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Abstract: An assessment of the National Aeronautics and Space Administration NASA’s Cyclone 
Global Navigation Satellite System (CyGNSS) mission for biomass studies is presented in this work 
on rain, coniferous, dry, and moist tropical forests. The main objective is to investigate the capability 
of Global Navigation Satellite Systems Reflectometry (GNSS-R) for biomass retrieval over dense 
forest canopies from a space-borne platform. The potential advantage of CyGNSS, as compared to 
monostatic Synthetic Aperture Radar (SAR) missions, relies on the increasing signal attenuation by 
the vegetation cover, which gradually reduces the coherent scattering component coh,0 . This term 
can only be collected in a bistatic radar geometry. This point motivates the study of the relationship 
between several observables derived from Delay Doppler Maps (DDMs) with Above-Ground 
Biomass (AGB). This assessment is performed at different elevation angles e  as a function of 
Canopy Height (CH). The selected biomass products are obtained from data collected by the 
Geoscience Laser Altimeter System (GLAS) instrument on-board the Ice, Cloud, and land Elevation 
Satellite (ICESat-1). An analysis based on the first derivative of the experimentally derived 
polynomial fitting functions shows that the sensitivity requirements of the Trailing Edge TE  and 
the reflectivity   reduce with increasing biomass up to ~ 350 and ~ 250 ton/ha over the Congo and 
Amazon rainforests, respectively. The empirical relationship between TE  and   with AGB is 
further evaluated at optimum angular ranges using Soil Moisture Active Passive (SMAP)-derived 
Vegetation Optical Depth ( VOD ), and the Polarization Index ( PI ). Additionally, the potential 
influence of Soil Moisture Content (SMC) is investigated over forests with low AGB. 

Keywords: GNSS-R; CyGNSS; SMAP; ICESat-1; tropical forests; Above-Ground Biomass (AGB); 
Canopy Height (CH); biomass retrieval 

 

1. Introduction 

Tropical forests are a key terrestrial ecosystem that play a leading role in the global carbon cycle. 
They are forested landscapes in tropical regions, i.e., land areas approximately bounded by the tropic 
of Cancer and Capricorn. Biomass is an Essential Climate Variable (ECV) that determines the spatial 
distribution of carbon in the biosphere [1]. Quantifying the spatio-temporal fluctuations of the 
biomass could help to understand the dynamics of tropical forests [2]. On the other hand, biomass is 
also an important parameter of the water cycle. Biomass affects evapotranspiration, which has a 
strong impact in freshwater supply in river runoff.  

The Above-Ground Biomass (AGB) of tropical forests represents an important carbon pool [2]. 
Improving our capabilities to estimate AGB over this type of forests is essential to further understand 
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both the carbon and the water cycles. At present, AGB estimation mainly relies on the direct 
estimation of the geometrical properties of the vegetation structure, such as, e.g., Canopy Height 
(CH) [3]. In-situ data collection over tropical regions is limited. Characterization on a regional scale 
of the Earth’s surface is not feasible using in-situ data because of the wide geographical extend and a 
complicated accessibility. Air/space-borne remote sensing instruments are the most suitable solution. 
The Phased Array L-band Synthetic Aperture Radar (PALSAR)/Advanced Land Observing Satellite 
(ALOS) was the first mission that generated systematic measurements of forest biomass. However, it 
saturates for moderate AGB ~ 100 ton/ha [4]. The future European Space Agency ESAs’ BIOMASS 
mission [5] is aimed at overcoming this limitation using a P-band fully polarimetric interferometric 
Synthetic Aperture Radar (InSAR) with multipass capabilities, and a ~12-m deployable reflector 
antenna. Alternative studies have also suggested combining data from Light Detection and Ranging 
(LIDAR), e.g., Geoscience Laser Altimeter System (GLAS) instrument on-board the Ice, Cloud, and 
land Elevation Satellite (ICESat-1) mission [6] with InSAR and/or optical systems [7]. Vegetation 
indices derived from optical data have been linked to Leaf Area Index (LAI); however, LAI is poorly 
correlated with biomass [5]. Additionally, optical sensors suffer from weather conditions and clouds, 
which are a predominant problem over tropical rainforests. Finally, it is worth mentioning that the 
use of Vegetation Optical Depth ( VOD ) for biomass estimation is recently under investigation. 

Global Navigation Satellite Systems Reflectometry (GNSS-R) is a sort of L-band passive multi-
bistatic radar, with as many transmitters as navigation spacecrafts are in view. It provides global 
coverage, full temporal availability, and sampling of the Earth’s surface over multiple tracks 
simultaneously within a wide area up to ~ 1500 km. A potential disadvantage is the poor spatial 
resolution under the incoherent scattering regime. The use of GNSS radio-navigation signals for Earth 
remote sensing has been investigated since it was originally proposed by ESA in 1993 [8] for 
mesoscale ocean altimetry [8,9]. The first feasibility study from space corresponds to an experiment 
performed at the Jet Propulsion Laboratory (JPL) using the Space-borne Imaging Radar-C (SIR-C) on-
board the Space Shuttle [10]. This experiment pushed forward the development of GNSS-R. At 
present, several GNSS-R space-borne studies have been performed from several platforms, including 
United Kingdom (U.K.) Disaster Monitoring System-1 (DMC-1) [11], U.K. Techdemosat-1 (TDS-1) 
[12], Soil Moisture Active Passive (SMAP) [13], and Cyclone Global Navigation Satellite System 
(CyGNSS) 8 microsatellites constellation [14].  

Earth-reflected GNSS signals have sensitivity to a wide variety of geophysical parameters, such 
as, e.g., Snow Water Equivalent (SWE) [15], SMC [16,17] and VOD [17], flood inundation [18–21], and 
surface heat flux [22]. Additionally, some pioneering studies showed a promising sensitivity to forest 
biomass. Scattering simulations based on the Bistatic MIchigan MIcrowave Canopy Scattering (Bi-
MIMICS) model at linear polarization (Horizontal H, Vertical V) suggested a better sensitivity than 
monostatic configurations for canopy height ~ 8 m [23]. This result was consolidated using the Tor 
Vergata model at circular polarization (Right Hand Circular Polarization (RHCP), Left Hand Circular 
Polarization (LHCP)) for higher levels of biomass up to AGB ~ 200 ton/ha [24]. Direct and multiple 
scattering terms were evaluated using Bi-MIMICS [25] at circular polarization (RHCP, LHCP). It was 
concluded that the total scattering field at both polarizations RHCP and LHCP is dominated by the 
scattering over the tree trunks layer. The Soil And Vegetation Reflection Simulator (SAVERS) was 
developed using the Tor Vergata electromagnetic model [26]. SAVERS includes capabilities to predict 
signal power as measured by a GNSS-R reflectometer, considering system properties, observation 
geometry, and applying a polarization synthesis technique to account for antenna polarization 
mismatch, and cross-polarization isolation [26]. Two air-borne experiments confirmed the sensitivity 
of the bistatic reflectivity up to high levels of AGB ~ 300 ton/ha [27]. Empirical results over boreal 
forests from a stratospheric balloon suggested that the coherent scattering term is roughly 
independent of the platform’s height [28]. The EMISVEG [29] and the Signals of opportunity 
Coherent Bistatic scattering model for Vegetated terrains (SCoBi-Veg) [30] simulators further 
analyzed this hypothesis. Lindenmayer systems [31] were used to generate fractal geometry and the 
Foldy’s approximation [32] was used to account for attenuation and phase change of the coherent 
wave propagating in the forest media. More recently, a comprehensive study [33] demonstrated a 
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significant sensitivity of several GNSS-R observables up to AGB ~ 150 ton/ha at different elevation 
angles using the GLObal navigation satellite system Reflectometry Instrument (GLORI) instrument 
[34].  

Feasibility studies for the case of GNSS-R data collected from a space-borne platform have 
shown a certain sensitivity to forests biomass on a global scale using the SMAP radar receiver [13] 
and the U.K. TDS-1 GNSS-R payload [35,36]. CH was demonstrated to be a key parameter, with a 
higher impact in GNSS-R signatures than Normalized Difference Vegetation Index (NDVI). In the 
present study, the capability of GNSS-R for biomass monitoring over tropical forests is evaluated 
using the CyGNSS Level 1 Science Data Record Version 2.1 [14,37,38]. The sensitivity of several 
scientific observables [13] derived from space-borne Delay Doppler Maps (DDMs) over dense forest 
canopies is here analyzed in a more quantitative manner. The selected biomass reference datasets are 
the integrated pantropical AGB map, as provided by Avitabile et al. [39], and ICESat-1/GLAS derived 
global estimates of forest CH [3,6]. Avitabile et al. AGB map was derived from ICESat-1/GLAS. As 
such, both biomass references were selected to be used simultaneously in this work. The following 
questions are addressed: 

1. What is the DDMs’ response to the interaction of GNSS signals with tropical forests?  
2. What is the GNSS signals saturation level (if any) over tropical forests? 
3. What is the optimum GNSS satellites elevation angle for biomass estimation over tropical 

forests? 

This work can be understood as a follow-on study of the sensitivity analysis performed in [17]. 
Here, the main interest is on the sensitivity of   and TE  to AGB over tropical forests as a function 
of CH, PI , and VOD . The study in [17] was focused on the analysis of the relationship between   
and the normalized first Stokes parameter over a wide variety of target areas. The “tau-omega” model 
was found to properly fit this relationship. Several improvements have been introduced: (a) the use 
of raw DDMs, (b) signal calibration, and (c) the use of several observation geometries. This paper is 
organized as follows. Section 2 motivates the use of L-band bistatic radar for biomass studies. Section 
3 describes the selected observables and the methodology. Section 4 analyses the sensitivity of 
CyGNSS to AGB, including a comprehensive interpretation of the experimental results. The main 
conclusions are included in Section 5. Information about test sites and reference data is included in 
Appendix A and Appendix B, respectively. Finally, Appendix C includes supplemental information 
for the evaluation of results in Section 4. 

2. Exploiting CyGNSS for Biomass Monitoring 

2.1. Background 

The CyGNSS mission (down looking antenna gain ~ 14.5 dB, LHCP) was first proposed for ocean 
wind speed estimation over tropical cyclones using GPS L1 C/A signals of opportunity. The orbital 
configuration of each CyGNSS satellite is a circular Low Earth Orbit (LEO) with a height ~ 500 km 
and an inclination angle of ~ 35°. Each single Delay Doppler Mapping Instrument (DDMI) [12,14] 
aboard the 8 CyGNSS microsatellites collects forward scattered signals along four specular directions 
(elevation angle of the incident wave e,i  equals elevation angle of the reflected wave e,s ; e,i  = 

e,s  = e ) corresponding to four different transmitting GPS spacecrafts, simultaneously (Figure 1). 

As such, CyGNSS allows one to sample the Earth’s surface along 32 tracks simultaneously, within a 
wide range of satellites’ elevation angles e  ~ [20, 90]° over tropical latitudes ~ [-40, 40]°.  
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Figure 1. Cyclone Global Navigation Satellite System (CyGNSS) scenario. The scattering of GNSS 
signals is strong over an area around the nominal specular point e,i  = e,s

 
= e . e  = 90° at the 

normal direction to the Earth’s surface. Transmitted GNSS signals are Right Hand Circular Polarized 
(RHCP), although with a certain degree of depolarization. Reflected GNSS signals are Right and Left-
HCP (LHCP) because of polarization changes during multiple (scattering processes which include at 
least double reflections) and direct (scattering processes that only account for single reflections) 
scattering [29]. GNSS signals become mostly RHCP after double scattering, while they become mostly 
LHCP after direct scattering [29]. The CyGNSS constellation (8 spacecrafts) provides 32 Delay 
Doppler Maps at a time. 

The retrieval of geophysical parameters from CyGNSS requires that the DDMI payload cross-
correlates directly the collected signals against a known replica of the GPS L1 C/A code, after 
compensating for the Doppler shift [8,12,14]. Consequently, 32 complex reflected DDMs 

r
Y  are 

generated on-board at a time, using a short coherent integration time cT ~ 1 ms. Complex DDMs 
r

Y  

are incoherently averaged along ~ 1 s to finally generate the so-called power DDMs 2
rY ( ,f ) .  

Power DDMs 2
rY ( ,f )  can be modelled using geometrical and scattering related parameters 

as follows [40]: 

2 22 0
c2 T R D cT T R 2

r 3 2 2
T R

PT (R R )/c,f fG GY ( ,f ) ,d
(4 ) R R

     
  

   (1) 

where TP  is the power of the RHCP transmitted signals, ~ 19 cm is the wavelength of the signals 
at L1, TG  and RG  are the transmitting and receiving antenna gains, TR , and RR  are the ranges 
from the transmitter and the receiver to the specular point, respectively,   is the Woodward 

Ambiguity Function (WAF),   is the delay of the signal from the transmitter to the receiver, 
D

f  is 

the Doppler shift of the reflected signal, 
c

f  is aimed to compensate the Doppler shift of the signal, 
  is the bistatic scattering coefficient at LHCP, and   is the positioning vector of the scattering 

point.  
The bistatic scattering coefficient is defined as follows [41]: 

coh,0 incoh,0 ,      (2) 
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where coh,0  and incoh,0  are the coherent and the incoherent scattering terms, respectively. incoh,0  
describes scattering properties of the surface and the vegetation, i.e., volume scattering. coh,0  
depends mainly on surface properties and it has a significantly narrower (practically, a delta 
function) power distribution over scattering angles than incoh,0 . Consequently, DDMs consists on a 
sum of two terms, as follows [28,42,43]: 

2 22
r r,coh r,incoh .Y ( ,f ) Y ( ,f ) Y ( ,f )      (3) 

2
r,cohY ( ,f )  accounts for coherent reflections, while 2

r,incohY ( ,f )  is responsible for the diffuse 

scattering. The relative portion of both components mainly depends on the coherent integration time 

cT , the observation geometry, and both the dielectric and structural properties of the scattering 

media. 

Several works found a transition from incoherent to coherent scattering regime over the ocean 

surface [43,44], where 2
r,incohY ( ,f )  is dominant for high e  [45]. Theoretical simulations have 

been carried out to evaluate the behavior of the incoherent reflected power as a function of e  [45]. 

It was stated that 2
r,incohY ( ,f )  decreases ~20% when e  decreases from e  ~90° to e  ~50°. 

Over land surfaces, global scale results [46] have shown that   decreases with decreasing e  down 
to ~55°. This empirical observation was justified because of the effect of the incoherent scattering term 

incoh,0 . On the other hand,   increases for lower e  because of the increasing signal coherence. 
The reflectivity   accounts for contributions from both coherent and incoherent scattering 

terms along both angular ranges. The most relevant difference between both scattering terms is on 
the combination of the electromagnetic field vectors. coh,0  is the result of the coherent combination 
of the signals reflected on individual facets within the first Fresnel zone. incoh,0  comes from the 
random combination of electromagnetic signals scattered within the glistening zone that add together 
at the GNSS-R receiver. When the combination is fully coherent, coh,0  accounts for all the reflected 
power. In the occurrence of diffuse scattering, the random signs of the electric field cross-products 
cancel out coh,0 , and the reflected power is provided by incoh,0 . The changes in the angular evolution 
of   depend on the dominant scattering mechanism.  

2.2. Motivation 

It is hypothesized that GNSS-R measurements have a certain sensitivity to biomass over tropical 
forests (Figure 2) and this sensitivity can be higher than that of current SAR missions. This hypothesis 
is based on the following statements: (a) The backscatter intensity measured by monostatic SAR 
increases with biomass up to a saturation level AGB ~ 100 ton/ha. (b) L-band GNSS signals can 
partially penetrate the vegetation cover because of the semi transparency of the vegetation at low 
frequency bands. (c) The bistatic scattering pattern of the coherent surface scattering component 
follows a delta function along the specular direction, while the incoherent scattered signals spread 

along all other directions. (d) The coherent component 2
r,cohY ( ,f )  can be higher than the 

incoherent one 2
r,incohY ( ,f )  even from a space-borne platform. 
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(a) 

 

(b) 

Figure 2. Sample CyGNSS Delay Doppler Maps (DDMs) over (a) rain and (b) dry tropical forests. A 
significant difference in the DDMs is found between both study sites. The spreading in the delay 
domain is much higher over rain than over dry forests. On the other hand, the scattering is quite 
specular over dry forests. 

2
r,cohY ( ,f )  includes coherent scattering from the surface. It can be expressed analytically as 

follows [47]: 

2
222

T Rc 22 T
r,coh e e22

T R

),
,fG GPT

Y ( ,f ) R( ) exp( (2k sin )
(R +R )(4 )

 
      


 (4) 

where R  is the LHCP Fresnel reflection coefficient, k  is the signal angular wavenumber,   is the 
surface height standard deviation (related to surface roughness), and   is the transmissivity of the 
vegetation: 

eexp( 2VOD sin ),      (5) 

where VOD  is the Vegetation Optical Depth. VOD  is an index of leaf and woody biomass that is 
used to parameterize absorption effects. VOD  data derived at L-band are better correlated to AGB 
and CH than C-band data because of the higher signal penetration depth at lower frequency bands 
[48]. C-band is only sensitive to top canopy layers, while L-band is sensitive to the canopy from top 
to bottom layers [48]. Increasing levels of biomass belong to higher signal attenuation effects. On the 
other hand, optically derived vegetation parameters, such as, e.g., NDVI are only correlated with 
green leaf material. Tropical rainforests are characterized by wet biomass and the impact of signal 
attenuation through the vegetation cover is thus higher than scattering effects [49]. This attenuation 
becomes higher for decreasing e  because of the larger signal path along the vegetation cover. The 
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impact of e  on 2
r,cohY ( ,f )  is twofold. On one hand it influences the Fresnel reflection 

coefficient, and on the other hand it influences the exponential decaying factor in Equation (4). For a 

totally flat surface, the root mean square of the surface height variation is zero, and 2
r,cohY ( ,f )  

equals the square of the amplitude of the Fresnel reflection coefficient. R  is constant for e  > 40° 
and it decreases significantly for lower angles [27]. However, the exponential factor increases 

significantly with lower e . As a consequence, 2
r,cohY ( ,f )  increases at grazing angles [46]. 

Finally, it is worth commenting that 2
r,cohY ( ,f )  can be assumed to be roughly independent 

of the platform’s height in a LEO scenario because 
T R

R R . 2
r,cohY ( ,f )  suffers lower free space 

losses than 2
r,incohY ( ,f ) , following the classical bistatic radar equation.  

2
r,incohY ( ,f )  includes two main contributions: (a) surface scattering over areas with moderate 

to high roughness (small-scale roughness) and topography, and (b) volume scattering [29] from the 
vegetation cover including leaves, branches, and trunks. The impact of double bouncing scattering 
can be assumed to be negligible because the LHCP down looking antennas filter out the RHCP 
component of the total scattered electromagnetic field. The polarization of GNSS signals changes 
from RHCP to LHCP after direct scattering. However, they become RHCP after double reflections, 
first from RHCP to LHCP and then from LHCP to RHCP.  

3. Methodology 

3.1. Definition of the Selected CyGNSS Observables 

CyGNSS Level 2.1 Science Data Record [14,37,38] was selected for this study. The original data 
were first filtered out using an equivalent “CyGNSS overall quality flag” over land surfaces to 
improve the quality of the observables. Reflected delay waveforms r,rawWF  were obtained from the 

original DDMs 2
rY ( ,f )  at zero Doppler frequency: 

2
rr,rawWF Y ( ,f =0) .   (6) 

The delay bin resolution of the original 17 lag waveforms r,rawWF  is ~0.2552 GPS C/A chips. A re-

sampling and interpolation of the resulting 1700 lag waveforms was performed using a spline 
method [50] to increase the accuracy of the waveforms, before applying the algorithms to extract the 
observables. Several observables were considered to evaluate the sensitivity of coh,0  and the volume 
scattering term to forests biomass.  

The trailing edge width TE  was defined as the lag difference between the 70% power threshold 
of the high-resolution waveforms r,thresholdWF  and the corresponding maximum power of the 

waveforms r,peakWF  [13]: 

WF WFr,threshold r,peak
TE .    (7) 

Different power thresholds were tested. The 50% power threshold was found to cut off some 
lags when this threshold was out of the original 17 lag waveforms. On the other hand, the 90% power 
threshold provided a lower dynamic range as compare to the 70%. The incoherent scattering term 

incoh,0  is the main contribution to r,thresholdWF , while both the coherent coh,0  and the incoherent 
incoh,0  scattering terms significantly contribute to the peak power of the waveforms r,peakWF . 
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2
rY ( ,f )  are composed of both coherent and incoherent scattering terms over tropical forests. The 

width of these power waveforms depends on the scattering properties, in a differentiated manner 
depending on the coherent-to-incoherent scattering ratio. The width is expected to be small if the 

ratio is high because of the strong power contribution of the coherent term 2
r,cohY ( ,f )  to the peak 

of the power waveforms.  
The reflectivity   is estimated as the ratio of the reflected r,peakWF  and the direct d,peakWF  

power waveforms peaks, after compensating for the noise power floor and the antennas’ gain 
patterns as a function of the elevation angle e  as: 

r,peak d,peak .WF WF   (8) 

The antennas’ gain patterns were compensated versus the gain at the corresponding boresight 
direction (down looking gain ∼14.5 dB, e  ~62° and up looking gain ∼4.7 dB, e  ~90°), and the 
difference of both gains at boresight. The compensation of the antennas’ gain was implemented as a 
function of e . This is relevant for an accurate estimation of   because the transmitted signal power 

depends on e , and because both gain patterns have a different relationship with this variable. The 

CYGNSS Level 1 Science Data Record variables used in this procedure are highlighted 2
r,incohY ( ,f )

here: raw DDM and Zenith Signal-to-Noise Ratio (SNR) for the estimation of r,peakWF  and d,peakWF , 

while Specular point Rx antenna gain for the information of the down looking antenna gain in the 
direction of the specular point. The up looking antenna is omnidirectional with a gain ∼4.7 dB at 
boresight and a half power beam width of ∼57°. The noise power floor was estimated as the mean 
value of the DDM subset where the signal is not present [51]. The delay separation between the DDM 
subset and DDM peak was at least 0.75 chips, and estimation of   was discarded if this distance 
was shorter than 0.75 chips.  

The half power beam width (−3 dB) of each down-looking CyGNSS antenna is ~30°, and the −6 
dB field-of-view is ~45°. On the other hand, each antenna pointed to the Earth’s surface with an 
elevation angle of e  ~62° (antenna boresight). As such, GNSS signals reflected at low angles e  
down to ~20° can be accurately collected through the main lobe of each antenna. 

The nominal mission lifetime is 2 years. This milestone was achieved on March 2019. Experience 
with CyGNSS wind measurements shows that absolute power measurements is currently one of the 
challenges of this mission [52,53]. In this work, the direct signal was used to partially improve the 
estimation of  . At present, the mission is operating nominally, and the Automatic Gain Control 
(AGC) for the Zenith channel was disabled from August 2018. This fact helps to improve the accuracy 
in the estimation of   using Equation (8). On the other hand,   could also be inverted from 
scattering models. However, this approach relies on the assumption that the scattering is totally 
coherent [51] or totally incoherent [54]. This was the main motivation to use Equation (8) in the 

estimation of the reflectivity over forests regions, where 2
rY ( ,f )  are composed of both coherent 

2
r,cohY ( ,f )  and incoherent 2

r,incohY ( ,f )  scattering terms. 

3.2. Auxiliary Forests Vegetation Parameters 

The SMAP-Enhanced L3 Radiometer Global Daily 9 km Level L3 SPL3SMP_E Version 1.0 
product was used to generate auxiliary vegetation parameters. This product was derived from SMAP 
radiometer (6 A.M. – 6 P.M. data in different arrays) and ancillary data over the global 9-km Equal 
Area Scalable Earth (EASE 2-0) grid [55–57]. The SMAP L-band mission provides a better signal 
penetration depth over the vegetation as compared to higher frequency bands. As such, it is an 
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adequate candidate to evaluate the relationship between CyGNSS derived TE  and   with AGB, 
as a function of VOD , PI , and SMC. 

1) Vegetation Optical Depth ( VOD ): The retrieval is based on a priori NDVI information 
obtained from visible-near infrared reflectance data from the NPP/JPSS VIIRS instrument, and land 
cover type assumptions [55–57]. It is used to retrieve the transmissivity   of the vegetation as an 
estimation of the attenuation of the electromagnetic signal through the vegetation layer. SMOS-
derived VOD  has been also used in, e.g., [58]. 

2) Polarization Index ( PI ): It is defined as the difference between the microwave radiometric 
brightness temperatures at V-pol 

BV
T  and H-pol 

BH
T , normalized to their average value as follows 

[59–62]: 

BV BH

BV BH

.
( )/2

T T
PI

T T



  (9) 

PI  normalizes the measurements of the brightness temperatures and it is independent of the 
physical temperature of the surface. The potential sensitivity of PI  to dense forest canopies is based 
on the assumption that V-polarized emission from soil is attenuated by vegetation, which, on the 
other hand, emits much less polarized radiation depending on the amount of biomass. This 
parameter was found to decrease when the biomass increases, independently of the crop type. The 
performance over tropical forests is evaluated here. 

3) Soil Moisture Content (SMC): The retrieval of SMC is based on the use of the V-pol single 
channel algorithm [55–57] only when favorable surface conditions appear at a given grid cell. 
Corrections for surface roughness, effective soil temperature, and Vegetation Water Content (VWC) 
were also applied. 

3.3. Strategy 

TE  and   were classified into different groups according to different ranges of the satellites’ 
elevation angles e  in steps of ~10° from e  ~90° to e  ~20°. e  is an important parameter that 

remarkably affects the ratio of the coherent 2
r,cohY ( ,f )  to incoherent 2

r,incohY ( ,f )  scattering 

components. The contribution of the topography to the incoherent scattering term 2
r,incohY ( ,f )  

was partially filtered out to evaluate only the effect of the volume scattering term. In so doing, only 
pixels over the surface with a Terrain Ruggedness Index (TRI) lower than ~ 15 were considered 
[63,64]. This threshold was found, empirically, to limit the effect of topography. Several TRI 
thresholds were tested. It was found that levels higher than ~ 15 significantly increase the spreading 
of the TE . On the other hand, there is a remaining incoherent scattering contribution due to the 

small-scale surface roughness. However, the coherent scattering term 2
r,cohY ( ,f )  largely overpass 

the incoherent scattering term 2
r,incohY ( ,f )  associated to the small-scale roughness over land 

surfaces [28,42,47]. Topography is an important factor that disturbs   because the local surface 
slopes modify the size of the scattering area [65].  

Quantifying and analyzing the relationship between TE  and   against AGB and CH is the 
main focus of this work. In so doing, SMAP-derived VOD , PI , and SMC products were also used 
to further analyze the results. A common grid was thus required, because of the variety of products 
with different footprint sizes and spatio-temporal sampling characteristics. A 0.1° × 0.1° 
latitude/longitude grid was selected. All products were averaged using a moving window of 0.2° in 
steps of 0.1°. The spatial resolution is ~ 20 km × 20 km at equatorial latitudes, which is wide enough 

to account for the across-track spreading ~20 km of the DDMs due to 2
r,incohY ( ,f ) . The ultimate 

resolution at a cell center is ~ 20 km × 20 km because multiple satellites overpasses with different 
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orientations were considered. This grid also allows us to account for 2
r,cohY ( ,f ) . This term is 

limited by the along-track resolution ~7.6 km, related with the orbital motion and the incoherent 
integration time ~1 s. Finally, it is worth pointing out that this strategy provides a filtering of potential 
fluctuations of   and TE  due to remaining (after quality flags removal) noise sources, such as 
Attitude Determination and Control Subsystem (ADCS), the geolocation of the nominal specular 
reflection points, and the use of eight different DDMs sources (eight distributed microsatellites) in 
the moving averaging filter. 

The selected temporal window was 6 months (01/08/2018 to 31/01/2019). This temporal length is 
large enough to provide statistically significant results. This specific time period was selected because 
the AGC was disabled on July 2018, so as to improve the performance in the estimation of   using 
Equation (8). The temporal length was selected as large as possible at the time of starting this work 
because this study is not focused on the analysis of potential temporal fluctuations of different 
geophysical parameters. The temporal variations of AGB and CH during this period were assumed 
to be negligible.  

4. Performance Analysis 

4.1. Introduction 

CyGNSS-derived TE  and   were used in this study to improve our understanding in the 
performance of GNSS-R for biomass studies (Figures 3–8). The analysis was performed over different 
types of forests, such as Congo rain (Figures 3a–d, 4a–d, 5a–d), Amazon rain (Figures 3e-h, 4e-h, 5e-
h), coniferous (Figures 6a–d, 7a–d, 8a–d), dry (Figures 6e-h, 7e-h, 8e-h), and moist (Figures 6i–l, 7i–l, 
8i–l) tropical forests. These target areas were selected so as to cover a wide variety of forests on a 
pantropical scale.  

AGB and CH data were obtained from the Avitabile et al. product [39] and the ICESat-1/GLAS 
space-borne instrument [3,6], respectively. Both biomass references were displayed over the specific 
target areas, enabling a first qualitative evaluation (Figures 3 and 6). A certain correlation of TE  and 
  with AGB and CH was found over the selected study sites (Table 1). This correlation improves 
over more dense forest canopies.   decreases with increasing biomass levels. On the other hand, 
the spreading of TE  increases with increasing levels of biomass. Avitabile’s map and CyGNSS 
sampling properties show a good performance, while GLAS-derived CH data are provided with less 
spatial density. This observation motivates the selection of AGB from Avitabile et al. as the main 
biomass reference. CH was used as an auxiliary product to assess the potential impact of this term in 
the interaction of GNSS signals with the vegetation.  

4.2. Sensitivity Analysis as a Function of the Elevation Angle 

Figures 4,5,7,8 show the scatter plots of TE  and   with AGB over Congo rain (Figures 4a–d 
and 5a–d), Amazon rain (Figures 4e–h and 5e–h), coniferous (Figures 7a–d and 8a–d), dry (Figures 
7e–h and 8e–h), and moist (Figures 7i–l and 8i–l) tropical forests. These plots are depicted as a 
function of CH. They were computed using the mean values of the biomass reference data in steps of 
TE  ~1 m and   ~0.05 dB. The values of these steps were found empirically. This strategy allowed 
us to filter noise at a pixel level, such as speckle in 

r
Y ( , f ) , and potential errors in GLAS-derived 

AGB. On the other hand, it provided enough sampling density to compute the correlation 
coefficients, i.e., Spearman for rainforests, and Pearson for other forests (Table 1). Different steps were 
also tested. Decreasing values of these steps belonged to a noisier behavior in the scatter plots, while 
increasing values reduced sampling density. The extension of the target areas is large, providing 
enough data. The errors were assumed to be randomly distributed. Thus, noise could be reduced 
after averaging, so as to find the underlying relationship between CyGNSS observables and AGB. 
This work is focused on the analysis of this empirical relationship on a regional scale. The correlation 
between the mean values of both CyGNSS observables and AGB is clearly visible. Increasing levels 
of AGB belongs to decreasing   and increasing TE . 
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Figure 3. Tropical rainforests study over (a)–(d) the Congo and (e)–(h) the Amazon basins. (a,e) 
Above-Ground Biomass (AGB), (b,f) Canopy Height (CH), 6 months (01/08/2018-31/01/2019) CyGNSS 
(c,g) reflectivity  , and (d,h) 70% trailing edge width TE . The Congo (Lat. = [−4, 4]°, Lon. [9, 28]°) 
and Amazon (Lat. = [−10, 5]°, Lon. [−75, −54]°) basins are mainly covered by river sub basins and 
wetlands. Surface reflectivity is strong, belonging to a high sensitivity to the vegetation cover thanks 
to a significant signal penetration depth at L-band. 
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Figure 4. Relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived 70% trailing edge 
width TE  and Above-Ground Biomass (AGB) as a function of Canopy Height (CH) over (a)–(d) the 
Congo and (e)–(h) Amazon rainforests as a function of the elevation angle: (a),(e) e  ~[80, 90]°, (b),(f) 

e  ~[60, 70]°, (c),(g) e  ~[40, 50]°, and (d),(h) e  ~[20, 30]°. Higher measurable AGB dynamic 

range for grazing angles e  ~[20, 30]°. Sensitivity analysis is shown in Table 1 and Tables A1–A8. 

 
Figure 5. Relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived reflectivity   and 
Above-Ground Biomass (AGB) as a function of Canopy Height (CH) over (a)–(d) the Congo and (e)–
(h) Amazon rainforests as a function of the elevation angle: (a),(e) e  ~[80, 90]°, (b),(f) e  ~[60, 70]°, 

(c),(g) e  ~[40, 50]°, and (d),(h) e  ~[20, 30]°. Sensitivity analysis is shown in Table 1 and Tables 

A1–A8. 

Speckle is a source of noise that involves diffuse scattering. If the scattering medium is rough 
with respect to  , the different heights of the scatterers over the glistening zone will randomly shift 
the phases of the GNSS signals. Some of these paths will destructively interfere and others will 
constructively interfere. Thus, the signal power level as measured by CyGNSS will change randomly. 
From this point, it can be stated that the SNR of the reflected signals is affected by tropical forests. 
The strategy described previously was applied to mitigate this effect. At the same time, the AGB 
reference data could potentially have some errors because this dataset is derived from CH data and 
assumed continental allometric relationships. Nonetheless the validation of Avitabile’s map [39] 
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shows a lower root mean square error (RMSE) (reduction down to ~74%) and bias (reduction down 
to ~153%) than both original datasets [66,67] over all the continents. An interpretation of the results 
is provided for each study site: 

(1) Tropical rainforests (Figures 4 and 5): The empirical relationships of TE  and   with AGB 
were fitted by empirically derived polynomial functions (Table 1) at different angular ranges e  
~[80, 90]°, ~[60, 70]°, ~[40, 50]°, and ~[20, 30]° over Congo (Figures 4a–d and 5a–d) and Amazon 
(Figures 4e–h and 5e–h). The first derivative of these functions was computed at different mean levels 
of AGB in steps of ~50 ton/ha, for different angular ranges (Tables A1–A4). The values of the 
derivative reduce with increasing AGB levels. Uncertainties in AGB estimation were computed as 
the values of the first derivatives times the uncertainties in the GNSS-R observables. This point is 
translated into smaller uncertainties in the estimation of AGB with increasing biomass levels. A 
budget (ignoring noise) is provided assuming uncertainties of, e.g., TE  ~1 m and   ~0.1 dB (Tables 
A5–A8). 

In this work, the main interest is in the sensitivity, ignoring noise in the measurements when 
observations deviate from the fits [68]. As such, at a first order, the required GNSS-R sensitivity and 
the AGB uncertainties are related by the first derivative of the fitting functions [69]. These results 
suggest that different types of forests have a different response. As such, different models should be 
applied to retrieve biomass at each type of forest. 

Figures 4 and 5 show that TE  increases with increasing AGB up to TE  ~800 m over Congo 
(Figure 4d) and TE  ~600 m over Amazon (Figure 4e–h). This experimental evidence is justified 
because, for increasing vegetation levels (Figure A1a,c), (a) a higher volume scattering term in incoh,0  

increases the tail of 2
rY ( ,f ) , and (b) the coherent scattering term coh,0  is gradually more 

attenuated. On the other hand, the measurable AGB dynamic range increases with decreasing e , 

from ~140 ton/ha at e  ~[80, 90]° to 300 ton/ha at e  ~[20, 30]° over the Congo target area, while it 

increases from ~ 140 ton/ha at e  ~[80, 90]° to 170 ton/ha a e  ~[20, 30]° over the Amazon site. The 

measurable AGB range is a function of e  because of the impact of the different scattering 

mechanisms at different e . The coherent scattering increases at grazing angles, belonging to a 
higher measurable AGB dynamic range, as compared to a Nadir looking configuration. The 
improved measurable dynamic range at lower angles is explained because of the higher coherent 
reflectivity at this geometry Equation (4). This scattering property belongs to an increment of the SNR 
dynamic range, which in turn improves the sensitivity of TE  to the attenuating cover. Coherence 
effects could also appear after scattering over the vegetation cover if the coherent integration time 
would set to be long enough, e.g., cT  ~20 ms [27,28,33], so as to filter out the noise and the volume 
scattering term. However, the volume scattering term is high for lower integration times, e.g., cT  ~1 
ms. 

  gradually decreases down to ~ −25 dB with increasing AGB because of the increasing 
attenuation of the GNSS signals along the vegetation cover (Figure 5). The measurable AGB dynamic 
range first increases from e  ~[80, 90]° to ~[60, 70]°, and later it reduces with decreasing angles from 

e  ~[60, 70]° to ~[20, 30]°. On the other hand,   is significantly stronger at e  ~[20, 30]° than at 

higher observation angles. This is a symptom that the coherent scattering term coh,0  is dominant at 
grazing geometries, even over tropical rainforests [46]. The coherent scattering term coh,0  is mainly 
associated with surface scattering. As such, the sensitivity of   to AGB reduces when coh,0  is 
dominant. Indeed, it is found that the RMSE of the scatter plots increases with increasing   levels. 
Potential fluctuations of surface properties have a stronger impact at this geometry (Figure 5). With 
this respect, the performance of TE  is better than  . The information in r,peakWF  is poorly related 

to biomass when coh,0  is dominant. However, the higher SNR dynamic range is linked to a higher 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

Figure 6. Analysis over different types of low Above-Ground Biomass (AGB) tropical forests: (a)-(d) 
coniferous, (e)–(h) dry, and (i)–(l) moist. (a),(e),(i) AGB, (b),(f),(j) Canopy Height (CH), 6-month 
(01/08/2018-31/01/2019) CyGNSS (c),(g),(k) reflectivity  , and (d),(h),(l) 70% trailing edge width TE

. Mexico coniferous- (Lat. = [19, 28]°, Lon. = [−104, −98]°), Zambia dry- (Lat. = [−14, −9]°, Lon. = [29, 
33]°), and Brazil moist- (Lat. = [−20, −13]°, Lon. = [- 51, −43]°) tropical forests. 

TE  dynamic range, which in turn increases the sensitivity of TE  to AGB, although the sensitivity 
of   is poor. These observations suggest that the sensitivity of   to forests canopies improves 
when the incoherent scattering term is dominant over the coherent one coh,0  [46]. Indeed, the 
highest AGB dynamic range appears at e  ~[60, 70]°. The interpretation is two-fold: (a) a larger 

signal propagation path through the vegetation, as compared to that corresponding to higher e , 

improves the sensitivity to biomass, and (b) the coherent scattering term coh,0  starts to be dominant 
for angles lower than e  ~60° [46]. A complementary description of the impact of e  can be found 
in [46].  

Overall, it is also found that the dispersion in the scatter plots is very high over the strongest 
levels of  , where surface reflectivity starts to play an important role in the overall reflectivity. This 
significant dispersion is related to the fluctuations of certain surface properties, depending on the 
surface area under consideration. This dispersion increases for grazing angles, which suggests that 
surface properties such as rivers start to play an important role. As such,   appears quite high even 
for high AGB levels. 
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Figure 7. Relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived 70% trailing edge 
width TE  and Above-Ground Biomass (AGB) as a function of Canopy Height (CH) over (a)–(d) 
coniferous, (e)–(h) dry, and (j)–(l) moist forests as a function of the elevation angle: (a),(e),(i) e  ~[80, 

90]°, (b),(f),(j) e  ~[60, 70]°, (c),(g),(k) e  ~[40, 50]°, and (d),(h),(l) e  ~[20, 30]°. Statistics in Table 

1. 

 
Figure 8. Relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived reflectivity   and 
Above-Ground Biomass (AGB) as a function of Canopy Height (CH) over (a)–(d) coniferous, (e)–(h) 
dry, and (j)–(l) moist forests as a function of the elevation angle: (a),(e),(i) e  ~[80, 90]°, (b),(f),(j) e  

~[60, 70]°, (c),(g),(k) e  ~[40, 50]°, and (d),(h),(l) e  ~[20, 30]°. Statistics in Table 1. 
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Table 1. Statistics (Correlation (Spearman for rain, Pearson for other forests), root mean square error 
(RMSE), order polynomial “O” fit, and slope for linear regressions) of the functional correlation 
between trailing edge width TE  and reflectivity   with Above-Ground Biomass (AGB) over 
Congo (CG) and Amazon (AM) rain, coniferous (CF), dry (DR), and moist (MT) tropical forests at 
different elevation angles e  ~[80, 90]°, e  ~[60, 70]°, e  ~[40, 50]°, and e  ~[20, 30]°. 

 

e  ~[80, 90]° e  ~[60, 70]° 

TE    TE    

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/
m]  

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
dB] 

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
m] 

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
dB] 

CG 0.73 40.6 3 - −0.78 26.8 4 - 0.91 31.5 3 - −0.92 29.8 4 - 
AM 0.75 33.7 4 - −0.93 13.5 4 - 0.68 26.6 6 - −0.88 13.6 6 - 
CF 0.36 12.2 1 0.0131 −0.69 6.8 1 −1.1201 0.34 9.2 1 0.0112 −0.67 8.4 1 −1.0972 
DR 0.38 11.4 1 0.0164 −0.62 7.6 1 −1.3260 0.53 12.3 1 0.0176 −0.67 5.6 1 −1.3675 
MT 0.25 5 1 0.0087 −0.26 5.3 1 −0.2802 0.10 3.9 1 0.0035 −0.43 4.2 1 −0.4402 

 

e  ~[40, 50]° e  ~[20, 30]° 

TE    TE    

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
m] 

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
dB] 

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
m] 

r RMSE 
[ton/ha] 

O 
Slope 

[(ton/ha)/ 
dB] 

CG 0.89 33.4 3 - −0.65 24.1 4 - 0.89 40.1 5 - −0.66 41.2 4 - 
AM 0.84 24.6 4 - −0.82 16.6 4 - 0.90 18.4 4 - −0.93 16.9 4 - 
CG 0.25 8.6 1 0.0085 −0.64 6.7 1 −1.0194 0.11 5.9 1 0.0026 0.34 9.9 1 −1.0666 
DR 0.47 7.5 1 0.0173 −0.66 6.3 1 −1.1877 0.20 7.1 1 0.0080 0 6.7 1 0.0452 
MT 0.40 4.3 1 0.0108 −0.55 4.7 1 −0.6470 0.36 3.8 1 0.0078 −0.53 3.7 1 −0.6118 

 
 
The sensitivity over Congo rainforests shows a higher angular variability than over the Amazon. 

This experimental evidence could be linked to different structural properties of the vegetation cover. 
The AGB distribution over the Amazon is a bimodal one with the two peaks at ~200 and ~250 ton/ha 
(Figure A1c). The re-radiation pattern could have isotropic properties because of the small separation 
between both modes. This characteristic could explain the small angular variability of the sensitivity. 
On the other hand, a bimodal distribution is also found over the Congo (Figure A1a). The two modes 
are much more differentiated, with peaks at ~300 and ~500 ton/ha. It is hypothesized that this 
characteristic could belong to a much more complex structure of the canopy layer, and a higher 
angular variability. 

(2) Coniferous, dry, and moist tropical forests (Figures 7 and 8): The functional correlations of 
AGB with TE  (Figure 7) and   (Figure 8) can be fitted by empirically derived 1st order polynomial 
functions. Table 1 summarizes the statistics of these fits at different angular ranges e  ~[80, 90]°, 
~[60, 70]°, ~[40, 50]°, and ~[20, 30]°, over coniferous (Figures 7a–d and 8a–d), dry (Figures 7e–h and 
8e-h), and moist (Figures 7i–l and 8i–l) forests. A distinguished characteristic of these forests is the 
low level of AGB, combined with moderate to high levels of CH (Figures A1e–j). These forests are 
presented following a decreasing CH level from coniferous (Figure A1f) to moist forests (Figure A1j).  

The assessment using TE  and   shows that the maximum correlation coefficients and slopes 
of the linear regressions (Table 1) appear gradually at decreasing e  with decreasing CH levels: e  

~[80, 90]° over coniferous, e  ~[60, 70]° over dry, and e ~[40, 50]° over moist forests (Table 1). The 
angular differences are small. The RMSE is high even for low AGB levels. A reasonable justification 
is provided, despite the fact that these aspects complicate the interpretation of the results. 

Larger signal propagation paths through the vegetation cover are required to increase the 
sensitivity with decreasing CH levels. On the other hand, the surface contribution partially masks the 
vegetation effects at grazing geometries. This latter aspect can be observed more clearly at e  ~[20, 
30]°, where the correlation coefficients with AGB are quite low (Table 1). This behavior is different to 
that over rainforests, because low AGB levels belong to a stronger contribution of surface scattering 
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in r,peakWF . Finally, it is worth pointing out that the correlation of AGB with   is much higher than 

with TE . This observation is also justified because of the dominant effect of surface scattering 
(Figure 2). On the other hand, the influence of volume scattering is low because of the low AGB levels. 
This point is translated into lower correlation coefficients with TE , because the sensitivity of 

r,thresholdWF  to AGB is almost negligible in this scenario. Over forests with low AGB ~ < 40 ton/ha, the 

soil surface contribution to the case of GNSS-R is dominant. This explains the lower spreading of the 
waveforms, as compared to rainforests (Figure 2). In the latter scenario, the volume scattering is very 
strong. 

4.3. Evaluation with SMAP-derived VOD, PI, and SMC 

At present, most of biomass monitoring studies are based on the use of visible and infrared 
indices. However, these types of measurements are only sensitive to the upper canopy layers and 
they additionally suffer from weather conditions and clouds. On the other hand, this study is based 
on measurable biomass parameters (AGB, CH). These considerations motivate to complement this 
work with microwave radiometry-derived parameters, such as VOD  and PI . There is an increasing 
interest on the use of both parameters to estimate some vegetation properties, such as VWC and AGB 
[58–62]. Additionally, SMC is considered over coniferous, dry, and moist forests, because of the 
potential impact of this parameter in the performance of CyGNSS over forests with low AGB levels 
(Figure A1). Over tropical rainforests, the impact of SMC is assumed to be negligible [24]. As a matter 
of fact, SMC data are not fully reliable over very dense forest canopies.  

The functional relationship of AGB with both TE  and   is further evaluated at the specific 
angular ranges where the optimum performance is found in terms of correlation coefficients and AGB 
dynamic ranges (Figures 4,5,7,8). This is a case by case study that depends on the characteristics of 
each type of forest: Congo rain ( TE  at e  ~[20, 30]° and   at e  ~[60, 70]°), Amazon rain ( TE  at 

e  ~[20, 30]° and   at e  ~[60, 70]°), coniferous ( TE  and   at e  ~[80, 90]°), dry ( TE  and   

at e  ~[60, 70]°), and moist ( TE  and   at e  ~[40, 50]°) forests. An interpretation of the results is 
provided for each target area: 

(1) Tropical rainforests (Figures 9 and 10): VOD  increases with increasing AGB, so as to provide 
an estimation of the attenuation by the vegetation cover. The sensitivity of VOD  to AGB is high up 
to AGB ~350 ton/ha ( TE  ~800 m and  ~ −25 dB) over Congo (Figures 9a and 10a), and up to AGB 
~250 ton/ha ( TE  ~600 m &   ~ −25 dB) over Amazon (Figures 9b and 10b). This sensitivity is 
qualitatively similar to that of CH (Figures 4d,h and 5b,f). Recently, a good correlation of Soil Moisture 
Ocean Salinity (SMOS)-derived VOD  with CH has also been reported [48,70]. On the other hand, 
SMAP-derived VOD  is linearly related to VWC trough a parameter that accounts for the structural 
effects of the vegetation cover [55]. As such, it seems reasonable to find this dependence with CH, 
although VWC is indirectly inferred from NDVI.  

Microwave radiometric brightness temperatures, 
BH

T  and 
BV

T , depend on frequency, 

polarization, and the geometrical and dielectric properties of the scattering media. Different 
polarization characteristics of bare soil and vegetation suggest the potential use of PI  for biomass 
studies [59–62]. PI  should gradually decrease with increasing AGB levels because (a) V-polarized 
emissivity from soil is attenuated by the upwelling vegetation cover, and (b) the radiation component 
due to forest canopies is roughly unpolarized. Figures 9 and 10 confirm these theoretical expectations. 
The polarization degree decreases with increasing AGB, without an apparent saturation. 
Additionally, it is found that PI  takes different values for the Congo and Amazon for a given AGB 
level. This empirical observation suggests that PI  slightly depends on CH additionally to AGB, at 
least over tropical rainforests. A similar dependence with CH is also found for VOD . 
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Figure 9. Study of the relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived 70% 
trailing edge width TE  and Above-Ground Biomass (AGB) as a function of SMAP-derived (a),(b) 
Vegetation Optical Depth ( VOD ) and (c),(d) Polarization index ( PI ). 

 
Figure 10. Study of the relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived 
reflectivity   and Above-Ground Biomass (AGB) as a function of SMAP-derived (a),(b) Vegetation 
Optical Depth ( VOD ) and (c),(d) Polarization index ( PI ) 
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Figure 11. Relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived 70% trailing edge 
width TE  with Above-Ground Biomass (AGB) over (a),(d),(g) coniferous, (b),(e),(h) dry, and 
(c),(f),(i) moist tropical forests as a function of SMAP-derived (a)–(c) Vegetation Optical Depth ( VOD

), (d)–(f) Polarization Index ( PI ), (g)–(i) and Soil Moisture Content (SMC). 

 
Figure 12. Relationship between 6-month (01/08/2018-31/01/2019) CyGNSS-derived reflectivity   
with Above-Ground Biomass (AGB) over (a),(d),(g) coniferous, (b),(e),(h) dry, and (c),(f),(i) moist 
tropical forests as a function of SMAP-derived (a)–(c) Vegetation Optical Depth ( VOD ), (d)–(f) 
Polarization Index ( PI ), and (g)–(i) Soil Moisture Content (SMC). 
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 (2) Coniferous, dry, and moist tropical forests (Figures 11 and 12): A significant sensitivity of 
VOD  is also found for low levels of AGB, over coniferous (Figures 11a and 12a), dry (Figures 11b 
and 12b), and moist (Figures 11c and 12c) forests. The sensitivity improves with increasing CH levels, 
from moist to coniferous forests, despite the roughly similar AGB levels (Figures A1e,g,i). On the 
other hand, PI  also performs well over this type of CH-driven forests (Figures 11d–f and 12d–f). The 
PI  dynamic range over dry forests ~[0.05 0.075] is slightly lower than over coniferous forests ~[0.05 
0.1] because of the lower CH dynamic range (Figure A). At the same time, it is found that PI  is 
higher over moist forests ~[0.06 0.085] than over dry forests, because of the slightly lower CH levels 
(Figure A).  

The results are independent of SMC over coniferous and dry forests. Over coniferous forests, 
increasing levels of SMC up to ~0.2 m3/m3 are found for gradually increasing TE  (Figure 11g) and 
decreasing   (Figure 12g). This observation means that CH (Figure A1f) has a higher impact than 
SMC in both observables, TE  and  . An increment in SMC would reduce TE  and increase  , in 
the case that SMC would be dominant. Over dry forests, SMC ~0.18 m3/m3 is quite homogenous along 
both TE  (Figure 11h) and   (Figure 12h) dynamic ranges. As such, changes on VOD  and PI  are 
assumed to be mainly related to the effects of the vegetation cover. Finally, in the case of moist forests, 
SMC influences TE  (Figure 11i) and   (Figure 12i). Increasing levels of SMC up to ~0.25 m3/m3 are 
found for decreasing TE  (Figure 11i) and increasing   (Figure 12i). Even in this scenario, VOD  
(Figures 11c and 12c) and PI  (Figures 11f and 12f) are found to have a certain degree of sensitivity 
to canopy forests. 

4.4. First Evidences of Biomass Retrieval Using an Empirical Approach 

Finally, the ability to retrieve biomass using an empirical approach is evaluated (Figure 13). To 
do so, the empirically derived polynomial fitting functions corresponding to the relationship between 
TE  and AGB at low elevation angles e ~ [20, 30]° are used to provide a preliminary AGB estimation 
at the two selected test sites over Congo and Amazon tropical rainforests. The percentage of data 
used as training and validation subsets ranged from 30% and 70%, respectively. On the other hand, 
the AGB map provided by Avitabile et al. is used as the AGB reference. Small absolute errors in AGB 
estimation are found except in areas with AGB > ~ 350 ton/ha and in areas with little biomass and the 
presence of inland water bodies (Figure 3). These promising preliminary results should be further 
investigated in a future works also using ground truth data for validation. 

5. Conclusions 

Earth-reflected GNSS signals collected in a bistatic radar configuration by CyGNSS, show a 
significant sensitivity to biomass over rain, coniferous, dry, and moist tropical forests. Future studies 
with the U.K. TDS-1 mission would help to also cover boreal forests. The sensitivity has been 
evaluated using several parameters derived from DDMs, as a function of e . The optimum results 
in terms of correlation coefficients and AGB dynamic ranges were found at different angles: Congo 
rain ( TE  at e  ~[20, 30]° and   at e  ~[60, 70]°), Amazon rain ( TE  at e  ~[20, 30]° and   at 

e  ~[60, 70]°), coniferous ( TE  and   at e  ~[80, 90]°), dry ( TE  and   at e  ~[60, 70]°), and 

moist ( TE  and   at e  ~[40, 50]°). The SNR reduces at low elevation angles for both direct and 
reflected signals. However, we use  . This observable is more related with geophysical parameters 
than the SNR. In particular,   increases at lower angles because of the lower effective surface 
roughness at this geometry. 
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(b) 
Figure 13. Absolute error in Above-Ground Biomass (AGB) retrieval over (a) Congo and (b) Amazon. 
TE  was used at e  = [20, 30]°. Avitabile et al. AGB reference data and empirically derived 

polynomial fitting functions were used. 

Over rainforests, the optimum geometry for the use of TE  appears at grazing angles because: 

(a) a higher volume scattering term increases the tail of 2
rY ( ,f ) , and (b) a higher coherent 

scattering term 2
r,cohY ( ,f )  belongs to an improved sensitivity of r,peakWF  to the attenuating cover. 

On the other hand, the optimum geometry for   is found at moderate e , when the incoherent 

scattering term 2
r,incohY ( ,f )  is still dominant and the signal propagation path along the vegetation 

cover is higher than at a Nadir-looking configuration. Then, the first derivative of the corresponding 
polynomial fitting functions of the relationship between AGB with TE  and   was computed. It 
was found that there is a certain sensitivity to AGB up to ~350 and 250 ton/ha, respectively, over 
Congo and Amazon target areas, without an apparent saturation. The first maps of absolute error in 
AGB retrieval from space using GNSS-R were included, showing a small error. These findings 
suggest the possibility of accurate AGB retrieval using GNSS-R on-board small satellites such as, e.g., 
CyGNSS. 

Over forests with low AGB ~ < 40 ton/ha, the optimum geometry for the use of both parameters 
TE  and   appears at decreasing e  with gradually decreasing CH levels. This point is explained 
because an increasing signal propagation path through the vegetation is required to improve the 
sensitivity with decreasing CH levels. The correlation coefficients of AGB with   are higher than 
those with TE . The sensitivity of TE  to AGB is low because of the negligible volume scattering 
term over these types of forests. In this scenario, the spreading of 

r
Y ( , f )  is low, which reduces the 

sensitivity of r,thresholdWF  to biomass. 
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Finally, it is worth pointing out that the application of a moving averaging filter minimizes 
potential errors in the estimation of   due to inaccuracies in the signal calibration. The uncertainty 
in establishing the relationship between CyGNSS measurables and forest parameters is due to (a) 
potential errors in CH data derived from GLAS and (b) noise at the pixel level, such as speckle in 

r
Y ( , f ) . Overall, RMSE in the scatter plots increases with increasing biomass levels, while the 

correlation coefficients increase. 
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Appendix A: Study Sites 

True rainforests (Figures. A1a–d and A2a–b) appear in the latitudinal band Latitude ~ [-10, 10]°. 
They are a subset of the tropical forest biome that extends within Latitude ~ [−28, 28]°. In this work, 
tropical rainforests over the Congo (Latitude = [−4, 4]°, Longitude = [9, 28]°) and the Amazon 
(Latitude = [− 10, 5]°, Longitude = [−75, −54]°) basins were selected for an evaluation on a pantropical 
scale. The mean monthly temperature is over ~ 18 °C along the year and the average annual rainfall 
is over ~ 1680 mm [71]. Both study sites contain the two major carbon pools on Earth. The dominant 
International Geosphere Biosphere Program (IGBP) land cover type is evergreen broadleaf forests, 
which are characterized by wet biomass. This type of biomass is associated with signal attenuation 
effects [49]. On the other hand, dry biomass is associated with incoherent scattering effects because 
vegetation albedo is higher over drylands with forests [72]. Albedo is related with land cover type 
heterogeneity and structural effects of the canopy layer [49]. It is worth noting that both attenuation 
(linked to vegetation opacity) and scattering (linked to albedo) can be found in a general case. 
Evergreen broadleaf forests comprise many species with rather unique vegetation structural patterns. 
They consist of different vertical layers, including overstory, canopy, understory, shrub layer, and 
ground level. As such, dielectric and structural properties are complex and heterogeneous. The AGB 
distribution over Congo differs from that over Amazon, although the CH distribution is relatively 
similar over both sites. 

Coniferous tropical forests (Figures A1e–f and A2c) appear mainly in North and Central 
America. In this work, the selected target area was over Mexico (Latitude = [19, 28]°, Longitude = 
[−104, −98]°). This type of forest is characterized by low levels of precipitation and a moderate 
variability in temperature [73]. The dominant IGBP land cover type is woody savannas, which are 
characterized by diverse species of conifers (firs, pines, spruces, etc). The CH distribution is spread 
up to ~ 35 m, although the AGB is low ~ < 40 ton/ha. 

Dry tropical forests (Figures A1g–h and A2d) appear mostly in tropical and subtropical bands. 
In this work, the selected target area was over Zambia (Latitude = [−14, −9]°, Longitude = [29, 33]°). 
These forests are dominated by warm climates. They receive several hundreds of centimeters of rain 
per year, although they have long dry seasons that can last for several months [74]. Deciduous trees 
predominate in most of these forests. The CH distribution spreads up to ~ 20 m and AGB is low ~ < 
40 ton/ha. 

Moist tropical forests (Figures A1i–j and A2e) are discontinuously found over patches on the 
equatorial belt and between the tropics of Cancer and Capricorn. They are characterized by low 
variability in annual temperature and high levels of rainfall. Forest composition is dominated by 
semi-evergreen and evergreen deciduous tree species [71]. In this work, the selected target area was 
over Brazil (Latitude = [−20, −13]°, Longitude = [−51, −43]°). The CH distribution spreads up to ~17 m 
and AGB is low ~ < 40 ton/ha. 
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Figure A1. Histograms of Avitabile et al. Above-Ground Biomass (AGB) and ICESat-1/GLAS Canopy 
Height (CH) data over the selected target areas: (a),(b) Congo rain, (c),(d) Amazon rain, (e),(f) 
coniferous, (g),(h) dry, and (i),(j) moist tropical. Forests type are classified, as per Global Ecological 
Zones by the Food and Agriculture Association (FAO) of the United Nations. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure A2. Photos of the selected study sites: (a) Congo rain, (b) Amazon rain, (c) coniferous, (d) dry, 
and (e) moist tropical forests. Congo rainforests (~2 million km2) [75] contain the highest levels of AGB 
on Earth [39]. On the other hand, Amazon rainforests spread over ~6 million km2 [76]. The world’s 
tropical forests store ~ 250 billion tons of carbon. 

Overall, the selected target areas cover a wide variety of forests at a pantropical scale. 
Additionally, different surface moisture conditions are expected to be found over different target 
areas. This aspect was also evaluated in this work. 
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Appendix B: Reference Data 

B.1 GLAS ICESat-1 Canopy Height Map 

The selected reference CH data is the global map generated by Healey et al. using data collected 
by the ICESat-1/GLAS payload from 2004 to 2008 [3,6]. GLAS is a waveform sampling lidar that uses 
three lasers, each one with a nominal lifetime of 18 months, and a spatial resolution of ~60 m along-
track and ~170 m across-track. Only one laser operates at a time to achieve the nominal mission 
lifetime. GLAS transmits ~40 Hz pulses using infrared light   ~1064 nm to detect changes on the 
elevation of the Earth’s surface and visible green light   ~532 nm to measure clouds and aerosol 
heights. In so doing, ICESat-1 points ~0.3° off-Nadir during nominal operations to mitigate the 
potential damage of the detector due to specular reflections of laser pulses from mirror-like surfaces 
(e.g., calm water). ICESat-1 mission includes estimation of vegetation height as a secondary mission 
objective. The shape of the Earth-reflected waveforms depends on the vertical distribution of 
vegetation and surface properties. Level L1a waveforms were used to calculate the so called Lorey’s 
height, which is the crown-area-weighted height. The applied algorithm [3,6] uses a height correction 
factor based on the trailing waveform edge extent to correct for topographic effects because of the 
non-homogeneous sampling properties of GLAS. The final product is delivered with a spatial 
resolution of ~ 0.2 km. 

B.2 Pantropical Above-Ground Biomass Map 

The selected reference AGB data was the integrated pantropical map developed by Avitabile et 
al. [39]. This map combines Saatchi’s [66] and Baccini’s [67] AGB datasets into a ~1-km resolution 
product. In so doing, it uses an independent reference of field observations for validation, and high-
resolution biomass maps locally calibrated, harmonized, and upscaled to 14,477 AGB estimates with 
a resolution of ~1 km as inputs for the fusion algorithm. The data fusion approach applies a bias 
removal and a weighted linear averaging. Baccini’s and Saatchi’s patterns use ICESat-1/GLAS as a 
primary data source, a similar strategy to upscale lidar data, and they assume continental allometric 
relationships. However, Baccini’s dataset covers tropical latitudes ~[−23.4, 23.4]°, while Saatchi’s 
dataset has a wider coverage. As such, the fusion model is first applied to the common area and then 
it is extended to the area where Saatchi’s dataset is available. In this region, the fusion algorithm only 
removes the bias of the Saatchi’s dataset using the values estimated over Baccini’s coverage. The 
validation of Avitabile’s map shows a lower RMSE (reduction down to ~74%) and bias (reduction 
down to ~153%) than both original datasets over all the continents. 
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Appendix C: Sensitivity Analysis 

Table A1. First-derivative [(ton/ha)/m] polynomial fitting functions of CyGNSS derived trailing edge 
width TE  over Congo rainforests. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° 1.53 1.21 0.90 0.55 0.35 0.33 0.30 
[40, 50]° - 1.05 0.93 0.77 0.58 0.37 0.17 
[60, 70]° - 1 0.87 0.71 0.53 0.35 0.19 
[80, 90]° - - - 0.62 0.45 0.22 - 

 

Table A2. First-derivative [(ton/ha)/m] polynomial fitting functions of CyGNSS derived trailing edge 
width TE  over Amazon rainforests. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° - 1.07 0.75 0.40 0.10 - - 
[40, 50]° - 1.15 0.85 0.53 0.18 - - 
[60, 70]° - - 0.70 0.60 0.20 - - 
[80, 90]° - - 0.70 0.42 0.12 - - 

 

Table A3. First derivative [(ton/ha)/dB] of the polynomial fitting functions of CyGNSS derived 
reflectivity   over Congo rainforests. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° - - - - 17.1 15.5 - 
[40, 50]° - - - 19.3 25.2 27.4 23.1 
[60, 70]° - - 10.5 21.2 26 26.1 17.5 
[80, 90]° - - - - 16.2 21.3 16.2 

 

Table A4. First derivative [(ton/ha)/dB] of the polynomial fitting functions of CyGNSS derived 
reflectivity   over Amazon rainforests. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° - - 15.8 16 9.5 - - 
[40, 50]° - 17.2 18 16 11.5 9 - 
[60, 70]° - 16 17.8 16 10.4 - - 
[80, 90]° - - 15.8 14 9.5 - - 
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Table A5. AGB (ton/ha) uncertainty (ignoring noise) over Congo rainforests assuming an uncertainty 
of trailing edge width TE ~1 m. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° 1.53 1.21 0.90 0.55 0.35 0.33 0.30 
[40, 50]° - 1.05 0.93 0.77 0.58 0.37 0.17 
[60, 70]° - 1 0.87 0.71 0.53 0.35 0.19 
[80, 90]° - - - 0.62 0.45 0.22 - 

 

Table A6. AGB (ton/ha) uncertainty (ignoring noise) over Amazon rainforests assuming an 
uncertainty of trailing edge width TE  ~1 m. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° - 1.07 0.75 0.40 0.10 - - 
[40, 50]° - 1.15 0.85 0.53 0.18 - - 
[60, 70]° - - 0.70 0.60 0.20 - - 
[80, 90]° - - 0.70 0.42 0.12 - - 

 

Table A7. AGB (ton/ha) uncertainty (ignoring noise) over Congo rainforests assuming an uncertainty 
of reflectivity   ~0.1 dB. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° - - - - 1.71 1.55 - 
[40, 50]° - - - 1.93 2.52 2.74 2.31 
[60, 70]° - - 1.05 2.12 2.6 2.61 1.75 
[80, 90]° - - - - 1.62 2.13 1.62 

 

Table A8. AGB (ton/ha) uncertainty (ignoring noise) over Amazon rainforests assuming an 
uncertainty of reflectivity   ~0.1 dB. 

AGB 
[ton/ha] 

50 100 150 200 250 300 350 

[20, 30]° - - 1.58 1.6 0.95 - - 
[40, 50]° - 1.72 1.8 1.6 1.15 0.9 - 
[60, 70]° - 1.6 1.78 1.6 1.04 - - 
[80, 90]° - - 1.58 1.4 0.95 - - 
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