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1 Introduction

Memory is the ability to store and retrieve information. We can distinguish procedural
memory and declarativememory. Proceduralmemory is a type ofmemory that does not
require conscious recall and is mostly related to motor tasks, while declarative memory
is the ability of a conscious recall of information. Declarative memory can be itself
divided into subcategories: semantic and episodic memory. Episodic memory stores
past experiences and their emotional associations, while semantic memory stores and
recalls facts independent of the context [1].
Memory, and especially semantic memory, can be tested in several ways. In an associa‐
tive learning task, two stimuli are mapped together e.g. two words. The subject is then
presentedwith one element of the stimuli pair and has to recall the corresponding other
— that is, to recall from a partial cue. Another test to assess memory is with free recall
tasks. In this type of task, a subject is presented with a set of items to memorize. Later,
the subject is asked to recall as many items as possible [2].
Previous literature has shown that recalling memory items in the absence of cues is a
difficult task: subjects usually fail to recall more than short lists of items in a free recall
task [3]. However, according to the Search of Associative Memory (SAM) model, associ‐
ations between memory items influence memory recall even in the absence of partial
cues. From a neuroscience perspective, this could be explained by the overlaps between
neuronal representations of memories [4, 5].
Recanatesi et al. [6] present a model of memory retrieval based on a Hopfield model
for associative learning, with network dynamics that reflect associations between items
due to semantic similarities.
Indeed, transitions occur due to the activation of populations of neurons encoding for
a memory item. This sequential activation of neuronal ensembles forms stable states
at different domain regions of a periodic function, which provides inhibition to the net‐
work. Network dynamics are also compatible with empirical observations about free
recall previously described [6].
In the present work, we proceed to replicate the model as presented by Recanatesi et al.
[6]. During our replication efforts, we discover several errors in parameters and collab‐
orate with the original work authors to provide a successful replication and correct the
original article.
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2 Background

Hopfield [7] proposed a model in which memory storage and retrieval emerge as prop‐
erties of the collective behavior of its units, or neurons. This connectionist model is
capable of recovering a previously presented pattern or patterns from partial cues, be‐
ing able to complete the missing information.
Hopfieldnetworks behave asfixed‐point attractor networks as their internal state evolves
towards a stable single state or fixed point. This is given by their energy function. These
types of systems have been used as models of associative memory [8].
In the classic model as described by Hopfield [7], neurons are binary units: the activa‐
tion state of each neuron can be either firing or not (on or off). The activity of each unit
asynchronously changes in a discrete time scale.
As in other connectionist systems, the strength of connections between nodes is de‐
scribed by its weight matrix. Weights are only updated upon network initialization and
depend on the patterns presented to all network units. The weight matrix takes the
shape of a square, symmetric matrix in which all the values in the main diagonal are
always zero. All neurons are connected to each other. Also, every neuron is both an
input and output node for memory pattern presentation and retrieval. To compose the
weight matrix, each node is updated according to a local incremental learning rule, re‐
lated to Hebbian learning. Hebb’s rule states that neurons that fire together when a
certain pattern is present strengthen the connections between them [9].
In the work by Recantesi et al. [6], modifications to the original Hopfield model have
been introduced, with new properties of memory retrieval: the model was adapted to
induce transitions between attractor states (recalled memories).

2.1 Neuron Dynamics

Current — The original paper described the dynamics of neuron νi as the change of its
current ci with time:

τ ċi(t) = −ci(t) +

N∑
j=1

rj(t) ·Wi,j + ξi(t) (1)

where:

τ ∈ R is the decay time,
c ∈ R is the synaptic current,
N ∈ N is the network number of neurons,
W is the weight matrix,
r ∈ R is the firing rates,
ξ ∈ R is the Gaussian noise.

The former equation can be discretized using the Euler method:

ci(t+ 1) = −ci(t) +
dt

τ

−ci(t) +

N∑
j=1

rj(t) ·Wi,j +
ξi(t)√
dt

 (2)

where:
dt ∈ R is the integration time step

Firing Rates — Firing rates r of each neuron are calculated by the gain function g(c), a
step function with sublinear behavior or a value of zero:

g(c) =

{
(c+ θ)γ if (c+ θ) > 0

0 if (c+ θ) ≤ 0
(3)
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where:

θ ∈ R is the gain function threshold,
γ ∈ R<1 is the gain function exponent.

Memory Patterns — Every memory is represented by a binary vector or pattern p of sizeN .
Each element of this vector corresponds to the state s of each neuron ν for that memory
pattern. The value of this state is 0 if the neuron does not encode for that pattern and 1
if it does.
The different states are stored in aM ×N matrix, with shape:


ν1 ν2 · · · νn

p1 s11 s12 · · · s1n
p2 1 0 · · · 1
...

...
...

. . .
...

pm sm1 sm2 · · · smn


Inhibition — The network is subjected to periodic inhibition driven by a sine wave ϕ(t),
with the form:

ϕmax − ϕmin

2

[
1 + sin

(
2πt+

π

2

)]
(4)

where:

ϕmin ∈ R is the minimum inhibition hyperparameter,
ϕmax ∈ R is the maximum inhibition hyperparameter,

Weights — Each neuron in the network is fully connected to all the other neurons. This
gives a N ×N weight matrixW i,j representing the strength of connection or weight w
between neurons νi and νj :


ν1 ν2 · · · νn

ν1 w1,1 w1,2 · · · w1,n

ν2 w2,1 w2,2 · · · w2,n

...
...

...
. . .

...
νm wm,1 wm,2 · · · wm,n


To calculate the weight matrix, the following Hebbian rule is used:

Wi,j =
κ

N

[
M∑
p=1

(spi − f)(spj − f)− ϕ(t)

]
(5)

where:

κ ∈ R⩾0 is the excitation,
M ∈ N is the number of memories,
s ∈ Z[0,1] is the neuron state for a memory,
p is the memory pattern,
f ∈ R is the sparsity,
ϕ ∈ R is the oscillatory inhibition.
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To account for short term associations to the previous and next memories as in the SAM
model, a new termW ∗

i,j is added to the original weight matrix:

WSAM
i,j = Wi,j +W ∗

i,j = Wi,j +
κ

N

[
κf

M−1∑
p=1

spi · s
p+1
j + κb

M∑
p=2

spi · s
p−1
j

]
(6)

where:

κf ∈ R is the forward contiguity,
κb ∈ R is the backward contiguity.

Noise — Each neuron is subjected to Gaussian noise ξ, following the probability density
function:

p(z) =
1

σ
√
2π

e−
(z−µ)2

2σ2 (7)

where:

µ ∈ R is the noise mean,
σ ∈ R⩾0 is the noise standard deviation.

2.2 Population Dynamics
Simulating the network with the original parameters is very computationally expensive,
with the computation time depending primarily on the number of neurons. The system
can be simplified, reducing the number of simulated units. All neurons that present the
same activation state for the different memories will be considered that belong to the
same population π. Moreover, all these neurons have an identical weight matrixW i,j

1,
which will be the weight matrix of the population.

Current — A new term Sπ is introduced in the calculation:

Sπ =
Nπ

N
(8)

where:

Nπ ∈ N is the number of neurons in a population.

The change of current of population πi with time is:

τ ċi(t) = −ci(t) +

U∑
j=1

rj(t) ·Wi,j · Sπ + ξi(t) (9)

where:

U ∈ N is the number of unique populations.

1ij notation refers to the simulated unit, which is from now on a population of neurons instead of the
single neuron.
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After discretizing by Euler:

ci(t+ 1) = −ci(t) +
dt

τ

−ci(t) +

U∑
j=1

rj(t) ·Wi,j · Sπ +
ξi(t)√
dt

 (10)

Firing Rates — Firing rates are calculated with the gain function as before.

Memory Patterns — The M × N matrix containing s states is now a M × U matrix. This
secondmatrix contains fewer elements than the originalmatrix, allowing for faster com‐
putation.

Inhibition — Inhibition calculation remains unchanged for the simulation with popula‐
tions.

Weights — The population weight matrixW i,j for neuron populations, withU×U shape:

Wi,j =
κ

N

[
M∑
p=1

(up
i − f)(up

j − f)− ϕ(t)

]
(11)

WSAM
i,j = Wi,j +W ∗

i,j = Wi,j +
κ

N

[
κf

M−1∑
p=1

up
i · u

p+1
j + κb

M∑
p=2

up
i · u

p−1
j

]
(12)

where:

u ∈ Z[0,1] is the activity state of a population.

Noise —Unmodulated Gaussian noise ξ is computed as before.

2.3 Simulation
Simulation is carried away with population‐level conditions (subsection 2.2). Calcula‐
tions are then based on aM ×U matrix instead of a much largerM ×N matrix. Compu‐
tation time now scales withM instead ofN but for very large values ofN , which would
also increase the number of populations. Recanatesi et al. [6] estimated this method to
be 99.9% faster than simulating individual neurons.
Firing rates are initialized at rini for populations encoding a randomly chosen memory
pattern. Currents are set at r

1
γ

ini. All weights are also defined at this stage. Values of
noise and inhibition change per time step. Neuron currents and firing rates are then
calculated at each time step as well.
A memory is considered recalled if the average firing rate of all encoding neurons is
above rrecall. The network is said to recall a certain memory p if the former condition
is ever fulfilled for that memory during the simulation time.
Table 1 summarizes all hyperparameters used in the simulation.
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2.4 Recall Analysis
The network was simulated first at a smaller scale and for one trial to observe detailed
dynamics. It was then scaled to computer clusters, allowing to reach a total of 10,000
simulations for each condition needed for memory recall analysis. Each network is sim‐
ulated for a total of 450 time cycles.
Several metrics are computed to assess the recall performance of the model. In particu‐
lar, inter‐retrieval time (IRT) is calculated as the number of time cycles until the recall
of a new memory item. Other performance metrics such as memory size intersections
or the average total recalls are also analyzed.

2.5 Computational Tools
Replication was carried out using Python 3.8.5 with packages NumPy 1.19.1, pandas
1.0.5, matplotlib 3.3.0, SciPy 1.5.2, and tqdm 4.48.0 on Parabola GNU/Linux‐libre and
CentOS GNU/Linux.

3 Results

3.1 Model Simulation
Current Dynamics During periods of minimum inhibition, a set of populations dis‐
plays a positive current corresponding to one memory. Meanwhile, the remaining pop‐
ulations have negative current, meaning other memories are not being recalled.
At inhibition maxima, transitions between attractors may happen, with a new set of
neuron populations firing at the next inhibition minimum. Transitions are observed
when current values near inhibition minima, where values are close enough for the
noise to drive changes between limit cycles (Figure 1).

Firing Rates Currents are subjected to a step function to calculate firing rates. The
curve shape of the latter is then closely related to the positive domain of current values
over time. Firing rates above rrecall indicate that amemorywas recalled. Differentmem‐
ories are recalled at times corresponding to minimum values of inhibition. Transitions
may happen between memory items or attractors in periods of minimum inhibition
(Figure 2).

Inhibition The sine wave function provides the network with oscillatory inhibition
necessary for its dynamics. Values have to be adequately scaled to induce the appro‐
priate network behavior of memory recall and transitions between attractors (Figure
3).

Weights Weights show the strength of the connection between elements ij of the ma‐
trix. In the model, three different weight matrices are presented, accounting for the
regular connectivity between neuron populations, but also considering item contiguity
or associations betweenWeight values change according to the parameters of excitation,
forward, and backward contiguity (Figure 4).

Noise Uncorrelated Gaussian noise is calculated for each population of neurons. The
range of values is critical for the network to be successfully simulated, observing the
transition between attractors (Figure 5).
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Figure 1. Currents. A. Currents of each population of neurons over time. B. Memories activation
over time. Each color represents a different population (A) ormemory (B). Axis units are arbitrary.
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Figure 2. Network dynamics. A. Attractor states. The color indicates the firing rate. B. Average
firing rates corresponding to each memory pattern. Each color represents a population. Transi‐
tions may happen between memory items or attractors in periods of minimum inhibition. Axis
units are arbitrary.
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Figure 3. ϕ function and inhibition. A. Sine wave function values over time, which need to be
scaled to have an adequate inhibitory effect on the network. B. Inhibition over time, driving the
periodic behavior of the network. Axis units are arbitrary.
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Figure 4. The strength of the connection between network elements is shown, with higher values
in the color scale indicating stronger association (see color bars). A.Weightmatrix previous to the
addition of the inhibitory terms. B.Weights after adding inhibition. C.Weights corresponding to
backward item contiguity. D. Weights corresponding to item contiguity. Values before applying
inhibition (A) are higher than those in “regular” and contiguity connectivity (B, C, D). Also, the
overall distribution of values is shifted with respect to the main diagonal in backward (forward)
contiguity connectivity, as the connection links to the previous (next) unit. Axis units are arbitrary.
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Figure 5. Noise for all populations, with a different color for each population of neurons. Values
are centered around 0 (the mean of the distribution), and maximum and minimum values fall
within a range that allows attractor transitions without distorting basic network dynamics. Axis
units are arbitrary.
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3.2 Recall Analysis
Temporal Properties of Recall Recall of newmemories progressively slows down with
time, while still possible even at later time cycles, even observing a sharp increase in
recalls in the last iterations. Most transitions occur after one time step (IRT = 0), while
there is some variability in the distribution. As time passes, the average IRT is likely to
decrease due to these rapid memory transitions (Figure 6).

Probability of Recall The frequency of recall monotonically increases with memory
size, asmore overlaps between largememories are expected. As timepasses, the average
IRT is likely to decrease due to these rapid memory transitions (Figure 7). Differences
in the number of points of the figure compared to the original article are likely due to
binning and not due to a change in dynamics.

Memory Transitions More similar memories are expected to be recalled more often.
This effect is observed as most transitions occur between the most similar memories.
There is also a higher transition rate between memories with a lower intersection size
between them. This leads to fast transitions, or lower IRT values for more similar mem‐
ories (Figure 8).

Recall Performance and Parameters Average total number of memories recalled by
100 networks for 100 different values of forward contiguity and noise variance (Figure 9).
Networks recall more words on average withmonotonically increasing with the value of
noise variance σ2 until saturation. The performance also increases along with forward
contiguity κf until saturation, followed by a decrease in recalls. At this point, the con‐
tiguity term likely overcomes noise as the drive for memory transitions. An additional
evaluation focuses on lower forward contiguity values κf . This supports that the dynam‐
ics at the lowest values of κf in the previous figure are due to its relationship with κb,
and not entirely due to randomness. A drop in performance is seen as values get closer
to backward contiguity κb = 850, rising again afterward.
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Figure 6. Temporal properties of recall. A. Cumulative sum of new memory recalls: a memory is
added only the first time it is recalled over time. B. Number of occurrences of IRTs ordered by
their size in time cycles. C. Average IRT values divided by the number of transitions for each line
(memory).
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Figure 7. Frequency of memory recalls according to their size. Larger memories are recalled more
often.
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Figure 8. Influence of memory intersection sizes in the recall process. A. Proportion of transitions
ranked in 15 groups of the same size, from less to more similar. B. Average IRT as a function of
the intersection size in neurons
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Figure 9. Recall performance with varying forward contiguity and noise variance. A. Performance
when varying the value of noise variance σ2 between 0 and 130. B. Performance when varying
the value of forward contiguity κf between 850 and 20,000. C. Recall performance with varying
forward contiguity κf between 100 and 5,000. A drop in performance is seen as values get closer
to backward contiguity κb = 850, rising again afterward.
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4 Discussion

Recanatesi et al. [6] present a neural network model of long‐term memory free recall.
In this model, inhibitory oscillations drive network dynamics. Noise and memory item
contiguity can change the active attractor.
We were not able to replicate the model with the conditions of the original article. The
original authors acknowledged several errors in their manuscript, making replication
unlikely. Fortunately, collaboration with the original authors enabled to reach success‐
ful replication.
Most changes involve a normalization in equation terms, leading to changes of several
orders of magnitude. An error in the original article scaling both contiguity parameters
corresponding to equations 6 and 12 in the reference paper. In the corrected version, a
previously missing pre‐factor provides correct normalization as reported in equations 6
and 12.
Besides, the base values of several hyperparameters needed to be corrected as reflected
in Table 1. The following parameters were changed: γ, κ, κf , and κb. Parameters of the
original article allowed to replicate of retrieval dynamics, but could not replicate the
recall analysis.
After applying the corrections in coordination with the original authors, we do not ob‐
serve important differences with the original article, reporting a full replication of the
original results.

5 Conclusions

In this work, we successfully reproduced the results of the memory model simulation
reported by [6]. This was possible by modifying the equations of the original article.
Changes scale parameters ormodify their base values to correct the errors in the original
manuscript in coordination with the original authors. As in the reference research, we
show that oscillating inhibition, together with noise and item contiguity, induce the
transition of recall of different memories in a Hopfield model of memory retrieval.
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Parameter Description Value

N Number of neurons 100,000
M Number of memory patterns 16

τ Decay time 0.01

θ Gain function threshold 0
γ Gain function exponent 1/3

f Sparsity 0.10
κ Excitation parameter 12,500
κf Forward contiguity 1,500
κb Backward contiguity 850

ϕmin Minimum inhibition parameter 0.4
ϕmax Maximum inhibition parameter 1.2

µ Noise mean 0
σ Noise standard deviation

√
65

tcont Simulation time, continuous 450
dt Integration time step 0.001
rini Initial encoding rate 1
rrecall Recall activation threshold 15

Table 1. Hyperparameters and reference values
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