parallel with stacking them into the (first) batch

dimension. Utilizing this, we can input 128 frames to the DeepPhys network in order the

have a fair comparison with PhysNet.

The method of evaluation was to run the networks – and measure its running time –

in inference mode repeatedly 50 times, then calculate the mean and standard deviation

statistics discarding the first 10 instances which counts as warm-up rounds. The results

are included in Table 4.3. The networks and their inference was implemented in Python

using the PyTorch framework. The script is available on GitHub4.

In average, the inference time was five times faster on the GPU of NVIDIA Jetson

Nano than on the CPU of the personal computer. The larger the network was, the faster

the computation becomes on GPU compared to CPU. In the followings, we will analyse

the results regarding the NVIDIA Jetson Nano (GPU).

4https://github.com/terbed/Deep-rPPG/tree/v1-thesis/nano
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Network Input shape Device Duration [ms] Std. [ms]

YOLO [1, 3, 128, 128] CPU 228,90 7,85

YOLO [1, 3, 128, 128] GPU 71,27 1,43

YOLO [1, 3, 416, 416] GPU 428,99 1,34

DeepPhys [128, 3, 36, 36] x 2 CPU 754,56 12,49

DeepPhys [128, 3, 36, 36] x 2 GPU 186,81 1,35

PhysNet [1, 3, 128, 128, 128] CPU 10930,14 1298,24

PhysNet [1, 3, 128, 128, 128] GPU 1877,25 6,87

RateProbEst [1, 1, 128] CPU 9,98 0,85

RateProbEst [1, 1, 128] GPU 9,09 0,24

RateProbEst [10, 1, 128] GPU 14,81 0,19

PhysNet+RateEst [1, 3, 128, 128, 128] CPU 10539,16 1036,84

PhysNet+RateEst [1, 3, 128, 128, 128] GPU 1884,94 8,40

PhysNet+RateEst [3, 3, 128, 128, 128] GPU 5674,59 37,79

Table 4.3: The results regarding the execution time of the networks. In the first column,

the name of the networks are written. In the second column, the shape of the network

input can be seen. The first dimension is always the batch dimension and the second

is always the number of channels, the third is the time depth (if there is such) and the

last two is the height and width (except RateProbEst). The following column (named as

"Device") denotes the device on which the network was ran. The last two columns are

the average inference time and the standard deviation of it.

The YOLO [31] network is really fast with input image resolution of 128x128 the

required time was 71.27 ms in average (see in Table 4.3). If we increase the input reso-

lution to 416x416, one prediction takes approximately 0.5 seconds. This network is used

to localize the neonate on every 128th (6.4 seconds at 20 FPS) frame and the resulting

bounding box is fixed between the updates. It is typically sufficient because newborns

cannot change their posture by themselves – so they stay within the bounding box in

that short period of time. Consequently for our application, the speed of this network is

more than sufficient.

In case of the DeepPhys network, we stack as many images into the batch dimension

as the temporal depth of the PhysNet network, in this way both networks calculate the

estimate for a 6.4 second long video segment – which enables us to compare them. As we
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can see from Table 4.3, DeepPhys is approximately 10 times faster than PhysNet which

is not surprising. First of all, DeepPhys requires smaller input image resolution even if

we take into account the two input streams. Furthermore, it is a 2D CNN network which

has got a lower computational complexity compared to a 3D CNN. And finally but not

least, the frames stacked into the batch are computed in parallel, thus it is really efficient.

The DeepPhys network is really fast as it requires 186.81 ms to compute a 6.4 second

long video segment. The PhysNet network needs approximately 1.9 seconds for it, which

is still sufficient for a real-time application (i.e. the pulse-rate can be updated in every 2

seconds).

The RateProbEst network is a relatively small 1D CNN which requires a negligible

9.09 ms of time in average to calculate the pulse-rate estimate from the pulse-signal.

The sequential application of the extractor and estimator network was also tested: as

expected, the running times add up. Finally, it is also inspected how many times this

ensemble of networks fit into the GPU memory. For this question, the answer is three

times. (see last row of Table 4.3).

From all of these results, we can conclude that the neural networks used throughout this

study are capable to function in real-time in a resource limited environment (embedded

system) similar to the NVIDIA Jetson Nano.
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Chapter 5

Summary

5.1. Conclusions

In this section, the main conclusions and take-home messages of this study are briefly

summarized.

On our limited amount of data, DeepPhys slightly outperformed1 PhysNet (in ac-

cordance with results in [5]). DL and classical algorithmic approaches are compared,

the results suggest that DL methods have superior performance but further detailed

verification is needed. With the proposed frequency augmentation (and with general im-

age augmentations), the generalization capability of PhysNet and RateProbEst could be

largely improved. Without augmentations, the DNNs tend to predict the average pulse-

rate. If there is only the pulse-rate reference available, it is still possible to train PhysNet

with SNRLoss, but it is more beneficial to fuse it with a rate calculator network (in this

study with RateProbEst) and train them together as the results suggest. It is possible

to associate the prediction with a quality index (which describes the accuracy of the

estimation) with the application of the probabilistic output layer (without significantly

modifying standard DNN architectures). The corresponding results are promising but the

reliability could be improved with more advanced Bayesian Neural Network techniques.

Finally, it is shown that the inference speed of the presented DNNs enables real-time

functioning in an NVIDIA Jetson Nano system, and the DeepPhys network is around

one order of magnitude faster than PhysNet.

1Based on the MAE and MSNR metrics.
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5.2. Objectives and Achievements

The objectives of this thesis and the achievements can be summarized in seven major

points:

1. The revision of existing rPPG methods and corresponding literature.

During this study, extensive research has been done on both classical algorithmic

and deep learning approaches which are summarized in Chapter 2.

/personal work/

2. The selection and implementation of one or more neural networks used for rPPG-

signal extraction.

Two different state-of-the-art neural networks have been selected and implemented,

namely the DeepPhys [4] and PhysNet [5] architectures. In addition, a rate ex-

tractor network (RateProbEst) has been developed based on other studies found in

literature [9]. Details about these are included in Chapter 3.

/personal work/

3. The creation of an rPPG training and benchmark dataset for the special case of

neonates.

Using the database tools which were developed by multiple members from our

research group (including myself), I was able to construct appropriate training and

benchmark dataset for my study (see "Neonate Dataset" section in Chapter 4).

/group work/

4. The evaluation of the implemented networks on the created datasets.

The networks have been evaluated on the constructed benchmark dataset and dif-

ferent video augmentation techniques were analyzed (see Chapter 4). A new kind

of augmentation technique has been proposed, namely frequency augmentation.

/personal work/

5. The comparison of the results (of neural networks) with other (algorithmic) meth-

ods.

A pilot study has been designed to compare the performance of deep learning ap-

proach with algorithmic methods which can be found in the "Comparison with

classical algorithms" section in Chapter 4.

/personal work/
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6. The proposal of a technique that is able to provide a quality index that measures

the reliability of the prediction.

For this problem, the field of probabilistic neural networks has been proposed (see

in Chapter 2) which allows us to get information also about the uncertainty of the

estimation. This idea has been applied in practice – for the first time in the field

of rPPG – on our data (see RateProbEst in Chapter 4).

/personal work/

7. The examination of the applicability of neural networks on a resource-limited envi-

ronment (embedded system).

All of the neural networks used in this study has been tested on a NVIDIA Jetson

Nano embedded system (see in Chapter 4).

/personal work/

5.3. Future directions

In the future, a higher quality database could be created with an increased subject num-

ber – and where also pulse-signal reference is available – which is essential for DeepPhys

and PhysNet training. In this study, we were largely constrained by the only available

pulse-rate reference and the pulse-signal label was missing most of the time. Further-

more, a differentiated, scenario-specific benchmark dataset could be built with which we

could test not only the average performance of the methods but their performance for

each task (e.g.: the performance of methods in mild, medium/heavy subject motion, in

case of adequate or inadequate illumination, etc.).

In this preliminary study, we showed that it is possible to apply probabilistic neural

networks to make predictions with a corresponding certainty value – without significantly

changing the standard architecture, only by applying a probabilistic output layer that

predicts the parameters of a chosen probability distribution. For this, there are more

advanced methods where all of the single model weights represent a distribution and at

each forward pass they are sampled from the learned distribution, i.e. at each forward

pass, the model is differently parameterized. Thus, if we run inference on the same

input multiple times the output will not be exactly the same, calculating the statistics

(e.g., mean and standard deviation) of the outputs yields the overall prediction and

the accuracy of the prediction (which is very similar to ensemble networks). After all,

these methods can only model uncertainties coming from external noise (e.g. motion, low

45



illumination, camera noise, etc.) but cannot handle model errors on the other hand which

comes from the imperfection of the training dataset. When the input is unfamiliar to

the trained neural network, its output will be still unreliable, fortunately, there exist also

such techniques with which we can model this kind of uncertainty. For example, letting

the (specifically installed) dropout layers turned on in test time will act as a Bayesian

approximation [30], [32]. Using this technique, the so-called Bayesian Neural Network

(BNN) will indicate if the kind of input sample is not seen before. This property is really

important also for online learning (or even generally for neural network training) because

the data samples which carry lots of (so far unknown) information can be selected.

These methods could be effectively applied not exclusively on this task (rPPG) but

on every medical application where a prediction uncertainty measure would be beneficial.
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