Published October 19, 2020 | Version v1
Journal article Open

Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks

  • 1. Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, US

Description

This repository contains molecular dynamics simulation trajectories, Python scripts, and procedures for the publication:

A. K. Chew, S. Jiang, W. Zhang, V. M. Zavala, and R. C. Van Lehn. "Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics and convolutional neural networks." Chem. Sci. Science, 202011, 12464-12476. [Link]

Please refer to "2020_SolventNet_Chem_Sci_ReadMe.pdf" for step-by-step instructions to accessing the data and generating main text images. 

Files

2020_SolventNet_Chem_Sci_ReadMe.pdf

Files (16.0 GB)

Name Size Download all
md5:6d320fc9ff202ec01eaa82f5ecc4270b
16.0 GB Download
md5:b3dd8a20b16cce55fe798bf1be7fb7d0
4.2 MB Preview Download