
README Documentation
Fast Predictions of Liquid-Phase Acid-Catalyzed Reaction

Rates Using Molecular Dynamics Simulations and
Convolutional Neural Networks

Alex K. Chewa, Shengli Jianga, Weiqi Zhanga, Victor Zavalaa, and Reid C. Van
Lehna†

†Please send all e-mail correspondence to: vanlehn@wisc.edu
aDepartment of Chemical and Biological Engineering, University of

Wisconsin-Madison, Madison, USA.

January 24, 2021

Contents
1 Description 2

1.1 Main idea . 2
1.2 Data availability . 3
1.3 Software requirements . 3
1.4 Installing Python environment . 4
1.5 Directory structure . 4

2 Classical molecular dynamics simulations 5
2.1 Directory structure . 5
2.2 MD data used for training 3D CNNs . 5
2.3 MD data in DMSO-, MeCN, and ACE mixtures . 7

3 Using 3D CNNs to analyze MD trajectories 7
3.1 Converting MD trajectories into voxel representations 7
3.2 Training 3D CNNs . 10
3.3 Scripts used to generate publication images . 12

4 Appendix 19
4.1 Accessing 3D CNN models . 19
4.2 Accessing Tensorflow-GPU for faster training . 19

1

mailto:vanlehn@wisc.edu

1 Description
The purpose of this document is to go through a step-by-step procedure in developing data for the
article:

A. K. Chew, S. Jiang, W. Zhang, V. M. Zavala, and R. C. Van Lehn. “Fast predictions of liquid-
phase acid-catalyzed reaction rates using molecular dynamics and convolutional neural networks.”
Chemical Science, 2020, 11, 12464-12476. [Link]

1.1 Main idea
In this work, we combined classical molecular dynamics (MD) simulations and 3D convolutional
neural networks (CNN) to make predictions of experimental kinetic solvent parameters (σ). Figure
1 shows the general workflow that was outline in the paper. First, classical MD simulations were
performed to generate solvent configurations around a reactant. We then converted MD trajectories
into voxel representations by computing the occupancy of water, oxygens of reactant, and cosol-
vent atomic positions within (0.2 nm)3 volume elements, stored as red, green, and blue channels,
respectively. Each MD configuration resulted in a 20 × 20 × 20 × 3 array. We normalized each
array by dividing the maximum number of atoms per channel. We averaged 2 ns of simulation
data (corresponding to 200 MD configurations) to output a voxel representation, shown in Figure
1a. We then augmented the data, as discussed in the main text. The voxel representations were
used as inputs to SolventNet, a 3D CNN developed in-house shown in Figure 1b. By combining
classical MD simulations and 3D CNNs, we utilize highly computationally efficient methods to make
accurate predictions σ, opening avenues to fast screening of solvent compositions and integration
of classical MD with process model tools.

2

https://pubs.rsc.org/en/content/articlelanding/2020/sc/d0sc03261a#!divAbstract

Figure 1: General workflow for using classical molecular dynamics simulations and 3D convolutional
neural networks to make predictions of experimental kinetic solvent parameters (σ). (a) Conversion
of MD configurations into voxel representations. (b) SolventNet architecture that interprets voxel
representations and outputs σ. Additional details can be found in the main text.

1.2 Data availability
All classical MD simulations, 3D CNN architectures, and scripts are available here. To access the
data, download the file, and unzip the directory. The command to unzip in Linux terminal is:

tar -zxvf NAME.tar.gz
where “NAME” is the name of the zipped file.

1.3 Software requirements
The following software is required to run the code:

3

• GROMACS 2016 (Version 0) - (Optional) Used to run MD simulations and convert MD
trajectories.

• Python ≥ 3.6.8 - used to train 3D CNNs and make predictions with the modules and their
versions listed:

– tensorflow version 1.15.0

– keras version 2.3.1

– scipy version 0.18.1

– pandas version 0.19.2

– matplotlib version 2.0.0

In this work, we used Python Version 3.6.8 to train and analyze the results.

1.4 Installing Python environment
For accessing the python environment, install Anaconda in the [Link]. Installing this should enable
conda in the command line. To install the Python environment, run the Listing 1.

1 # CREATE PYTHON ENVIRONMENT
2 conda create -n py36_tensorflow2 python =3.6.8
3 # ACTIVATE ENVIRONMENT
4 conda activate py36_tensorflow2
5 # INSTALLING TENSORFLOW
6 pip install tensorflow ==1.15.0
7 pip install keras ==2.3.1
8 # INSTALL MODULES
9 pip install numpy sklearn matplotlib pandas numpy

10 # USE CONDA TO INSTALL MDTRAJ
11 conda install -n py36_tensorflow2 cython
12 conda install -n py36_tensorflow2 mdtraj
13 # INSTALLING IDE: SPYDER
14 conda install -n py36_tensorflow2 spyder ==3.3.1
15 # TO ACTIVATE SPYDER:
16 spyder --new -instance

Listing 1: Installation of Python environment

1.5 Directory structure
The directories are within the main directory are listed and described below:

• cnn_output: output folders for 3D CNN training.

• csv_output: output folder for csv files.

• combined_data_set: pickle files containing combined training datasets.

• database: pickle files containing voxel representations that are extracted from MD trajecto-
ries.

• python_scripts: python scripts that were used for training 3D CNNs.

4

https://www.anaconda.com/products/individual

• scripts: bash scripts that use the python scripts to either convert MD simulations to voxel
representations or train 3D CNNs.

• storage: location to store pickle files when cross validating or predicting kinetic solvent
parameters.

• MD_Simulations: folder that contains all MD simulations.

• test_set_data: location to store test set data pickles.

2 Classical molecular dynamics simulations
This section describes the classical MD simulations used in the main text. All simulation data is
available in the following directory:

MAIN_dir/MD_simulations

2.1 Directory structure
The MAIN_dir/MD_simulations directory contains the following files:

• training_set: Simulations containing 7 biomass-relevant model reactants: ethyl tert-butyl
ether (ETBE), tert-butanol (TBA), 1,2-propanediol (PDO), levoglucosan (LGA), fructose
(FRU), cellobiose (CEL), and xylitol (XYL). Solvent systems include aqueous mixtures with
25 wt%, 50 wt%, 75 wt%, or 90 wt% of one of three polar aprotic cosolvents: 1,4-dioxane
(DIO), γ-valerolactone (GVL), and tetrahydrofuran (THF). These simulation contains the
first 20 ns of production trajectories and were used to train 3D CNNs.

• testing_set: Simulations containing TBA, PDO, and FRU in DMSO-water mixtures and
acetonitrile (MeCN)-water mixtures. In addition, this folder contains simulations of FRU
and glucose (GLU) in aqueous mixtures with acetone (ACE). These simulations contain 4 ns
of production trajectories and were used to test the prediction accuracy of fully trained 3D
CNNs.

2.2 MD data used for training 3D CNNs
MD productions simulations containing the first 20 ns trajectories taken from Ref. [1] are available
at:

MAIN_dir/MD_simulations/training_set
Full 200 ns production trajectories are available in this link. Listing 2 shows a list of the directories
within training_set.

1 CEL
2 ETBE
3 FRU
4 LGA
5 PDO
6 tBuOH
7 XYL

Listing 2: Directories within MD_simulations/training_set

5

Each directory is labeled by the reactant name:

• CEL: cellobiose

• ETBE: ethyl tert-butyl ether

• FRU: fructose

• LGA: levoglucosan

• PDO: 1,2-propanediol

• tBuOH: tert-butanol

• XYL: xylitol

Each directory contains simulations for the specified reactant. An example for xylitol is shown in
Listing 3.

1 mdRun_403 .15 _6_nm_XYL_10_WtPercWater_spce_dioxane
2 mdRun_403 .15 _6_nm_XYL_10_WtPercWater_spce_GVL_L
3 mdRun_403 .15 _6_nm_XYL_10_WtPercWater_spce_tetrahydrofuran
4 mdRun_403 .15 _6_nm_XYL_25_WtPercWater_spce_dioxane
5 mdRun_403 .15 _6_nm_XYL_25_WtPercWater_spce_GVL_L
6 mdRun_403 .15 _6_nm_XYL_25_WtPercWater_spce_tetrahydrofuran
7 mdRun_403 .15 _6_nm_XYL_50_WtPercWater_spce_dioxane
8 mdRun_403 .15 _6_nm_XYL_50_WtPercWater_spce_GVL_L
9 mdRun_403 .15 _6_nm_XYL_50_WtPercWater_spce_tetrahydrofuran

10 mdRun_403 .15 _6_nm_XYL_75_WtPercWater_spce_dioxane
11 mdRun_403 .15 _6_nm_XYL_75_WtPercWater_spce_GVL_L
12 mdRun_403 .15 _6_nm_XYL_75_WtPercWater_spce_tetrahydrofuran

Listing 3: Example of directories listed in XYL

The directory name was designed to inform about the simulation parameters. For example, mdRun_-
403.15_6_nm_XYL_10_WtPercWater_spce_dioxane means XYL was simulated with 10 wt% wa-
ter/90 wt% dioxane at 403.15 K with the initial box length of 6 nm. Each directory contains the
following main files:

• mixed_solv_prod.gro: Structure file

• mixed_solv_prod_first_20_ns_centered_with_10ns.xtc: NPT production simulation con-
taining 20 ns worth of production data.

• mixed_solv.top: topology information

• *.itp: molecular information

The mixed_solv_prod.gro and mixed_solv_prod_first_20_ns_centered_with_10ns.xtc was
used to generate voxel representations for training 3D CNNs, described in Section 3.1.

6

2.3 MD data in DMSO-, MeCN, and ACE mixtures
We use the same protocol as discussed in Ref. [1] to generate classical MD simulations of reactants
in DMSO-, MeCN-, and ACE-water mixtures. These simulations are available in the following
directory:

MAIN_dir/MD_simulations/testing_set

This directory contains the following directories:

• DMSO: MD simulations of tert-butanol as tBuOH, 1,2-propanediol as PDO, and fructose as FRU
in DMSO-water mixtures.

• MeCN: MD simulations of tert-butanol as tBuOH, 1,2-propanediol as PDO, and fructose as FRU
in MeCN-water mixtures.

• ACE: MD simulations of fructose as FRU and glucose as GLU in ACE-water mixtures.

Similar to Section 2.2, the names of within these directories were designed to inform about the
simulation parameters. For example, in DMSO, mdRun_363.15_6_nm_tBuOH_10_WtPercWater_-
spce_dmso is a MD simulation of TBA in 10 wt% water/90 wt% DMSO, where 363.15 K is the
temperature of the simulation and 6 nm is used as the initial simulation box length. These directories
contain all simulation parameters necessary to run in GROMACS. The description of files is: (All
asterisks indicates expansion found in unix. For example, *_em.* means all files containing “_em”.)

• charmm36-nov2016.ff: force field file for CHARMM36

• mixed_solv_prod.gro: structure file for the production trajectory

• mixed_solv_prod_first_4_ns_centered.xtc: 4 ns NPT production trajectory with reac-
tant centered

• Note, energy minimization files (*_em.*) and 500 ps NPT equilibration files (*_equil.*)
were omitted from the dataset, but you could recreate them using the submit.sh script.

The mixed_solv_prod_first_4_ns_centered.xtc is the trajectory used to generate voxel repre-
sentations for predictions using 3D CNNs.

3 Using 3D CNNs to analyze MD trajectories
This section describes how MD trajectories are converted into voxel representations, training 3D
CNNs, and making predictions with fully trained 3D CNNs.

3.1 Converting MD trajectories into voxel representations
MD trajectories were converted to voxel representations using the following procedure:

• Open the following script:

MAIN_dir/scripts/loop_grid_interpolation.sh

• Adjust the following variables shown in Listing 4.

7

1 ## FOR DEVELOPING TRAINING SET
2 declare -a data_list =("All")
3 xtc_file="mixed_solv_prod_first_20_ns_centered_with_10ns.xtc" # Using first 20

ns of data
4 path_to_sim="${parent_dir }/ MD_Simulations/training_set"
5

6 # Uncomment below for testing set
7 ## FOR DEVELOPING TEST SET
8 # declare -a data_list =(" DMSO" "ACE" "ACN")
9 # xtc_file =" mixed_solv_prod_first_4_ns_centered.xtc"

10

11 ## DEFINING PATHS
12 path_to_training="${parent_dir }/ MD_Simulations/training_set"
13 path_to_testing="${parent_dir }/ MD_Simulations/testing_set"
14

15 ############################
16 ### LOOP GRIDING DETAILS ###
17 ############################
18

19 # BOX INFORMATION
20 box_size =4.0
21 box_inc =0.2 # 20 x 20 x 20
22 # box_inc =0.25 # 16 x 16 x 16
23 # box_inc =0.125 # 32 x 32 x 32
24

25 ## DEFINING MAPPING TYPE
26 box_map_type="3channel_oxy"

Listing 4: Adjustable variables in loop_grid_interpolation.sh

data_list refers to the MD data that is being converted: “All” means the training data
described in Section 2.2; “DMSO”, “ACE”, and “MeCN” means the DMSO, ACE, and MeCN
data described in Section 2.3. box_size is the box length around the reactant that is converted
into voxel representations, which was 4 nm box length in the main text. box_inc is the length
of a volume element, which was 0.2 nm in the main text. box_map_type is the type of voxel
representation, which we varied to see the influence of input representations on the prediction
accuracy of SolventNet. Below list the different types of voxel representations:

– solvent_only: 2 channel voxel representation consisting of water and cosolvent atoms
in each bin

– 3channel_oxy: 3 channel voxel representation consisting of water, oxygens of reactant,
and cosolvent atoms in each bin. This is the representation used in the main text.

– 3channel_hydroxyl: 3 channel voxel representation consisting of water, hydroxyls of
reactant, and cosolvent atoms in each bin

– allatom: 3 channel voxel representation consisting of water, reactant, and cosolvent
atoms in each bin

– allatomwithsoluteoxygen: 4 channel voxel representation consisting of water, all-atom
reactant, cosolvent, and oxygens of reactant atoms in each bin

We focus primarily in the 3channel_oxy representation in this procedure, which was used in
the main text.

8

• Run the script:

bash loop_grid_interpolation.sh

The script should output the following (only initial parts are shown):
1 (py36_tensorflow2) akchew@swarm :2020 _SolventNet_Chem_Sci/scripts $ bash

loop_grid_interpolation.sh
2 *** LOADING GENERAL FUNCTIONS (server_general_research_functions.sh) ***
3 --- Creating database: /home/akchew/scratch/storage /2020 _SolventNet_Chem_Sci/

database /20 _20_20_20ns_oxy_3chan_firstwith10 ---
4 Datatype: All
5 Solutes: CEL ,ETBE ,FRU ,LGA ,PDO ,XYL ,tBuOH
6 Temperatures: 403.15 ,343.15 ,373.15 ,403.15 ,433.15 ,403.15 ,363.15
7 Mass fraction: 10,25,50,75
8 Database name: 20 _20_20_20ns_oxy_3chan
9 Trajectory location: /home/akchew/scratch/storage /2020 _SolventNet_Chem_Sci/

MD_Simulations/training_set
10 XTC file: mixed_solv_prod_first_20_ns_centered_with_10ns.xtc
11 Input dir path: /home/akchew/scratch/storage /2020 _SolventNet_Chem_Sci/

MD_Simulations/training_set/CEL/mdRun_403 .15
_6_nm_CEL_10_WtPercWater_spce_dioxane

Listing 5: Outputs of loop_grid_interpolation.sh

• Now, you should have the following directories in the MAIN_dir/database folder shown in
Listing 6. Note that these directories are available in the Zenodo folder by default, without
running the loop_grid_interpolation.sh script.

1 20 _20_20_20ns_oxy_3chan
2 20 _20_20_20ns_oxy_3chan -TESTSET

Listing 6: Databases after running loop_grid_interpolation.sh

20_20_20_20ns_oxy_3chan contains the training data described in Section 2.2, shown in
Listing 7. 20_20_20_20ns_oxy_3chan-TESTSET contains the testing data.

1 CEL_403 .15 _DIO_10
2 CEL_403 .15 _DIO_25
3 CEL_403 .15 _DIO_50
4 ...
5 XYL_403 .15 _THF_25
6 XYL_403 .15 _THF_50
7 XYL_403 .15 _THF_75

Listing 7: Files within 20_20_20_20ns_oxy_3chan

These files are pickle files containing histogrammed atomic positions in a frame-by-frame basis.
In the main text, we average these frames across 2 ns to generate a voxel representation. As
an example of nomenclature, CEL_403.15_DIO_10 means the pickle contains information of
cellobiose in 10 wt% water/90 wt% dioxane at a systemp temperature of 403.15 K. 20_20_20_-
20ns_oxy_3chan-TESTSET contain voxel representations for reactants in DMSO, MeCN, and
ACE, respectively. Within the database directory, there is a folder titled Experimental_-
Data, which contains CSV files with experimental kinetic solvent parameters (i.e. labels).
Subsequent codes will refer to this directory to obtain labels for training and testing sets.

9

3.2 Training 3D CNNs
Using the voxel representations, 3D CNNs were trained to predict kinetic solvent parameters (σ),
using the following procedure:

• Open the following script:

MAIN_dir/scripts/generate_publication_jobs.sh

• Listing 8 shows the variables that are adjustable in generate_publication_jobs.sh. Un-
comment by removing the hashtag.

1 ## DECLARING TYPES
2 declare -a run_these_jobs =(\
3 "MANUSCRIPT_0_TRAINING_5FOLD" \
4 "MANUSCRIPT_0_TRAINING_3DCNNS_ALLDATA" \
5 "MANUSCRIPT_1_CROSSVALID_ALLDATA" \
6 # "SI_0A_Sampling_across_training_size" \
7 # "SI_0B_Sampling_vs_time_chunks" \
8 # "SI_0D_200NS_SAMPLING" \
9 # "SI_2A_Training_different_voxel_inputs" \

10 # "SI_3A_Training_32_32_32" \
11)
12

13 ## DEFINING MAIN DATABASE TYPE
14 MAIN_DATABASE_TYPE="20 _20_20_20ns_oxy_3chan"
15 SAMPLING_INPUTS="1.00"
16 NUM_CROSS_VALID_FOLDS="5"

Listing 8: Adjustable variables within generate_publication_jobs.sh

The following describes what each job outputs:

– MANUSCRIPT_0_TRAINING_5FOLD: Trains 3D CNNs (VoxNet, ORION, and SolventNet)
using the 5-fold cross validation procedure used for Figure 4b of the main text.

– MANUSCRIPT_0_TRAINING_3DCNNS_ALLDATA: Trains 3D CNNs using all the training data
used to predict the test set for Figure 5 of the main text.

– MANUSCRIPT_1_CROSSVALID_ALLDATA: Performs leave-one-out cross validation for 3D
CNNs, which was used for Figure 6 of the main text.

– SI_0A_Sampling_across_training_size: Tests variation simulation time partitions us-
ing SolventNet, which was used for Figure S3a in the Supporting Information.

– SI_0B_Sampling_vs_time_chunks: Tests partitions of 20 ns to see if there are effects of
different partition trajectories, which was used for Figure S3b in the Supporting Infor-
mation.

– SI_0D_200NS_SAMPLING: Trains SolventNet with 200 ns of simulation data, which was
used for Figure S3c in the Supporting Information.

– SI_2A_Training_different_voxel_inputs: Trains SolventNet with different voxel in-
put representations, which was used to generate Table S4 in the Supporting Information.

– SI_3A_Training_32_32_32: Trains SolventNet and VGG16 using 32 × 32 × 32 voxel
representations, as discussed for Table S4 and Figure S8 in the Supporting Information.

10

• Run the bash script to generate training scripts:

bash generate_publication_jobs.sh

This would create directories within the following directory:

MAIN_dir/cnn_output

Each output directory is the same as the variable under run_these_jobs in Listing 8. The
output directories within cnn_output is shown in Listing 9.

1 2B_md_descriptor_NN
2 MANUSCRIPT_0_TRAINING_5FOLD
3 MANUSCRIPT_0_TRAINING_3DCNNS_ALLDATA
4 MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan_orion_cosolvent
5 MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan_orion_solute
6 MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan_solvent_net_cosolvent
7 MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan_solvent_net_solute
8 MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan_voxnet_cosolvent
9 MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan_voxnet_solute

Listing 9: Files within cnn_output

The description of each folder is shown below:

– 2B_md_descriptor_NN: Neural network training for molecular descriptors, which was
used to output “Multidescriptor neural network model” in Figure 2d of the main text.

– MANUSCRIPT_0_TRAINING_5FOLD: 5-fold cross validation training procedure used for Fig-
ure 4b of the main text. This folder includes training for VoxNet, ORION, and Solvent-
Net.

– MANUSCRIPT_0_TRAINING_3DCNNS_ALLDATA: Training using all training data, which was
used to make predictions for Figure 6 of the main text. This folder includes training for
VoxNet, ORION, and SolventNet.

– MANUSCRIPT_1_CROSSVALID_ALLDATA_20_20_20_20ns_oxy_3chan*: Leave-one-out cross
validation for VoxNet, ORION, and SolventNet across cosolvents and reactants (i.e. so-
lute).

Note that when running generate_publication_jobs.sh, it looks for the training set data
available within MAIN_dir/combined_data_set. This folder contains all a conglomerate of
training data using the frame-by-frame voxel snapshots within the database folder. This
was done because it is computationally more efficient to load one pickle for training rather
than 76 individual pickles. All pre-requisite pickles are available in combined_data_set to run
calculations for the main text. When running generate_publication_jobs.sh, it will output
jobs to run in a high-performance cluster, available in MAIN_dir/scripts/job_list.txt

• Run the training by submitting the submit.sh script. Note that this submit script may need
to be modified for different servers. This procedure should now allow the user to train 3D
CNNs using the dataset described in Section 2.2. All experimental kinetic solvent param-
eters used for training is available in MAIN_dir/database/Experimental_Data/solvent_-
effects_regression_data.csv. All fully trained networks are available in this repository,
described in Section ??.

11

• Each directory should output the following (using 20_20_20_20ns_oxy_3chan-split_avg_-
nonorm-10-strlearn-1.00-solvent_net-500-CEL_ETBE_FRU_LGA_PDO_XYL_tBuOH-10_25_-
50_75-DIO_GVL_THF within MANUSCRIPT_0_TRAINING_3DCNNS_ALLDATA as an example):

– extract_deep_cnn.sh: bash script used to run training

– model.chk: checkpoint file for the model that is stored during training

– model.hdf5: file containing weights associated with the CNN

– model.results: pickle file generated containing post-training information

– submit.sh: submission script that runs extract_deep_cnn_separated_instances.sh

– model_fold_*.{.chk,.hdf5,.pickle}: model outputs for 5-fold cross validation (if
applicable)

3.3 Scripts used to generate publication images
The script below generates all publication-ready images that were used in the main text:
MAIN_dir/python_scripts/publishable_images.py

Spyder was used to generate the images. To access Spyder, follow the installation within listing 1
and run the following:

1 # ACTIVATE ENVIRONMENT
2 conda activate py36_tensorflow2
3 # TO ACTIVATE SPYDER:
4 spyder --new -instance

Listing 10: Instructions to open up Spyder, which was used to develop the publication images.

Before running the scripts, change the global path within:
MAIN_dir/python_scripts/core/global_vars.py

Change the PATH_MAIN_PROJECT variable to the main path where you stored the Zenodo output
folder, as shown in Listing 11.

1 ## DEFINING PATH TO MAIN DATA
2 try:
3 PATH_MAIN_PROJECT = check_path_to_server(r"/Volumes/akchew/scratch/storage /2020

_SolventNet_Chem_Sci/")
4 except Exception:
5 PATH_MAIN_PROJECT = ""
6 pass

Listing 11: Main path to the project that needs to be changed within global_vars.py.

Then, open publishable_images.py and run each section one-by-one using CTRL + Enter for
Windows or Command + Enter on the Mac. Sections are divided by the %## symbol. In the
Figures below, it shows you the output of each section required to re-make the images of the main
text. To save the images, change the save_fig variable to “True” and edit the path_image_dir to
the path of output. For each Figure, we have saved them as an *.svg file, then currated the image
using Adobe Illustrator.

12

Figure 2: Running publishable_images.py to generate Figure 2c of the main text.

13

Figure 3: Running publishable_images.py to generate Figure 2d of the main text.

Figure 4: Running publishable_images.py to generate Figure 4b of the main text.

14

Figure 5: Running publishable_images.py to generate Figure 4c of the main text.

15

Figure 6: Running publishable_images.py to generate Figure 5 of the main text.

16

Figure 7: Running publishable_images.py to generate Figure 6 of the main text.

17

Figure 8: Running publishable_images.py to generate Figure 7 (top) of the main text.

Figure 9: Running publishable_images.py to generate Figure 7 (bottom) of the main text.

At this point, you should be able to generate all the images in the main text. Data used to
generate the Supporting Information is not available in this database to limit the data size. Data
for Supporting Information is available upon request and also could be generated from Section 3.2.

18

4 Appendix

4.1 Accessing 3D CNN models
All 3D CNN models are available within:
MAIN_dir/python_scripts/

• VoxNet: deep_cnn_vox_net.py

• ORION: deep_cnn_ORION.py

• SolventNet: deep_cnn_solvent_net_3.py

Please feel free to import the CNN models from this script and try them out!

4.2 Accessing Tensorflow-GPU for faster training
We leveraged a high-throughput cluster at UW-Madison with 1 GPU / 1 core to quickly perform
calculations. If you have GPUs available, consider installing Tensorflow-GPU:
pip install tensorflow-gpu –user

We also have some code to transfer the simulations from CPU-only jobs to GPU-enabled jobs for
high-throughput clusters. To do this:

• Go to MAIN_dir/scripts/.

• Run the following: bash switch_submit_deep_cnn_chtc.sh FOLDER_NAME "" true
Change the FOLDER_NAME into the folder within the MAIN_dir/cnn_output folder. After
running this script, it should output a new submit script, which is for a high-throughput
cluster. This works for UW-Madison high-throughput cluster, so the code may need to be
modified for different clusters.

References
[1] Theodore W Walker, Alex K Chew, Huixiang Li, Benginur Demir, Z Conrad Zhang, George W

Huber, Reid C Van Lehn, and James A Dumesic. Universal kinetic solvent effects in acid-
catalyzed reactions of biomass-derived oxygenates. Energy & Environmental Science, 11(3):617–
628, 2018.

19

	Description
	Main idea
	Data availability
	Software requirements
	Installing Python environment
	Directory structure

	Classical molecular dynamics simulations
	Directory structure
	MD data used for training 3D CNNs
	MD data in DMSO-, MeCN, and ACE mixtures

	Using 3D CNNs to analyze MD trajectories
	Converting MD trajectories into voxel representations
	Training 3D CNNs
	Scripts used to generate publication images

	Appendix
	Accessing 3D CNN models
	Accessing Tensorflow-GPU for faster training

