
Observational	Studies	On	Onboarding.

Onboarding	Event
Typical	Observation	study	at	Berlin	Germany,	OpenStack	Upstream	Institute	(OUI).

Mentors
(M1,	M2,	…,	M12)

Participants
(P1,	P2,	…,	P72),	17	females,	23	neutrals,	and	32	males	seated	on	12	tables	forming	12	groups

Outline

Theoretical	Knowledge	(Day-01)

Introduction
Accounts	creation	and	setup
Setting	up	the	Development	Environment
How	OpenStack	is	Made
OpenStack	Events

Practical	Knowledge	(Day-02)

Workf-low	and	Tools	for	participation
Code	Dive	Deep

Technical	Activity

DAY-01	Theoretical	Activities

SESSION-START	12:00	PM,	November	09-10,	2018.

PRESENTATION	of	mentors	and	the	training	program

Introduction

Mentors	::	The	coordinators	(two	lead	mentors)	welcomed	and	thank	everyone	for	coming,	then
present	the	mentors	to	the	general	audience.	These	mentors	constitute	project	team	leads	(PTLs)	of
different	OpenStack	projects	and	cross-project	teams	and	other	resources	within	the	OpenStack
Ecosystem.

Setting	the	Working	Environment

Working	Environment	::	Mentors	ensure	that	the	working	environment	of	each	participant	is
properly	set	up	as	required	by	the	instructions	that	were	sent	out	one	month	prior	to	the	onboarding
event.

This	working	environment	constitutes	a	laptop	that	supports	virtual	environments	such	as	VirtualBox
with	Ubuntu	image	pre-installed,	a	copy	of	OpenStack	development	environment	aka	Devstack	on
Sandbox,	issue	trackers	(both	launchpad	and	storyboard),	code	review	environment	(Gerrit),	git.	The
OpenStack	Sandbox	environment	(repository)	provides	virtual	servers	to	test	OpenStack
projects/functionalities	in	an	isolated	environment.	Therefore,	contributors	can	test	specific	features
without	worrying	about	the	production	environment	(repository).

M1	said	“Make	sure	the	following	are	install	and	running:-

Install	Virtualbox	on	your	host	machine	with	the	Ubuntu	image
Install	DevStack	on	Sandbox	Environment

Install	Git,	Gerrit,	Python3,	Editor	(Vim,	Sublime,	SPE,	or	any	other	open-source	tool)

Run	the	test	script	in	the	Devstack	folder	to	make	sure	your	local	environment	is	properly	configured	and
up	to	date.	In	case	you	run	into	trouble,	call	any	mentor	to	help	you.”

Then,	mentors	guided	the	participants	in	joining	the	OpenStack	foundation	and	creating	their	accounts
with	IRC	Freenode,	OpenStack	community	mailing	list	after	reading	and	signing	all	the	necessary
agreements.

Each	mentor	takes	their	rounds	and	introduced	themselves,	their	area	of	expertise,	how	many	projects
they	are	affiliated	to	and	how	long	they	have	been	contributing	to	the	OpenStack	ecosystem.

Day	one	is	typically	designed	to	give	a	solid	foundation	of	OpenStack	and	how	to	set	up	an	individual
working	station.	Moreover,	the	mentors	also	presented	how	bugs	are	reported	to	the	community,	(how	to
report	a	bug),	triage,	and	assigned	a	bug.	Furthermore,	M1	and	M2	presented	an	overview	and	objectives
of	the	OpenStack	Upstream	Institute	(OUI)	Program.

Understand	the	OpenStack	release	cycle	to	the	level	of	being	able	to	synchronize	and	integrate	it	with
your	product’s	roadmap	Get	to	know	the	technical	tools	Understand	the	OpenStack	contribution
workflow	and	social	norms	Know	where	to	find	information,	where	and	how	to	get	help	if	needed	Be
able	to	identify	and	start	a	task	(bug	fix,	feature	design	and	implementation,	Working	Group	activity	and
so	forth)	Work-flow	and	Tools	for	Participation

M1
“The	OpenStack	Upstream	Institute	was	designed	by	the	OpenStack

foundation	to	share	knowledge	about	the	different	ways	to	contribute	to	OpenStack.	The	program	was
built	with	the	principle	of	open	collaboration	in	mind	and	was	designed	to	teach	attendees	how	to	find
information,	as	well	as	how	to	navigate	the	intricacies	of	the	technical	tools	for	each	project.	The	training
program	to	share	knowledge	about	the	different	ways	of	contributing	to	OpenStack	like	providing	new
features,	writing	documentation,	and	participating	in	working	groups.”

M2

"OUI	is	about	to	help	new	contributors	to	join	the	OpenStack	community	by	providing	on-site
training	for	newcomers	and	place	for	trainers	and	mentors	to	work	together."

M1

"We	have	seen	some	PTLs	coming	back	to	OUI	training	for	some	kings	of	reality	checks."

Moreover,	M2	emphasized	on	IRC	and	the	mailing	list	as	the	main	communication	Medium.	Also,	“We
strongly	recommend	the	constant	consultation	of	the	online	documentation	as	we	ourselves	are
constantly	referencing	them	throughout	this	training	event.	Read,	read	and	Read	your	documentations!”

How	OpenStack	is	Made

TASKING	:	How	mentors	coordinated	activities

The	Mentors	took	their	turn	and	presented	the	different	projects	working	together	to	form	the	complex
ecosystem.	Also,	each	mentor	states	how	many	project(s)	that	they	are	involved	with	and	explain	how
the	projects	fit	together	under	one	umbrella	called	OpenStack.	Moreover,	M1	The	ecosystem	lead	at
OpenStack	gave	use	cases	to	participants	explaining	how	individual	project	goals	differ	from	cross-
project	goals,	also,	the	cross-projects	common	objectives	build	a	community	into	an	ecosystem.	M1	said:
“	Both	an	individual	project	and	an	ecosystem	do	have	their	respective	communities,	that	is	the	people
who	are	making	things	to	happen,	not	only	developers	but	contributors	in	all	forms.	However,	an
individual	project	follows	one	particular	design	paradigm	and	common	work-flow,	which	all	the
community	members	are	accustomed	to.	No	matter	how	big	an	individual	project	may	be	in	terms	of	the
size,	for	example,	the	Linux	kernel,	every	member	in	that	community	still	follows	one	work	culture	and
common	objectives.	However,	this	is	not	the	case	for	an	ecosystem	such	as	OpenStack,	where	all	the
individual	projects	forming	OpenStack	have	their	own	individual	plan-of-action	and	work	culture,	but
need	some	coordination	to	project	one	common	product	at	the	end	of	each	release	cycle.	Besides,	in	an

ecosystem,	the	design	paradigm	is	different	and	depends	on	domain	knowledge.	In	addition,	In	an
ecosystem,	cross-project	collaboration	is	the	force	that	builds	a	community	into	an	ecosystem	but	such	is
not	the	case	with	an	individual	project;	they	don’t	have	cross-projects.	There	are	several	other
differences	that	exist	between	an	individual	project	and	an	ecosystem,	some	we	will	revisit	later.”

M1	added	that:	“If	we	remember	the	early	days	of	the	internet,	it	was	the	LAMP	(Linux,	Apache,
MySQL,	PHP)	stack	that	enabled	the	rapid	growth	of	the	Web.	In	this	era	of	cloud	computing,
OpenStack	is	the	‘LAMP	stack’	of	the	cloud.	The	same	way	the	Linux	kernel	is	different	from	Apache
server,	and	MySQL	DB,	and	PHP,	so	too	is	how	the	different	projects	within	the	OpenStack	ecosystem
differ	from	one	another.	Yes,	all	use	Python	but	that	is	it.”

Assigning	tasks	to	participants

During	each	presentation,	the	main	mentor	responsible	for	that	presentation	tasked	the	participants	on
micro-tasks.	For	example,	a	mentor	M3	asked	the	participants	to	go	on-line	and	search	the	release	cycle
of	OpenStack	and	how	many	releases	are	there	in	total.	#DURATION	2	min

In	addition,	M6	asked	participants	how	many	core	projects	exist	at	OpenStack	and	how	who	are	the
project	team	leads	(PTL)	of	Nova,	Swifts,	Cinder,	Neutron,	and	Manila?

The	first	participant	who	submitted	the	right	answer	on	the	IRC	channel	was	rewarded	with	a	sticker,	and
the	same	goes	for	all	the	other	mentors	as	they	did	their	presentations	on	the	structure	and	functioning	of
OpenStack	cross-project	teams	and	the	ecosystem	in	general.

After	the	set	duration,	if	none	of	the	participants	found	the	correct	answer,	the	mentor	will	tell	them	what
the	correct	answer	was.

For	example,	M3,	M5,	M7,	M6,	and	M9	all	assigned	specific	micro	tasks	(tasks	that	usually	last	two	min)
to	participants	to	carry	out.	The	hands-on	is	programmed	for	Day-02	with	much	intense	tasks	and
workload.

Mentees	configuration
new	contributors	were	organized	in	a	cluster	of	six	per	table	and	there	were	12	tables	in	a	spacious
room	that	can	support	about	150	attendees	in	general.

LEARNING-METHOD	How	new	contributors	are	adapting	within	the	ecosystem.

problem-based	learning	helping	students	to	find	solutions	for	the	problem	themselves.

OB1:	Why	was	the	mentoring	program	introduced?	M1:	“We	wanted	to	lower	the	entry	barriers	that	new
contributors	were	having	–	speaking	from	experience,	we	discussed	among	ourselves	and	put	down
several	points	that	can	be	beneficial	for	new	contributors.”

FEEDBACK	and	Testimonies	from	mentors	who	were	mentees	previously.

M7

said	"After	the	2-Days	onboarding	event,	participants	can	sign	up	for	a	longer-term	mentoring
program	to	further	strengthen	their	skills	and	become	more	productive	and	successful	in	the
community.	—	That's	the	way	to	transform	learners	into	practitioners"

M4

Getting	involved	with	the	OpenStack	community	can	be	a	daunting	task.	Where	does	a	newcomer
begin?	While	the	OpenStack	community	does	provide	a	rich	set	of	resources	to	newcomers,	like
the	OpenStack	Upstream	Institute,	getting	the	courage	to	take	the	leap	into	the	world	of	open
infrastructure	can	prove	difficult.

M9

gave	her	perspective	as	a	fresh	university	graduate	when	she	first	joint	OpenStack	community	as	a
new	contributor,	she	said	"mentoring	did	not	only	plays	a	strong	role	in	the	workplace	where	I	am

now	working	on	four	OpenStack	projects	but	also	within	the	OpenStack	community	at	large,
where	mentoring	has	played	a	major	role	in	my	journeys	towards	making	my	first	contributions	to
OpenStack."

TESTIMONY1	(M9	testimony)

So	far,	we've	given	you	some	perspective	on	our	experiences	with	OpenStack	to	date	we're	going	to	get
to	the	juicy	parts	and	why	we	feel	mentoring	upstream	is	important	which	is	I	assume	why	you're	here.

Ultimately,	in	my	opinion,	I	feel	that	mentoring	individual	contributors	upstream	adds	value	both	to	the
open	infrastructure	community	and	the	individual	projects	that	make	up	this	diverse	infrastructure
ecosystem	we've	come	to	love	and	sometimes	love	to	hate.

This	value	comes	in	many	forms	one	of	those	I	believe	is	growing	the	number	of	individual	contributors
helps	drive	these	projects	forward	through	more	diverse	reviews,	contributions,	and	viewpoints.	By
expanding	that	diversity	we're	able	to	expand	ultimately	the	diversity	of	opinions	for	the	open
infrastructure	project	as	a	whole	with	the	goal	of	as	soon	as	we	start	at	least,	in	my	opinion,	is	we	grow
the	diverse	opinions	that	we	have	it	should	hopefully	start	to	attract	additional	individual	contributors	as
our	solutions	expand	to	cover	more	use	cases.

Upstream	mentoring	also	helps	us	grow	the	expertise	the	community	needs	ultimately	the	technical
expertise	required	to	work	with	the	technologies	that	make	up	the	projects	under	the	open	infrastructure
umbrella	it	can	be	pretty	vast	that	technical	expertise	then	helps	us	drive	the	projects	themselves	for
deployment	projects	especially	such	as	OpenStack	helm	and	Kola	kubernetes	and	some	of	the	others	that
I've	worked	within	the	past	also	require	a	working	understanding	of	technologies	that	extend	beyond	just
you	know	OpenStack.

To	successfully	drive	these	projects	forwards	toward	their	medium	and	long	term	goals	it	only	makes
sense	to	invest	our	time	and	help	our	individual	contributors	grow	the	technical	skills	required	to	do	so
active	mentoring	also	helps	lower	the	barrier	to	entry	for	individuals	looking	to	contribute	to	open
infrastructure	projects.

Speaking	from	experience	finding	projects	and	work	that	align	with	personal	or	work	interest	improve
involves	difficult	if	you	have	little	to	no	experience	with	what	the	community	has	to	offer	the	first
question	I	always	ask	when	someone	expresses	interest	in	working	with	OpenStack	helm	is	what	interest
and	excites	you	I	asked	this	question	because	I	found	that	there's	if	there's	no	interest	or	excitement	for
the	work	you're	looking	to	do	it	often	leads	to	frustration	when	you	start	running	into	problems	in
difficult	situations	and	you	just	walk	away	from	the	project	entirely.

In	addition	to	helping	find	work	that	aligns	with	an	active	mentor	and	can	help	ensure	new	contributors
are	visible	to	the	larger	project	teams	and	community	and	once	again	my	personal	experience	has	been
that	once	I	felt	included	and	comfortable	with	the	Kola	project	team,	in	particular,	my	engagement	and
contributions	accelerated	rapidly	from	that	point.

TESTIMONY2	(FP1	testimony)

So,	as	a	new	developer	fresh	out	of	college	coming	into	any	new	team	can	be	very	intimidating.
Everyone	around	the	kind	of	knows	so	much	more	than	you	and	you	feel	that	you're	an	imposter	with	so
much	to	learn	there's	just	no	way	you	can	learn	everything	that	they	know	and	you're	under	the
impression	that	that	knowledge	is	somehow	inherent	to	them	and	they	just	get	it	and	you're	just	never
will.

Now,	magnify	that	and	add	people	you	don't	interact	with	face	to	face	and	you	have	what	it's	like	to	enter
a	community	of	OpenStack	or	any	open	source	project.	It's	very	intimidating	you	don't	know	who	to	turn
to	or	what	questions	to	even	ask.

So,	contributing	to	an	upstream	project	is	so	much	more	than	just	being	added	to	a	new	team,	there	are
now	people	all	over	the	world	that	you	have	to	deal	with.	It's	a	lot	like	having	another	person	act	as	a
mentor	is	like	having	an	interpreter.

It	provides	someone	you	can	ask	questions	without	worrying	if	they're	going	to	think	you	just	have	no
idea	what	you	are	doing.	A	mentor	provides	a	way	to	get	involved	and	helps	remove	so	much	of	the
anxiety	that	often	comes	with	doing	so.

It's	really	just	having	a	kind	of	cushion	that	you	get	to	bounce	some	ideas	off	of	to	check	your
understanding	but	not	only	that	it's	it	changes	the	entire	experience	of	from	a	scary	one	to	one	that
definitely	seems	manageable	there	are	a	lot	of	important	conversations	that	happen	around	a	project	from
weekly	meetings	to	attending	summits	a	lot	goes	on	around	the	project	that	you	can	easily	miss	if	you
don't	know	it's	happening,	having	a	mentor	helped	me	be	active	in	meetings	push	me	to	do	things	like
submit	and	then	give	my	first	commit.

So,	there	are	all	these	things	that	happen	you	don't	necessarily	know	that	they're	going	on	when	you	find
out	they're	going	on	you	don't	think	that	you	have	any	reason	to	be	involved	because	obviously	you	know
nothing	so	what	could	you	contribute	but	it's	really	important	to	be	a	part	of	that	conversation	having	a
mentor	to	push	you	to	do	that	is	very	helpful.

TESTIMONY3	(M7	testimony)

So,	I'll	talk	a	little	bit	about	my	experience	when	it	comes	to	mentoring	upstream	after	reflecting	on	my
experience	with	previously	you	know	the	OpenStack	community	and	now	the	open	infrastructure
community	over	the	past	four	years	the	experiences	I've	had	during	that	time	was	the	primary	driver	for
wanting	to	encourage	you	on	your	own	personal	journey.	The	following	points	are	the	ones	that	really
stick	out	in	my	mind	thinking	back	over	what's	happened	over	the	last	four	years	or	so.	The	biggest	one	is
time	constraints,	most	of	us	mentors	have	day	jobs,	families	and	hobbies	that	may	not	include	hacking
away	at	the	keyboard,	because	of	that	finding	time	for	active	mentoring	can	be	a	challenge.	I	found	that
carving	out	time	for	that	act	of	mentoring	though	has	worked	the	best	for	me	as	I'm	historically	terrible	at
saying	time	isn't	an	issue	so	I'll	just	do	this	mentoring	thing	live.	But,	if	you	want	to	be	a	successful
mentor	though	or	a	mentee	even,	my	advice	is	simple	as	with	testing	and	production	don't	do	it.

I've	also	found	successful	mentoring	requires	active	commitment	both	from	the	mentor	and	mentee.	It's
very	easy	to	say	yeah	sure	I'd	love	to	help	you	understand	all	this	cool	stuff.	It's	not	really	that	hard	but	it
can	be	difficult	to	deliver	on	that	promise.

People	learn	in	different	ways	at	different	speeds	which	means	a	commitment	to	active	mentoring
requires	more	than	a	handful	of	quick	IRC	or	Google	hangout	Chats	when	our	time	constraints	increase
and	we	start	wishing	we	had	25	hours	on	a	given	day	to	get	everything	done	that	we	need	to.

It's	often	tempting	to	ease	off	things	like	mentoring	as	a	way	to	get	some	of	that	time	back.	For	those
who	have	mentored	me	in	the	past,	I'm	really	grateful	that	that	wasn't	their	approach.	As	a	mentee,	I've
been	guilty	of	thinking	also	this	person	is	super	busy	doing	super	cool	stuff	and	because	they're	doing	all
this	super	cool	stuff	and	they're	super	busy	I	don't	want	to	get	in	the	way	of	that	so	I'm	just	going	to	leave
them	alone.	Commitment	has	to	be	two-way	traffic	for	mentoring	to	succeed.

Also,	as	a	mentor,	I've	noticed	it's	easy	to	overlook	the	differences	and	the	technical	proficiencies
between	myself	and	someone	I'm	working	to	mentor.	It	wasn't	uncommon	for	me	in	the	past	to	take	the
years	of	experience	I	have	for	granted	and	just	assume	everyone	at	least	knew	half	or	more	of	what	I	do.
Remember	the	question	earlier	that	I	said	I'd	like	to	ask	each	new	individual	contributor	who	reaches	out
to	me	asking	about	their	interest	and	experience	provides	me	an	entry	point	for	digging	deeper	into	what
experience	a	potential	mentee	has.

I	found	that	being	proactive	about	that	and	managing	those	expectations	has	worked	the	best	for	having
successful	mentor-mentee	relationships.

FP1’s	Company	perspective:	So	now	that	we've	talked	about	mentoring	upstream,	let's	also	talk	about
why	it's	equally	important	to	have	a	mentor	in	your	company.	Mentoring	in	the	workplace	goes	just
beyond	helping	with	delivering	day-to-day	duties.	Active	workplace	mentoring	ultimately	helps	both
mentees	and	mentors	alike	to	achieve	their	personal	career	goals.

Active	workplace	mentoring	helps	mentees	attain	mature	technical	skills	required	to	grow	in	their
workplace,	mentoring	helps	manage	immature	skill	sets	required	to	grow	into	a	senior	engineering	role	in
the	future.	So,	the	maturation	of	those	technical	skills	may	also	help	alleviate	impostor	syndrome	as	most
of	us	are	likely	familiar	with.

Mentoring	also	helps	senior	engineers	grow	their	leadership	and	delegation	skills	which	may	help	them
grow	into	leadership	engineering	or	even	management	roles	in	the	future.

Mentoring	is	also	a	sound	business	investment.	Teams	and	enterprises	cannot	afford	to	lose	their	top

engineering	talent	as	the	needs	of	the	business	evolve,	especially	in	industries	where	disruptive
technologies	result	in	an	extremely	competitive	pool	of	talent.	Growing	talent	through	mentoring	is	a
medium	to	long	term	investment.

However,	the	return	of	that	investment	can	be	very	high.	Investment	in	mentoring	is	key	to	staying
competitive	and	keeping	employees	happy	so	in	the	long	run	yes	mentoring	can	be	an	investment	on
behalf	of	you	know	the	company	but	it	pays	out	dividends	later	on.	So,	this	is	my	mentoring	experience
in	the	workplace,	it's	been	very	unique.

M7	was	my	mentor	during	my	last	year	of	college	and	I	have	been	very	fortunate	working	with	him	and
to	continue	being	his	mentee.	In	college,	I	was	fully	prepared	to	accept	the	job	that	I	was	interning	at	on	a
project	that	really	just	didn't	excite	me	and	I	sort	of	went	to	95	and	said	okay	that	well	that's	it	I'll	never
be	excited	about	what	I'm	gonna	do.

I	didn't	think	I	was	someone	who	was	capable	of	contributing	to	something	bigger,	but	having	a	mentor	I
began	to	figure	out	almost	everyone	felt	that	same	way.	The	difference	was	putting	in	the	effort	to	put	me
out	there	and	learn	something	new.	Without	that	push,	I	probably	wouldn't	have	left	my	little	bubble	and
would	have	thought	I	was	not	capable	of	anything	else.

I'm	still	nervous	about	submitting	a	patch	that's	for	review	but	I'm	a	lot	less	nervous	than	I	was
previously	and	I	understand	now	that	people	on	my	project	aren't	sitting	there	silently	judging	me	for	not
knowing	all	the	answers	but	are	actually	rooting	for	my	success	and	happy	to	help	what	I	have	questions
now	I'm	able	to	actually	go	to	other	people	when	I	have	questions	if	M7	is	busy	and	I'm	happy	to	get
reviews	where	people	point	things	out	that	I	can	improve	on	I've	learned	so	much	through	mentoring	and
I'm	incredibly	happy	to	continue	to	learn	I	have	now	this	group	of	people	that	I	can	draw	knowledge	from
more	than	just	what	I	started	with	that	and	I	think	the	biggest	benefit	of	mentoring	is	the	connections	I
have	now	made	that	I	can	go	to.

So,	there	are	a	lot	of	times	where	issues	arise	or	defects	occur	in	a	workplace	and	shadowing	to	fix	them
is	probably	the	best	way	to	learn	how	to	deal	with	them	in	the	future	learning	where	to	go	to	look	for
problems	what	things	to	watch	for	and	what	they	mean	how	to	interpret	them	is	a	very	long	process	and
shadowing	someone	else	who	knows	how	to	do	it	is	a	great	way	to	figure	it	all	out.

Don't	assume	an	answer	to	a	question	should	be	obvious	and	it's	happening	multiple	times	now	where	I
have	encountered	an	issue	and	get	in	my	own	head	and	I	should	be	able	to	fix	this	without	asking	any
questions	only	to	exhaust	every	avenue	that	I	now	bring	up	the	issue	and	find	out	something	else	was
going	on	that	I	didn't	know	about	causing	my	issue.

Therefore,	I	have	to	not	be	afraid	to	speak	up	this	is	why	it's	really	important	to	speak	up	and
communicate	if	my	mentor	doesn't	know	I'm	struggling	with	an	issue	he	can't	help	me	so	making	sure	I
say	something	when	it	happens	or	even	if	I	figured	it	out	later	but	say	this	was	an	issue	for	me	I	figured	it
out	that	sort	of	communication	is	very	vital	and	then	there	happens	only	occasionally.

But,	there	are	times	where	sometimes	my	mentor	is	doing	something	that	I	sit	there	and	go.	I	think	it's
supposed	to	go	this	way	so	if	I	speak	up	at	those	points	instead	of	sitting	there	silently	it's	actually	a	good
thing	because	I'm	learning	and	we	don't	have	to	sit	on	the	same	issue	forever.

So,	learning	the	issue,	seeing	someone	else	make	the	same	mistake	and	going	away	I	know	that	that's	a
sign	of	progress	and	something	I	should	be	happy	with	not	internalizing.

TESTIMONY4	(M7	testimony)

So,	I'm	going	to	share	a	little	bit	about	some	experience	of	mine	with	mentoring	in	the	workplace.	My
experience	at	XYZ	company.	When	I	started	there	I	didn't	have	a	mentor	to	really	turn	to	work	on	the
community	team	that	I	mentioned	where	my	work	was	focused	solely	on	upstream	projects	that	I	found
interesting	and	thought	might	bring	value	back	to	the	company.

Down	the	road	I	was	fairly	insulated	from	the	internal	development	and	deployment	efforts	of	the
business	often,	I	would	find	myself	running	into	problems	that	I	was	too	timid	or	afraid	to	ask	for	help
with	is	I	didn't	want	to	go	and	interrupt	the	guys	who	had	been	working	60-70	hours	a	week	trying	to
solve	issues	heading	up	to	up	to	deadlines.

In	my	mind,	they're	working	to	solve	the	real	problems	and	I'm	sitting	here	you	know	playing	upstream

and	having	a	good	time	fast	forward	to	now	though	I	make	it	a	point	to	actively	help	both	junior
members	of	staff	and	our	organization	and	also	my	peers	who	are	working	to	understand	the	technologies
we	rely	on	for	what	our	business	is	trying	to	achieve.

Now,	I	can	sympathize	with	my	coworkers	and	peers	because	I	remember	how	I	felt	when	I	first	started
and	I	was	this	bear	in	this	picture	just	sitting	around	thinking	you	know	I	don't	have	a	mentor	here	I'm
just	gonna	sit	and	wait	until	someone	says	something	because	I'm	sure	they	can	look	at	me	and	tell	that
I'm	stuck.

It	wasn't	the	case,	it	was	very	easy	to	feel	overwhelmed	and	I	try	my	hardest	to	see	the	signs	of	someone
who	may	need	help	now	but	like	I	did	in	the	past	doesn't	want	to	interrupt	someone	that	seems	too	busy
similar	to	my	takeaways	from	upstream	mentoring	I've	got	some	downstream	takeaways	too	after
reflecting	on	the	past	four	years	some	of	these	are	fairly	similar	to	my	viewpoints	on	upstream
mentoring.

But,	have	some	slightly	different	context	of	course	time	constraints	similar	to	upstream	can	affect	our
ability	to	mentor	our	peers	in	the	workplace	I	feel	the	time	constraints	in	the	workplace	can	be	more
restrictive	as	the	time	required	to	be	successful	often	competes	with	the	time	required	to	make	the	critical
needs	of	the	business	during	the	40	hours	a	week	or	so	that	we’re	in	the	office	similar	to	before	it	often
becomes	tempting	to	scale	back	your	involvement	with	your	mentees	in	the	workplace	once	again	my
advice	is	if	this	can	be	avoided	don't	do	it.

Bringing	a	mentee	along	for	the	ride	when	triaging	and	fixing	critical	issues	in	the	workplace	not	only
helps	them	learn	the	processes	required	for	doing	so	but	also	serves	as	a	sanity	check	for	yourself	when
you	inevitably	slip	up	and	do	something	wrong	and	they	pointed	out,	which	as	FP1	said	it	progresses	it's
great	I	won't	lie	there's	been	a	handful	of	times	where	that's	happened	and	I'm	really	glad	she	was	able	to
catch	me	on	that	because	I	feel	like	that	helps	reinforce	the	concepts	that	I've	got	and	the	things	that	I've
learned	and	it's	a	good	feeling	seeing	your	mentee	catch	on	as	well.

Concerning	upstream	mentoring,	differences	and	technical	proficiency	should	be	taken	into	account
when	mentoring	in	the	workplace	my	approach	to	addressing	this	in	the	workplace	is	the	same	as	it	is
with	upstream	individual	contributors	I	like	to	find	out	what	interest	and	excite	someone	I'm	a	meant	to
mentor	and	find	ways	to	tie	that	back	to	the	work	they're	doing	if	it's	not	exactly	a	perfect	fit.

I	found	that	personal	interests	and	the	technology	that	we	work	within	our	day	to	day	jobs	make	work
feel	less	like	work,	which	is	a	good	thing.

Also,	differences	and	work	preferences	can	be	a	challenge.	Different	people	like	to	work	in	different
ways.	I've	had	successful	mentoring	arrangements	that	involve	pairing	frequently	with	someone	until
they	felt	more	confident	and	comfortable	in	their	abilities.

I've	had	situations	where	delegating	tasks	and	activities	to	a	and	a	more	hands-off	approach	resulted	in
success	where	paring	had	previously	failed.

I	like	to	talk	with	mentees	early	to	determine	what	works	best	for	them.	Putting	someone	in	an	extremely
uncomfortable	situation	that	might	not	align	with	the	way	they	like	to	work	will	almost	never	result	in	a
successful	outcome.

For	interest	in	mentees,	I	highly	suggest	taking	an	active	approach	to	finding	mentors	and	coaching	in	the
workplace.	Meaningful	mentoring	arrangements	aren't	always	part	of	workplace	culture.

Successful	mentoring	relies	on	active	commitment	from	both	parties	and	I've	always	been	enthusiastic
and	willing	to	help	anyone	who's	approached	me	directly	about	mentoring	because	it	shows	me	they	take
initiative	and	not	only	succeeding	in	their	day	to	day	job	but	they	want	to	actively	manage	their
expectations	for	their	long-term	career	goals,	and	finally	feedback	is	critical	to	determine	the
effectiveness	of	a	mentoring	arrangement.

Not	just	for	the	mentee	but	for	the	mentor	as	well	the	differences	and	challenges	mentioned	above	will
ultimately	affect	whether	you	can	expect	success	in	a	mentoring	relationship.

Personally	much	like	software	or	software	development,	I	prefer	to	fail	fast	and	regular	and	get	rapid
regular	feedback	from	the	individuals	that	I	have	these	relationships	in	the	workplace	so	I	can	course-
correct	and	find	ways	to	augment	that	relationship	with	my	mentee	to	make	it	successful	because

ultimately	if	in	the	long	run	if	they're	successful	everyone	in	our	organization	successful	it	means	I	get
fewer	text	messages	and	phone	calls	at	night	when	things	don't	work.

So,	there's	some	self-preservation	in	there	as	well	but	mostly	it's	wanting	to	see	everyone	else	succeed	I
am	extremely	grateful	for	the	experience	I've	had	both	upstream	and	downstream	standing	here	four
years	later	after	not	just	getting	involved	with	OpenStack	but	graduating	college	and	getting	my	first	job	I
never	thought	I'd	be	standing	up	here	talking	about	how	I	can	help	other	people	succeed	in	the	workplace
and	how	good	of	a	feeling	that	is	I	fully	expected	to	be	in	a	cubicle	somewhere	just	hacking	away	-
keyboard	all	day	and	I'm	really	happy	that's	not	the	case.

[Open	discussion	on	Mentoring	Q/A]	Companies	representative,	foundation	in	sum	all	stakeholders.

Mentoring	is	super	important	and	you	talked	about	the	time	trade-off	at	work	like	doing	that	quote-
unquote	actual	work	but	I'm	a	firm	believer	that	mentoring	as	a	multiplier	is	way	more	valuable	than	just
banging	out	code.	So,	thanks	for	beating	the	drum.	Thanks	for	taking	the	mentoring	seriously.	I	really
appreciate	it.	It's	awesome.

Thank	you	yeah	I	agree	100%	thankfully	the	organization	that	we	work	with	and	that	we're	a	part	of
firmly	believes	the	same	thing	and	it's	just	another	thing	it	makes	me	extremely	happy	to	be	where	I'm	at
right	now.

without	mentoring	I	would	definitely	be	sitting	in	a	cubicle	hacking	away	at	something	that	oh	and	know
this	for	sure	and	not	trying	to	expand	my	knowledge	at	all	so	I	feel	like	I'm	actively	contributing	to
something	new	and	that's	a	great	feeling.

Any	advice	for	getting	a	mentorship	program	going	at	a	company	that	doesn't	currently	have	one?	that	is
it's	very	difficult	because	it's	very	much	in	the	culture	of	the	organization	that	we're	part	of	so	it's	kind	of
hard	for	me	to	put	myself	in	those	shoes	and	give	advice	I	think	the	best	way	to	approach	it	though
ultimately	is	you	know	pitching	it	is	in	the	terms	of	the	business	it	is	a	solid	investment	because	this	was
mentioned	I	mean	the	time	you're	putting	forth	and	mentoring	people	and	making	sure	they're	not	just
able	to	contribute	but	they	understand	that	they	don't	have	to	be	rockstars	to	add	value	that	really	helps
get	over	the	hurdles	where	someone	might	feel	they're	inadequate	or	don't	possess	the	skills	or	can
develop	those	skills.

but	also	as	FP1	mentioned,	working	in	this	industry	where	sometimes	technology	can	be	extremely
disruptive	and	it's	very	hard	to	find	the	right	people	for	the	job	it	for	the	business	it	makes	it	hard	to
transition	to	things	that	add	value	from	a	business	sense	if	you're	not	able	to	grow	the	skills	in	the
workplace	to	handle	that	if	you're	not	able	to	find	them	externally	I	think	that's	probably	the	best	way	I
could	answer	that.

Yeah,	that's	a	good	question	if	someone	else	has	a	better	idea	or	some	valid	feedback	I	think	it'd	be
awesome	to	touch	base.

My	company	does	have	a	formal	mentoring	program.	I	do	a	lot	of	mentoring	for	people	on	my	team	and
one	of	the	elements	that	we	have	is	that	we	set	up	formal	goals	that	are	related	to	the	mentoring	that
change	each	quarter	to	align	with	what	we're	doing	that	quarter.	Setting	formal	goals	as	part	of	a
mentoring	program	is	extremely	important	and	we	have	recorded	lots	of	successful	cases	in	our
company.

One	other	way	to	achieve	success	has	been	to	request	a	recurring	one-on-one	with	anyone	you’re
mentoring.	That	could	be	at	whatever	frequency	they	desire.	It	could	be	once	a	week,	or	once	every	two
weeks,	or	once	a	month.	It's	really	just	whatever	works	for	both	parties	and	adds	value.	In	the	past	the
mentoring	relationships	I've	ended	up	establishing	with	individuals	who	came	into	our	organization	and
some	of	the	other	people	I've	met	upstream.

Personally,	I	always	kept	a	curated	list	of	the	goals	that	I	wanted	to	reach.	So,	for	example,	starting	to	get
involved	with	different	OpenStack	projects	and	services	you	know	I	got	involved	with	OUI	and	that
helped	me	to	get	the	right	sets	of	projects	as	I	started	trying	to	dive	into	OpenStack	so	it	was	pretty
daunting	but	playing	out	those	granular	goals	that	made	sense	in	a	sequential	effort	I	guess	really	helped.
You	can't	swallow	a	whale	hole	right!	You	gotta	cut	it	up	into	bits.

I	mean	setting	up	goals	even	just	as	a	mentee	yourself	and	then	again	communicating	those	clearly	to
your	mentor	I	think	has	been	the	best	way	for	me	to	sort	of	track	my	progress	and	stay	focused.	For

example,	say	I	want	to	submit	this	many	patches	upstream	and	oh	I	did	that	and	I	want	to	contribute	to
this	or	that	project	at	the	next	release	cycle

I	was	able	to	do	those	setting	goals	like	that	have	been	incredibly	helpful	and	have	definitely	in	terms	of
impostor	syndrome.	That's	the	thing	that	makes	me	look	back	and	realize	oh	wow	I've	actually
accomplished	a	lot	so	it's	really	yeah	asking	people	to	set	goals	for	themselves	I	think	is	helpful.

To	the	question	of	how	does	one	set	up	a	mentoring	program	successfully?

As	a	former	manager,	myself	and	my	management	colleagues	tried	to	do	that	exactly	the	same	thing
several	different	ways	and	tried	to	you	know	combinations	of	like	forcing	down	you're	assigned	to	this
person	to	having	people	sign	up	through	you	know	sign-up	sheet	and	anyway	I	don't	think	we	ever	really
succeeded	in	finding	something	that	didn't	feel	forced	and	artificial	and	if	anyone	has	had	more	success
with	that	I'd	be	really	interested	in	hearing	it	but	I	actually	work	for	the	same	place	as	these	guys	and	I
think

M7	really	captured	it.	It’s	the	culture	of	the	place	that	helps	drive	the	behavior	you	want	you	can	sort	of
sell	it	to	leadership	as	it's	an	investment	and	it's	it	brings	you	business	value	and	it	helps	retain	talent
because	it	keeps	people	happy	and	it	increases	skills	that	are	hard	to	find	in	the	marketplace	and	those
are	all	great	ways	to	basically	get	permission	to	allow	people	to	do	this	but	then	the	other	part	is
encouraging	it	and	rewarding	it	if	you	allow	people	the	time	you	don't	make	them	feel	like	they	are	you
know	taking	time	away	from	their	actual	job	but	make	them	understand	that	it	is	an	encouraging	part	of
their	job	I	think	that	helps	sort	of	foster	that	and	then	if	they	when	they	do	it	if	you	tell	them	they	did	a
good	job	and	you	know	if	you're	in	a	management	position	you're	able	to	reward	that	kind	of	behavior
that	sort	of	starts	that	cycle	going.

As	a	follow-up	question,	do	you	think	it's	easier	to	set	up	those	programs	within	a	given	company	versus
within	a	given	community	like	is	it	easier	to	get	management	approval	for	example	if	you	set	it	up	within
the	same	organization	how	do	you	think	it	relates	between	community	to	even	and	company	driven
mentorships?

If	you	want	my	personal	opinion,	I	think	it's	a	lot	easier	to	set	up	in	an	open-source	community	trying	to
think	of	the	right	way	to	answer	this	in	terms	of	the	company	perspective	in	a	large	company	that	has
many	moving	parts	and	many	layers	of	reporting	as	a	fortune	10	company	like	AT&T	does	it	could	be
pretty	difficult	because	you	can	have	you	know	informal	mentoring	programs	set	up	at	the	organization
level	but	you	know	of	course	it	ties	back	to	what	I	was	saying	earlier	whereas	time	constraints	get	busy	if
the	workforce	or	the	headcount	on	your	team	starts	to	reduce	a	bit	due	to	the	needs	of	the	business
usually	one	of	the	first	things	that	go	is	okay	well	I	need	you	to	devote	all	this	time	to	picking	up	some	of
the	extra	work	and	focusing	on	delivering	the	software	we	need	to	deliver	and	operate	the	infrastructure
we	need	to	operate	in	this	mentoring	thing	you	know	we	can	revisit	this	later.	I	think	setting	it	up	external
to	the	workplace	so	in	this	sense	the	community	–OUI,	mostly	because	the	benefit	that	I	have	working	in
the	organization	that	I	do	the	majority	of	us	are	working	upstream	and	various	projects	anyway	whether
it's	OpenStack-helm	airship	or	something	else	so	it's	a	lot	easier	to	handle	it	that	way	and	that	way	we
can	help	mentor	our	co-workers	but	also	mentor	other	individual	contributors	who	might	want	to	be
involved	with	that	effort	as	well	and	then	you	know	since	are	the	people	on	our	team	are	working
upstream	anyway	we	were	able	to	pull	that	value	downstream	as	it	were	and	take	advantage	of	that.

Thanks,	everyone	[Applause]	END	of	Day-01

OpenStack	Events

M2	instruct	participants	to:	Open	the	Events	section	of	the	Contributor	Guide.	Read	the	material	Ask
The	Mentor	Questions	Get	Ready	To	Go	Through	The	Exercises

OB1	Events	and	activities	within	the	community
the	aim	of	this	exercise	is	to	enable	participants	to	be	aware	of	activities	that	are	happening	within
the	OpenStack	ecosystem.

1.	 Exercise	1

M1	Lookup	OpenStack(or	OpenInfra)	Days	event	close	to	where	you	live	that	you	would	be
interested	in	attending.	If	there	are	no	events	planned,	is	there	a	meetup	group?	Share	your

response	on	the	IRC	channel.	OB1	The	response	in	the	IRC	had	a	lot	of	mixed	opinions	depending
on	where	each	participant	is	located	and	if	their	locality	is	hosting	local	events	or	meetup	groups.
For	example,	13	participants	reported	that	they	have	no	local	events	at	all	near	their	locality
whereas	59	have	one	or	more	events	reported.	Also,	all	72	participants	reported	that	they	will	be
willing	to	attend	any	event	that	is	organized	near	their	location.

2.	 Exercise	2

M1	asked:	“	Look	up	the	location	and	dates	of	the	next	PTG	and	share	their	response	to	the	IRC
channel.”	OB1	All	participants	got	the	answer	correctly	from	the	OpenStack	event	page.

3.	 Exercise	3

M2	instructed	participants	“Look	up	the	location	and	dates	of	the	next	summit/Forum”	OB1	All
participants	got	the	answer	correctly	from	the	OpenStack	event	page.

The	general	atmosphere	of	events	happening	was	positive	among	participants	and	some
participants	registered	for	upcoming	events	near	their	local	community.

DAY-02	Practical	Activities
Survey	Form

M1	and	M2	reminded	Mentors	to	be	fully	engaged

General	Tips	for	Mentors	before	day	02	session

1.	 Remain engage with the rest of the class even if you are not presenting.
2.	 Choose a table and sit with the students to help
3.	 If there aren’t enough mentors or every table has one already, float around the

room checking in on people, especially during exercises
4.	 When possible, sit at a table and build connections (networking) with

participants
5.	 Talk slowly when you are presenting - English may not be their first language
6.	 Pause to ask students if they have questions on the material throughout your

presentation
7.	 Ask the students questions to make sure they are engaged and understand the

material
8.	 Join the IRC channel of the class and participate during the training
9.	 Give out swag and make sessions competitive
10.	 Promote ideas for next steps after training is done; mentoring, Project

Onboarding and other related conference sessions

The	Lead	mentors	encouraged	participants	to	be	interactive

General	Tips	for	Participants

1.	 Use every opportunity you have to give us feedback. It's important for the
community

2.	 Discuss your solutions with mentors and explain to them how
 you derived the solutions.

3.	 Use IRC for answering questions or the training etherpad if an exercise requires
more space

4.	 Be prepared with the "deep dives" exercise, usually, participants have very
different levels of knowledge and skillset.

M1	presented	the	observer	OB1	who	also	is	a	mentor	in	the	OUI	programs.	OB1	told	participants	that	if
at	any	time	they	don’t	want	to	be	part	of	the	study	they	are	free	to	quit	without	any	consequence.	Also,
OB1	explains	in	brief	what	think-aloud	is	and	that	participants	might	be	asked	to	think	aloud	when
performing	their	tasks.

Seating	configuration

https://openstackfoundation.formstack.com/forms/upstream_training_feedback_survey

Each	table	was	arranged	to	accommodate	up	to	six	participants	with	two	more	reserve	seats	for
mentors,	making	a	total	of	eight	people	per	table	maximum	capacity	for	all	12	tables	arranged	in
the	hall.	These	12	tables	formed	12	groups	in	such	a	way	that	table	T1	was	named	group	1,	…,	and
T12	was	named	group	12.

Figure	1:	Setting	of	the	observational	study,	participants	were	arranged	in	12	tables	named
T1	to	T12	respectively	in	12	groups.

With	this	seating	configuration,	the	observer	(OB1)	implore	impression	management	skill	in	this	direct
observation	study,	which	Erving	Goffman	proposed.	OB	collected	field	notes	alongside	the	audio-visual
recording.	Meanwhile,	the	Hawthorne	effect	was	high,	that	is	the	participants	are	totally	aware	that	they
are	being	observed.	Also,	the	OB1	kept	interaction	with	the	participant	tasks	to	the	minimum.

Observable	tasks
All	participants	were	assigned	the	following	tasks	to	walk-through	with	the	assistance	of	mentors.	In
each	task,	OB1	randomly	chooses	a	participant	from	a	table	and	observes	how	they	are	performing	the
assigned	task.	Furthermore,	OB1	asked	participants	to	think	aloud	as	they	carry	out	their	tasks.

Day-02	Agenda

(i)	Overview	of	the	contribution	process	(ii)	Issues	Tracking	(iii)	Git	&	Commit	Messages	best	practices
(iv)	Code	review	process	using	Gerrit	(v)	Patch	Gurus!	(vi)	Project	Status	and	Zuul	(Testing,	CI	&	CD)

Hackathon	(Dive	deep	code	challenge)

Demo	environment	Code	exercises

Learning	Exercises
The	following	sections	consist	of	hands-on	exercises	for	participants	to	practice	skills	on	contribution.
Mentor	M2	motivated	participants	that	in	each	series	of	exercises,	the	first	person	to	finish	and	notify	the
mentors	on	IRC	or	on	their	table	will	receive	a	prize.	There	were	varieties	of	prizes	for	everyone	such	as

swangs,	Lego,	stickers,	tickets	for	free	summit	outing	events,	etc.

Task1	(i)

1.	 Overview	of	the	contribution	process

M5	and	M11	presented	a	general	overview	of	the	contribution	process,	without	going	into	much
detail,	which	is	reserved	for	later	exercises.

Getting	to	Know	your	project

OB1	randomly	chooses	P3	who	was	seated	on	table	#1.	M5	told	participants	that	“each	project
within	OpenStack	has	its	own	purpose	and	culture.”	M5	asked	all	participants	to	clone	any	of	the
OpenStack	projects	that	they	are	familiar	with.

$	git	clone	https://opendev.org/openstack/<your-project>

M5	:	Know	who	you	are,	your	strength,	weakness,	and	domain	of	interest.	Based	on	that,	select	a
project	that	reflects	those	interests	“Get	familiar	with	the	codebase	and	programming	paradigm	of
your	selected	project.”	OB1	:	“Which	project	have	you	chosen	and	why?”	P3:	“I	chose	Keystone
based	on	what	the	mentors	presented	yesterday	about	the	core	OpenStack	projects,	and	what	I	have
searched	so	far,	‘Keystone	service	provides	API	client	authentication	…’	At	school,	I	work	with
projects	that	implement	identity	authentication	as	services	to	web-based	applications.	So,	I	am
most	comfortable	with	this	way	of	writing	coding	and	thinking.”	M5	:	Explore	and	identify	at	least
three	functionalities	in	your	selected	project.	In	case	you	need	help,	the	mentors	assigned	to	your
table	are	willing	to	help.	OB1	:	While	you	are	exploring	your	project	of	choice,	can	you	think
aloud?	Explain	your	steps	and	what	the	functions	do.	P3	:	Now,	I	am	searching	the	keystone
documentation	to	see	which	functionality	I	am	familiar	with	within	the	most	recent	release	of
OpenStack.	I	have	Identified	the	first,	functionality:	A	function	that	creates	an	OpenStack	user
with	federated	identity.	Now,	I	am	reading	what	the	code	does,	…	it	takes	four-parameter	and
returns	a	dictionary	containing	the	user	reference.	Next,	I	am	searching	the	keystone
documentation	again,	…,	I	have	found	another	functionality	that	returns	a	consumer	and	the
consumer’s	secret.	The	search	continues…	In	the	manager	class,	I	have	seen	a	function	that
dynamically	calls	the	backend.	This	function	serves	as	the	default	pivot	point	for	authenticating
backends,	and	the	search	continues	…	Last,	I	have	found	a	function	that	validates	authentication
from	a	query	string.	I	will	stop	the	search	here	because	I	fill	satisfied	with	this	task.

M11	instructed	participants	to	run	different	test	cases	in	each	project	that	they	cloned.	“If
you	need	help,	mentors	are	seated	on	your	tables,	they	will	assist	you	in	running	the	test
cases.”

OB1	noticed	that	“*P5*	is	having	difficulties	locating	which	test	case	to	run,	and	asked	the
mentor	assigned	to	their	table	for	help.”

M3	asked	P5	“What	is	the	problem,	and	how	can	I	be	of	help?”

P5	“I	ran	the	commands	exactly	as	M11	instructed	but	having	an	error	message.”

M3	“Let’s	re-run	the	command,	and	read	the	error	message	together.”

OB1	observed	that	P5	omitted	one	argument	parameter	in	the	command,	which	aims	at
specifying	the	type	of	test	to	run;	the	“functional”	parameter.

$	tox	-e	py27	–	zaqar.tests.functional

Socio-technical	interacting	with	your	project	::	M11	encourage	participants	to	“get	engaged
in	a	project	of	interest	and	join	the	IRC	channel,	make	sure	you	follow	and	participate	in
project-related	mail	threads	in	the	mailing	list.	Also,	attend	regular	meetings,	and	get	your
hand	dirty	by	filing,	fixing,	and	triaging	bugs.	Filing	a	blueprint/spec,	Implementing	a
blueprint/spec.”

Building	your	Persona	::

https://opendev.org/openstack/

M5	Asked	participants	to	go	through	the	documentation	of	their	project	and	see	if	they	can	spot
and	fix	any	typo	etc.	M5	Then	ask	participants	to	look	at	code	that	other	developers	have	written	to
be	familiar	with	the	style	and	comments	used.	“	mentors	are	available	to	help	if	you	don’t
understand	what	a	code	you	are	reading	is	doing.	M5	also	emphasizes	that	one	way	to	understand
and	grow	in	a	project	is	to	use	the	common	forum/channel	that	developers	used	to	ask/answer
questions.	M5	then	asked	participants	to	join	the	project	irc-channel(s)	and	make	an	attempt	to
direct	people	who	are	asking	questions	there	to	the	right	resources/documentation.	“Make	sure
your	mentor	knows	your	interests	in	participating	in	the	project.	Explain	why	you	are	interested
and	what	are	your	strengths,	then	ask	how	you	can	help	the	project.”

M11	Build	a	network	within	your	project	team

“Pay	attention	to	who	is	an	‘expert’	in	your	project	domain,	don’t	forget	to	post	and	ask
questions	in	the	channel	or	send	direct	messages.	Remember	that	If	people	know	you,	you
have	a	better	chance	at	your	code	getting	attention.”

General	contribution	workflow

M5	Gives	the	general	contribution	workflow,	which	consists	of	picking	a	task	(this	could	be	a	bug,
trivial	fix,	documentation,	implementation),	creating	a	new	branch	in	your	local	repository,	making
the	desired	code	change,	adding	and	running	test	cases,	last,	create	your	commit	and	push	the
changes	back	upstream	for	review.	However,	M5	told	participants	that	“we	will	go	into	this	later
on	in	more	detail	so	hold	off	on	answering	detailed	questions	for	now.”

Your	patch	upstream

M11	told	participants	that	after	pushing	their	changes	upstream	a	CI/CD	job	will	spin	“Zull	CI
will	review	your	patch.”	Community	members	with	a	+2	power	will	also	review	your	patch.
“Make	sure	you	reply	to	the	reviewer's	comments	on	time	and	make	requested	changes	then	push
back	a	new	patchset.	In	some	cases,	you	will	have	to	handle	merge	conflicts.”

Speeding	Acceptance

M5	told	participants	to	be	consistent	within	and	be	on	top	of	the	reviewer’s	comments.	Moreover,
urge	participants	to	be	patient	during	the	review	period	and	be	communicative	and	collaborative
“Remember	this	is	an	open-source	world!	Things	happen	on	the	community	schedule,	not	yours.”

Task2	(ii)

1.	 Issues/Task	Tracking

M7	and	M10

Learning	Exercise
Open	the	Task	Tracking	section	of	the	Contributor	Guide

Read	the	material	here	[https://docs.openstack.org/contributors/common/task-tracking.html]

Ask	the	mentors	questions

P23	asked	a	question	to	a	mentor	assigned	to	table	T4,	however,	M8	decided	to	share	the	question
among	all	the	mentors	and	the	main	coordinator	M1	asked	that	the	question	be	repeated	for	the
benefit	of	all	participants.	P23	“Why	is	OpenStack	using	multiple	task	tracking	systems?	What	are
the	main	differences	and	drawbacks?”	M12	an	expert	in	the	ecosystem	and	PTL	of	the	Storyboard
project	answered:	“	Originally,	OpenStack	used	Launchpad	as	the	issue	tracker,	Launchpad	was
developed	and	managed	by	Canonical	to	track	bugs	or	blueprint.	Moreover,	Launchpad	is	limited
in	terms	of	scope.	It	was	tied	down	to	a	project,	it	was	not	designed	to	support	an	ecosystem	scope
i.e	a	cross-project	setting.

However,	Storyboard	was	engineered	to	support	the	coordination	of	cross-project	work	in	an
ecosystem	setting,	in	which	each	project	is	different	in	the	process	of	reporting	bugs	and	planning
new	features,	for	example,	a	story	could	be	to	invent	some	new	feature	A,	and	tasks	would	be
changed	in	project	X,	change	in	project	Y,	and	change	in	project	Z.	Those	changes	need	to	merge

https://docs.openstack.org/contributors/common/task-tracking.html

in	order	to	complete	feature	A.	…	Is	that	clear	enough?”	[Yes!]

Get	ready	to	go	through	the	exercises

OB1	observed	that	the	mentors	prepared	the	“material”	to	reflect	the	recent	changes	in	the
ecosystem	codebase.	All	the	projects	involved	were	up	to	date.	Moreover,	participants	on	average
could	read	and	follow	the	instructions	with	little	help	from	mentors,	even	though	some	sections
were	challenging,	which	we	will	detail	later.	OB1	move	randomly	from	Table	1	to	Table	8	and
randomly	chose	P40.

1.	 Exercise	1

OB1
The	aim	of	this	exercise	is	to	enable	participants	to	practice	how	to	create,	report,
assign	and	fix,	review	a	bug,	knowing	a	bug	life	cycle	is	important	in	contributing	to
OpenStack.

Mentor	M10	asked	the	participants	to	“create	and	submit	a	bug	to	our	sandbox	repository.
This	should	include	at	least	one	tag	when	creating	your	bug.	Once	it	has	been	created,	assign
it	to	yourself.”	OB1	asked	P40	to	think	aloud	and	explain	each	step	as	they	proceed	if
possible.	P40	First,	I	am	using	my	favorite	editor	vim	to	create	a	python	file.	I	will	call	it
exercise1.py	Next,	I	am	writing	a	function	that	reads	the	prints	of	all	OpenStack	summits
and	their	locations	in	the	past	[…	goes	silent	for	a	while…]	Now,	I	am	injecting	a	bug	to	my
code	with	the	tag	Bug101.	This	bug	is	assigning	the	wrong	locations	to	each	summit.	I	am
done	with	the	code.	I	am	adding	it	to	my	stage	area,	…	Now,	pushing	it	to	the	sandbox	repo
…	done!Now,	I	am	signing	in	to	launchpad	…	I	am	reporting	the	bug	now	and	assigning	it
to	myself	…	the	bug	is	now	assigned	to	me.	OB1	noticed	that	P33	and	P35	seated	on
table/group	10,	were	exchanging	ideas	constantly	throughout	this	exercise	1,	therefore,	OB1
moved	to	table	10	and	asked	both	P33	and	P35	how	they	found	the	exercise	and	if	they
could	walk	him	through	the	steps	that	they	took	in	doing	the	exercise.	P33	said	“this	was	my
first	time	working	with	git.	At	school,	I	did	mostly	theoretical	computer	science	and
mathematics,	I	know	the	logic	and	algorithm	behind	most	code	but	have	not	been	exposed	to
real	situations.	So	it	was	relatively	hard	to	work	along,	but	P35	seems	to	have	a	better
experience	with	the	git	version	control	system.	However,	P33	affirms	that	the	concept	of
what	the	exercise	demands	is	not	that	complex	to	understand,	except	the	technical	knowhow
to	get	it	done.”	P35	added	that	“	I	used	git	a	lot	at	college	in	nearly	all	my	software
engineering	courses	and	projects,	therefore,	I	find	this	exercise	pretty	straightforward.
Except	for	the	launchpad	thing	that	I	am	using	for	my	first	time	today,	but	overall,	the
exercise	is	not	that	hard	for	me.”	P33	Concerning	the	code,	we	implemented	a	basic	search
algorithm	in	python	and	injected	a	bug	to	the	code	that	always	returns	the	first	element.	I
used	SPE	editor	on	my	Ubuntu	machine	to	write	the	code	and	then	P35	used	the	command
line	with	git	to	commit	the	changes	to	the	sandbox	repository.	After	that,	we	navigate	the
interface	of	Launchpad	to	understand	how	it	works,	then,	I	assigned	it	to	P35.

OB1	observed	that
participants	within	each	group	were	sharing	information	to	help	solve	their	problems
and	also	using	the	IRC	common	channel	to	share	their	ideas	or	ask	questions	from
other	participants	outside	their	group/table.	For	example,	P44	asked	a	question	to	P40
how	to	assign	the	bug	on	launchpad,	and	P40	showed	P44	the	steps	to	accomplish	that
task.	Moreover,	similar	kinds	of	collaboration	were	happening	across	the	different
groups/tables	among	participants.	Also,	OB1	noticed	that	participants	were	asking
questions	on	the	IRC	channel	and	other	participants	from	different	groups/tables	were
sharing	their	answers	to	the	channel.

M10	told	participants	that,	“You	will	use	this	code	later	when	we	practice	writing	commit
messages	and	pushing	patches	to	the	sandbox	repo	so	make	it	interesting!”
https://bugs.launchpad.net/openstack-dev-sandbox/+filebug

2.	 Exercise	2

M2	Blueprints	are	used	to	track	the	implementation	of	significant	features	in	OpenStack.
Keeping	their	status	current	is	critical	to	the	success	of	the	release	and	the	project	as	a	whole.

https://bugs.launchpad.net/openstack-dev-sandbox/+filebug

OB1
The	aim	of	this	exercise	is	to	enable	participants	to	practice	how	to	create	and	register
new	features	commonly	known	as	a	blueprint.	Blueprints	are	artifacts	that	enable	the
growth	of	the	ecosystem	in	terms	of	functionalities.

M12	instructed	participants	to	“create	and	register	a	blueprint	against	the	sandbox
repository.	Include	a	description	and	assign	yourself.”	Specify	the	Name,	Title,	and
description	of	what	the	blueprint	should	accomplish

You	will	use	this	blueprint	later	when	we	practice	writing	commit	messages	and	pushing
patches	to	the	sandbox	repo	so	make	it	interesting!
https://blueprints.launchpad.net/openstack-dev-sandbox

M2	“Read	and	follow	the	online	instructions	on	the	blueprint.	Once	you	finish	your	task
don’t	forget	to	indicate	on	the	IRC	channel	and	the	motors	will	verify	your	blueprint,	the
first	person	will	get	a	reward.”	OB1	moves	to	table/group	5	and	observe	how	six
participants	P25,	P26,	…	P30	are	creating	and	registering	their	blueprint.	OB1	observed	that
these	six	participants	were	mostly	working	independently	on	this	task.	OB1	also	monitors
the	IRC	channel	to	record	the	first	person	to	finish	the	task	and	how	long	it	takes.	Moreover,
the	participants	were	not	required	to	write	a	concrete	blueprint	comparable	to	those	that	have
been	implemented.	But,	they	should	just	follow	the	right	procedure	and	respect	the	norms,
which	were	presented	to	them	on	Day-01.	All	participants	registered	their	blueprint	on
launchpad	following	this	template	on	the	sandbox	repo:	Register	a	blueprint	in	Launchpad	to
their	project	page	at	launchpad.net/$PROJECT	and	clicking	"Register	a	blueprint"	Enter
blueprint	Name,	Title	and	Describe	the	feature	summarily	in	the	blueprint	itself	Participants:
Link	to	another	document	(using	the	specification	link)	if	you	have	more	Set	assignee
<<participant	>>	Mentors:	Approve/Reject	the	blueprint	and	provide	feedback/comments.

OB1	noticed	that	the	first	participant	to	create	and	register	a	blueprint	is	participant	P13	and
it	took	19	min	tho	do	so,	mentors	gave	P13	a	sticker.	Meanwhile,	the	last	participant
finished	in	27	min.

P27	created	an	elaborated	blueprint	that	aims	at	provisioning	NAS	services	to	facilitate	file
storage.	The	description	of	the	blueprint	was	two	paragraphs	long,	which	was	not	easy	to
understand.	No	external	link	was	referenced	to	this	blueprint.	OB1	asked	to	share	their
experience	on	this	exercise.	P27	“It	was	a	straightforward	exercise,	I	wrote	my	blueprint	for
the	Cinder	project	because	Cinder	is	responsible	for	block	storage	at	OpenStack	and	that	is
what	interests	me	most,	at	least	for	now,	but	the	task	required	writing	skills	that	I	have	not
really	developed.	I	am	still	struggling	with	my	writing	skills.	So,	it	took	me	a	long	time	to
write	the	summary	of	the	blueprint”

Mentors	rejected	all	the	blueprints	and	then	after	round(s)	of	reviews,	all	were	finally
approved.	M2	stated	that	“the	decisions	to	reject	or	to	approve	your	blueprint	were	taken
based	on	learning	purpose	only	and	not	on	the	technical	relevance.	We	wanted	everyone	to
get	familiar	with	the	process	involved	rather	than	paying	attention	to	the	actual
specifications.	You	might	have	noticed	that	the	feedback	that	mentors	provided	were
actually	the	writing	approach	they	expected	you	to	write	specifications	and	that	is	the	best
practice	that	we	encourage.	”

3.	 Exercise	3

M8	told	participants	that:	“Now,	go	and	post	comments	on	a	bug(s)	or	add	some	ideas	on	a
blueprint’s	whiteboard	that	was	created	by	someone	in	your	group.	For	example,	You	can
ask	a	question	about	the	issue	or	proposed	feature.	You	can	confirm	the	issue	and	update	its
status	to	triage.”

OB1
The	aim	of	this	exercise	is	to	enable	participants	to	practice	and	develop	the	skill	of
writing	and	reviewing	standard	bug’s	comments	(+/-	1	when	necessary)	on
Launchpad.	This	activity	of	writing	standard	bug’s	comments	is	of	critical	importance
in	the	OpenStack	ecosystem	and	is	highly	encouraged.

https://blueprints.launchpad.net/openstack-dev-sandbox

M3	Don’t	be	afraid	to	make	mistakes,	try	your	best	to	write	clear	and	concise	sentences	to
explain	what	you	are	trying	to	achieve.	Don’t	forget	that	reviewers	will	take	a	look	at	your
work	and	give	you	feedback.	This	is	one	way	of	learning	the	way	things	are	done	at	your
project	level.

Also,	once	reviewers	notice	you	are	making	efforts	even	when	you	make	mistakes	they	will
reach	out	to	help	you	out	perfect	your	skills.	So,	read	code	experts	have	written	and	learned
from	their	mistakes,	how	the	review	process	helped	their	patches	to	get	better	and	accepted.

and	register	new	features	commonly	known	as	a	blueprint.	Blueprints	are	artifacts	that
enable	the	growth	of	the	ecosystem	in	terms	of	functionalities.

OB1	Noticed	that	all	12	group	participants	were	paired	2-by-2	to	work	on	this	exercise.	In
some	groups	for	example	group	1,	P1	post	a	comment	on	P2	bug	and	P2	post	a	comment	on
P1	and	the	rest	in	the	group.	On	the	other	hand,	in	other	groups	such	as	group	7,	P37	post
comment	on	P38,	P38	post	comment	on	P39,	…	P41-42,	and	P42	post	a	comment	on	P37,
etc	and	on	the	blueprint,	they	reversed	the	order.

4.	 Exercise	4

OB1	moves	to	group/table	2.

This	exercise	is	similar	to	the	previous	lab;	exercise	3	on	Launchpad	(individual	bug
tracker),	but	now,	on	Storyboard	(cross-project	bug	tracker).

M11	instructed	participants	to	“create	a	board	with	at	least	two	worklists	(one	manual	and
one	automatic)	for	organizing	stories	you	are	going	to	create	in	the	next	exercise.	For	the
automatic	worklist,	give	at	least	two	criteria	for	the	items	that	will	go	into	the	worklist.
These	criteria	can	be	matching	a	project-group,	story	tag,	etc.”	https://storyboard-
dev.openstack.org/#!/dashboard/

OB1
The	aim	of	this	exercise	is	to	enable	participants	to	practice	and	develop	the	skill	of
writing	and	reviewing	standard	bug’s	comments	(+/-	1	when	necessary)	on
Storyboard.	Participants	will	appreciate	the	difference	between	Launchpad	(individual
project	level)	and	Storyboard	(ecosystem	level),	and	how	cross-project	bugs	are
handled,	which	was	a	nightmare	on	Launchpad.

M12	gives	a	brief	explanation	on	Storyboard	“In	Storyboard,	a	story	is	a	bug	report	or
proposed	feature.	Stories	are	then	further	split	into	tasks,	which	affect	a	given	project	and
branch.	Thus,	contributors	can	track	their	work	efficiently	across	several	interrelated
projects,	which	was	impossible	with	Launchpad.	For	categorization	or	prioritization,	stories
and	tasks	can	be	gathered	in	ordered	worklists.	Teams,	projects,	or	sponsors	may	create	a
board	with	manual	or	automatic	lanes	to	provide	a	clear	overview	of	the	activity	of	interest.”

M1	called	the	attention	of	participants	and	told	them	that	“I	will	show	a	live	demo	on	how	to
use	a	storyboard,	the	different	tabs	and	widgets	that	you	will	use	in	this	exercise,	and	how
storyboard	works	in	general.”

OB1	observed	that	all	the	participants	were	able	to	follow	the	instructions	and	example
given	by	M1	and	did	the	first	part	of	this	exercise	between	10	-	15	min,	however,	the	second
part,	which	required	participants	to	automate	a	worklist,	participants	spent	on	average	23
mins	to	complete	the	task.	The	first	participants	to	finish	this	exercise	was	P58	in	group	10.

5.	 Exercise	5

M10	instruct	participants	“create	three	stories	for	your	worklists.	At	least	one	of	them
should	meet	the	criteria	that	enable	it	to	appear	in	your	automatic	worklist.	Each	story	must
have	a	task	that	is	named	differently	than	the	story	name.	You	will	use	these	later	when	we
practice	writing	commit	messages	and	pushing	patches	to	the	sandbox	repo	so	make	them
interesting!”

OB1

https://storyboard-dev.openstack.org/#!/dashboard/

The	aim	of	this	exercise	is	to	enable	participants	to	be	familiar	with	a	cross-project
task	tracker	for	bugs	and	features,	and	to	automate	tasks.

OB1	moves	to	group	11/T11,	and	observe	participants	P61	-	P66.	Members	of	this	group
were	collaborating	and	exchanging	ideas	among	themselves,	but	each	member	created	their
task	independently.	For	example,	this	group	deliberate	and	came	up	with	an	architecture	of
this	exercise.	On	the	one	hand,	they	design	a	worklist,	and	this	worklist	defines	the	state	of
these	three	stories	to	either	be	manual	or	automated.	Then,	they	divide	the	stories	into	two
groups;	automatic	and	manual.	Moreover,	they	assigned	tasks	for	each	story.

Each	member	of	group	66	then	implemented	this	design	individually.	For	example,	P62
defines	criteria	for	all	his	stories	to	be	automated,	meanwhile	P61	and	P64	defined	exactly
one	to	be	automated.	P63,	P65,	and	P66	defined	two	criteria	for	automation.	However,	the
way	group	members	named	their	stories	and	tasks	were	distinct.

6.	 Exercise	6

OB1	moves	to	group	12/T12	and	observes	how	group	members	P67	P72	were
collaborating	among	themselves.

M3	told	participants	that	“share	your	board	with	your	group	and	assign	yourself	to	two	tasks
on	other	people’s	stories.	Comment	on	one	story.”

OB1
The	aim	of	this	exercise	is	to	enable	participants	to	learn	how	to	collaborate	and
exchange	knowledge,	and	to	practice	how	the	review	process	is	coordinated	in	a	team.

M8	said	“	write	down	your	question	on	a	group	member’s	comment,	if	you	have	a	question.
and	not	to	do	so	verbatim.	Writing	down	comments	will	improve	their	communication	skills
and	make	things	clearer	for	both	the	contributor	and	the	reviewer.

OB1	observed	that	participants	were	more	committed	to	giving	feedback	and	asking
questions	on	group	members’	board	than	the	time	they	spend	writing	their	stories.

OB1	asked	group	members	how	they	found	this	exercise	and	what	is	most	exciting
about	it?

P70	said:	“I	realize	that	reviewing	the	work	that	my	teammates	have	done	makes	me
see	contributing	to	a	project	differently.	For	example,	I	was	limited	to	my	own	ways	of
thinking	but	now	I	realize	that	when	I	read	a	teammate’s	logic	and	get	lost,	I	know
exactly	where	I	don't	understand	and	I	ask	questions	for	clarification.	Also,	I	have
learned	something	new	that	I	did	not	know.	”

P67	said:	“In	my	experience,	I	noticed	that	I	can	easily	find	something	wrong	on	what
someone	has	done	rather	than	seeing	something	wrong	on	my	code	or	what	I	have
done.	The	review	process	stands	out	as	most	exciting	for	me	because	my	critical
mindset	was	more	activated	than	just	focusing	on	my	own	work,	I	try	to	see	things
through	the	lens	of	what	someone	has	done	to	make	sense	out	of	it,	that	is	exciting.”

Task3	(iii)

1.	 Git	&	Commit	Messages

M4	said:	“Git	is	an	important	tool	that	you	will	need	all	your	life	in	the	world	of	open/closed-
source	to	contributing	to	any	community’s	codebase.	In	this	task,	we	will	walk	you	through	the
basics	of	Git,	which	is	fundamental	to	contributing	to	any	project,	but	the	hard	part	of	the	work
remains	in	you	to	practice,	practice	and	practice	until	you	are	comfortable.”

OB1
The	aim	of	this	section	is	to	equip	participants	with	the	required	skills	using	Git	to	contribute
to	OpenStack	as	a	contributor.

M9	instructed	participants:	“Open	the	Setup	and	Learn	GIT	section	of	the	Contributor	Guide,	read

the	material,	ask	questions	to	the	mentor,	and	get	ready	to	go	through	the	exercises.”	OB1
Participants	are	busy	reading	the	study	guilds	on	Git

Git	best	practices,	we	recommend	the	following	structure	in	Commit	Messages

M9	“Commit	messages	are	the	first	things	a	reviewer	sees	and	are	used	as	descriptions	in	the	git
log.	They	provide	a	description	of	the	history	of	changes	in	a	repository.	Commit	messages	cannot
be	modified	once	the	patch	is	merged.”	Structure:	Summary	Line	Empty	line	Body	Empty	line
Tags

OB1	observed	that	M4	shows	a	slide	with	each	line	and	a	detailed	description

Summary	Line	The	summary	line	briefly	describes	the	patch	content.	The	character	limit	is	50
characters.	The	summary	line	should	not	end	with	a	period.	If	the	change	is	not	finished	at	the	time
of	the	commit,	start	the	commit	message	with	WIP.

Body	The	body	contains	the	explanation	of	the	issue	being	solved	and	why	it	should	be	fixed,	the
description	of	the	solution,	and	additional	optional	information	on	how	it	improves	the	code
structure,	or	references	to	other	relevant	patches,	for	example.	The	lines	are	limited	to	72
characters.	The	body	should	contain	all	the	important	information	related	to	the	problem,	without
assuming	that	the	reader	understands	the	source	of	the	problem	or	has	access	to	external	sites.

Tags	Tags	are	references	used	to	link	the	change	to	other	tools.	For	example,	the	“Change-id”	line
is	a	unique	hash	describing	the	change,	which	is	generated	automatically	by	a	Git	commit	hook.
This	should	not	be	changed	when	rebasing	a	commit	following	review	feedback,	since	it	is	used	by
Gerrit,	to	track	versions	of	a	patch.

Read	the	materials	for	other	used	tags	at	OpenStack.

M4	Now,	the	following	exercises	will	help	you	practice	each	line	at	a	time	until	you	get	a
complete	well-structured	commit	message.	Remember	that	the	mentors	are	here	to	assist	you.

1.	 Exercise	1

M4	“write	a	summary	line	for	each	bug,	blueprint,	and	story	you	created	during	our	task
tracking	exercises.	Share	them	on	our	IRC	channel.”

OB1	is	monitoring	the	activities	on	the	IRC	channel	to	see	what	participants	are	sharing	and
observed	that	“Mentors	were	commenting	on	participants	post.	Those	that	were	not	written
properly	on	the	first	try	(54/72)	got	a	(-1)	and	feedback	from	a	mentor	stating	why	it’s	not
good,	whereas	those	that	we	accepted	got	a	(+1)	and	a	reviewer’s	comment	to	encourage	the
effort.”

In	the	second	round,	those	that	got	a	-1	had	the	change	to	implement	the	reviewers’
comments	and	improve	their	text	summarily.	Thus,	53/54	got	a	+1	except	one	participant
(P39)	who	still	got	another	-1.	This	time,	mentor	M6	approached	P39	and	asked	if	they	need
some	help	summarizing	their	text	to	give	meaning	to	the	changes	made?	P39	affirms
needing	help	and	both	M6	and	P39	worked	together	to	write	and	acceptable	summarized
text.

M6	gave	general	feedback	to	participants	on	how	to	catch	reviewers’	attention	with	a	good
summarized	text	that	explain	your	code	change	and	posted	some	good	and	bad	samples	on
the	IRC	channel.

2.	 Exercise	2

M4	instructed	participants:	“write	the	body	of	a	commit	message	to	expand	on	the	summary
lines	you	just	wrote.	Feel	free	to	make	up	details	to	make	the	context	more	realistic,	then
share	them	on	IRC.”

OB1	moved	to	table/group	8	while	monitoring	the	IRC	channel	and	observing	how
participants	were	asking	questions	to	mentors	and	communicating	among	themselves	in	their
groups.

OB1	asked	P46	to	think	aloud	while	performing	the	task.	P46	“I	am	writing	the	body	to
have	all	the	essential	elements	[…],	I	have	120	characters	I	am	now	worrying	about
reducing	the	number	of	characters	to	72	[…	thinking	…]	let	me	play	with	words	a	bit	to	see
what	I	get	here	[…]	The	best	I	can	do	is	98	characters.

I	am	now	posting	this	body	to	the	IRC	channel	…	waiting	for	feedback

Meanwhile	P43	and	P47	submitted	65	and	87	characters	respectively	on	the	IRC	channel.

On	the	IRC	channel,	other	group	members	have	submitted	their	body	text	awaiting	review.
21	participants	respected	the	72	characters	recommended	length.	Meanwhile,	all	the	72
participants	submitted	their	text	waiting	for	reviewers’	comments.

All	the	mentors	are	now	writing	their	reviews	online,	communicating	their	comments	to	the
participants	directly	on	the	IRC	channel	and	everyone	could	see	and	learn	from	the
mistakes/strength	of	others.

M2	“Besides	the	character	length	constraint,	overall,	the	content	was	meaningful.	All	the
body	text	carefully	respected	the	recommendation.”

All	the	21	participants	who	respected	the	body	text	limit	got	a	+1	and	the	others	-1,	and	the
first	participant	to	post	their	text	was	rewarded	with	a	sticker.	Moreover,	M1	said	“We
applied	strick	measures	here	to	make	sure	to	get	this	right	and	respect	the	standard	because
one	major	area	in	OpenStack	that	makes	code	review	difficult	is	the	commit	message.	Make
sure	you	work	with	mentors	to	get	this	right	and	we	move	on	to	the	next	activity.”

Mentors	collaborated	with	the	51	participants	and	get	the	body	text	to	match	the	limit	of	72.

3.	 Exercise	3

M8	instructed	participants	“put	the	pieces	together	and	finish	your	commit	message!	Make
sure	to	include	the	summary	line,	body,	and	the	required	external	references	along	with	any
optional	external	references	you	think	it	may	benefit	from.	Then,	share	the	commit	message
with	someone	sitting	next	to	you.	Give	them	feedback	on	their	commit	messages.”

OB1	moved	to	table/group	10.	Participants	used	the	feedback	from	mentors	and	added	a	tag
to	their	commit	messages	and	reference	links	as	required.	In	this	exercise,	all	the	participants
did	as	expected	and	they	were	able	to	learn	the	peer-review	process.

P54	said,	“The	exciting	thing	in	this	task	as	I	see	it	is	sharing	what	we	learn	from	the
mentors,	as	we	use	those	skills	to	give	feedback	to	our	peers	and	also	learning	from	them.”

P60	“I	am	fascinated	with	the	comment	of	my	teammate	P59,	based	on	the	other	peer
review	exercise	we	did	earlier	and	now,	I	see	that	the	mentors’	feedback	has	some	influence
in	what	he	wrote,	because	the	feedback	is	almost	identical	to	the	feedback	that	the	mentor
M10	gave	us.”

Task4	(iv)

1.	 Code	review	process	using	Gerrit

M10	“Make	sure	you	configure	your	Gerrit	account:	open	the	Setting	Up	Your	Gerrit	Account
section	of	the	Contributor	Guide.	Read	the	material	and	ask	questions	to	the	mentors,	then	get
ready	to	go	through	the	exercises.”

M10	explain	to	participants	that	Gerrit	is	the	review	system	that	the	OpenStack	community	uses.
Gerrit	allows	contributors	to	Get	reviews	on	contributors	changes	proposed	to	OpenStack
repositories	Request	reviews	from	specific	community	members	Make	quick	changes	to	your
patches	in	the	WebUI

OB1	Getting	familiar	with	Gerrit
the	aim	of	this	exercise	is	to	enable	contributors	to	get	familiar	with	the	Gerrit	code	review
tool.

1.	 Exercise	1

M8	asked	participants	that:	“how	do	you	initialize	your	local	repo	with	git	review?	Write
your	response	on	the	IRC	channel”	P3	responded	“	git	review	-s”,	and	M2	rewarded	P3	with
a	sticker	M1	added	Git	review	is	a	tool	maintained	by	the	OpenStack	community.	It	adds	an
additional	sub-command	to	‘git’	such	as	git	review.

2.	 Exercise	2

M8	What	does	ICLA	stand	for?	What	is	it?	Write	your	answer	on	the	IRC	channel	P55
responded	first	and	said:	“ICLA	stands	for	‘Individual	Contributor	License	Agreement’	this
is	a	formal	agreement,	which	protects	intellectual	property	rights	granted	with	contributions
from	a	person	or	entity.”

M1	gave	a	Swang	to	P55

M5	instructed	participants	that	“Following	is	a	list	of	the	commands	that	you	need	to	know
for	your	first	contribution.”

To	clone	a	copy	of	some	repository.

git	clone	https://opendev.org/openstack/<PROJECTNAME>	After	you’ve	completed	the
Setup	and	Learn	GIT	section,	the	following	command	configures	the	repository	to	know
about	Gerrit	and	installs	the	Change-Id	commit	hook.	You	only	need	to	do	this	once	per
repository	you	cloned:

git	review	-s	As	P3	rightly	stated.	To	create	your	development	branch	(substitute	branchname
for	a	name	of	your	choice).	It’s	better	to	create	a	new	branch	for	each	patch	than	working
from	master:	git	checkout	-b	<branchname>	To	check	the	files	that	have	been	updated	in	your
branch:	git	status	To	check	the	differences	between	your	branch	and	the	repository:	git	diff
master	Assuming	you	have	not	added	new	files,	you	commit	all	your	changes	using:	git
commit	-s	-a	Read	the	Summary	of	Git	commit	message	structure	for	best	practices	on
writing	the	commit	message.	When	you	are	ready	to	send	your	changes	for	review	use:	git
review	If	successful,	the	Git	response	message	will	contain	a	URL	you	can	use	to	track	your
changes.	If	you	need	to	make	further	changes	to	the	same	review,	you	can	commit	them
using:	git	commit	-a	–amend	This	will	commit	the	changes	under	the	same	set	of	changes
you	issued	earlier.	Notice	that	in	order	to	send	your	latest	version	for	review,	you	will	still
need	to	call:	git	review

3.	 Exercise	3

M7	instructed	participants	“Review	three	patches	in	the	sandbox	environment:
https://docs.openstack.org/contributors/code-and-	documentation/sandbox-house-rules.html
Try	to	find	things	to	make	comments	on	even	if	they	are	just	asking	a	question	and	not
pointing	out	an	issue,	don’t	just	+1	three	different	patches.”	Invite	at	least	two	mentors	to
review	your	work.	M8	added	that	participants	should	consider	applying	all	the	skills	they
learned	earlier	and	use	them	in	this	activity	OB1	observed	that	participants	were	submitting
their	changes	this	time	with	complete	and	correctly	formatted	commit	messages.	The	use	of
voting	was	also	appropriate	+/-	1.	Overall,	all	participants	submitted	their	works	and	got
different	feedback	from	mentors.

4.	 Exercise	4

M5	Asked	participants	to	build	their	persona	on	their	chosen	project	or	cross-project.
Review	other’s	code,	help	fix	the	documentation,	answer	other’s	questions	or	help	direct
them	to	those	who	can.	Let	a	mentor	know	you	are	interested	in	participating	in	the	project
Explain	why	you	are	interested	and	what	are	your	strengths	ask	how	you	can	help	the
project

OB1	observed	that	this	exercise	was	challenging	to	participants	even	though	they	were
excited	about	the	challenge.	For	example,	P19	said	“I	would	have	chosen	to	review	a	code
that	someone	else	wrote,	but,	I	have	the	feeling	that	I	am	not	yet	ready.	What	if	I	get	it

https://opendev.org/openstack/
https://docs.openstack.org/contributors/code-and-

wrong	and	the	person	is	more	experienced	than	myself?	What	if	the	code	is	more	complex
than	I	perceived?	…,	I	will	prefer	to	go	with	documentation	or	better	still	helping	someone
who	has	a	question	on	directing	them	to	the	right	resource.”

P41	“Maybe	I	am	wrong	but	working	on	documentation	seems	difficult	for	me	because	I
don’t	think	my	language	skills	are	good	enough.	I	can	unintentionally	make	more	typos	than
fixing	them	:)	I	will	prefer	more	coding	…”

Task5	(v)

1.	 Patch	Guru

OB1	How	to	Become	a	Patch	Guru?

When	you	are	working	on	implementing	a	new	feature	or	adding	documentation	to	an	already
existing	one	it	is	easy	to	get	carried	away	by	the	work	itself	and	forget	about	the	unwritten	rules	of
constructing	your	changes.

M9	explained	to	participants	that	this	section	will	guide	them	on	how	to	create	patches	that	people
will	want	to	review.	Moreover,	it	will	enable	you	to	know	how	to	structure	a	patch	that	makes	it
easier	to	maintain	throughout	the	review	process,	and	how	to	structure	a	patch	that	is	easier	for
community	members	to	review.

Learning	Exercise

Open	the	How	to	Become	a	Patch	Guru?	Section	of	the	Contributor	Guide
Read	the	material
Ask	Questions	to	The	Mentors
Get	Ready	To	Go	Through	The	Exercises

M9	gave	some	recommendations	concerning	patch	size:	“Reviewing	large	patches	is	very
inconvenient	and	time-consuming	therefore	we	always	suggest	breaking	down	your	changes	into
smaller	blocks.	While	there	is	no	magic	number,	try	to	keep	the	size	of	your	changes	as	small	as
possible,	but	under	a	few	hundreds	of	lines	changed	total.	Patches	that	test	heavy	with	little	code
change	require	as	much	effort	as	code-heavy	changes.”

M10	remember	that	“Longer	patches	require	more	time	to	review;	wherever	you	can,	keep	the
length	reasonable.	And	where	you	can’t,	you	can	help	the	reviewers	by	adding	code	comments	and
writing	a	detailed	commit	message	to	describe	the	changes	you	introduced	in	your	patch.”

1.	 Exercise	1

M6	How	do	you	handle	dependent	changes	in	the	same	or	multiple	repositories?	P12	posted
the	answer	on	IRC:	“When	you	have	changes	in	multiple	project	repositories	you	can	mark
dependent	patches	with	the	‘Depends-On’	tag.	The	tag	will	appear	as	a	link	in	the	commit
message	which	helps	you	and	also	the	reviewers	to	track	and	navigate	between	the
dependencies	of	your	changes.	The	‘Depends-On’	tag	is	a	marker	on	your	changes	and	when
used	a	patch	cannot	be	merged	until	all	its	dependencies	are	landed.”

M3	Reviewed	the	response	and	gave	P12	a	sticker	and	added	that	“The	tag	can	be	applied	to
patches	proposed	for	the	same	repository	as	well.	In	that	case,	the	changes	are	separate
enough	to	be	kept	independent	which	means	that	if	you	need	to	fix	changes	from	review
comments	you	can	do	it	on	a	per	patch	basis.	It	is	also	true	for	rebasing	each	patch.”

2.	 Exercise	2

M5	asked	participants	that	“What	command	do	you	use	to	modify	a	patch	within	a	chain?”
M10	added	that	“A	patch	chain	is	easy	to	handle	if	you	keep	in	mind	a	few
recommendations:	Always	have	a	local	branch	for	these	changes	to	ensure	that	you	don’t
mix	it	together	with	changes	related	to	another	feature	or	bug	fix.	Always	handle	a	chain	as
one	block	of	changes	by	rebasing	the	whole	chain	and	keep	it	up	to	date	when	you	modify	a
patch	to	fix	review	comments	or	add	changes	to	it.”

P31	answer	the	question	that	M5	asked	that	“o	modify	a	patch	within	a	chain	you	will	need
to	use	interactive	rebase”	git	rebase	-i	HEAD^

M11	added	that	“You	need	as	many	‘^’	as	the	number	of	the	patch	you	want	to	edit	first
from	the	top	of	the	chain.	Alternatively,	you	may	wish	to	use	git-restack,	which	figures	out
the	appropriate	git	rebase	command	for	you.”

OB1	both	responses	from	participants	we	recommended	by	mentors	and	they	were	rewarded
with	stickers.

Task6	(vi)

1.	 Project	Status	and	Zuul	(CI	&	CD)

M4	instructed	participants	to	“Open	the	CheckingStatusinZuulsection	the	Contributor	Guide	Open
the	Using	Elastic	Recheck	section	of	the	Contributor	Guide.	Read	Material,	ask	questions	to	the
mentors.	Get	Ready	To	Go	Through	The	Exercises.”

OB1	Monitoring	your	patch	on	Zuul	(CI/CD)
The	aim	of	this	activity	is	to	enable	participants	to	get	accustomed	to	the	CI/CD	system	at
OpenStack,	OpenStack	uses	Zuul	CI/CD.

M4	said	“Zuul	is	a	CI/CD	tool	developed	and	maintained	by	the	Infrastructure	team	at	OpenStack.
Zull	provides	OpenStack	projects	and	cross-projects	a	means	of	defining	test	jobs,	which	runs	on
each	proposed	commit.	These	tests	must	pass	before	any	patch	can	merge.	Therefore,	once	a
contributor	pushes	a	patch	to	gerrit,	zuul	will	automatically	trigger	jobs	to	verify	the	patch
functions	properly.”

M4	Let’s	take	a	look	on	how	to	track	jobs	submitted	to	Zull	to	see	their	status	go	to	this	link:
https://zuul.openstack.org/	OB1	observed	that	as	M4	explain	in	detail	how	the	graphical	interface
of	Zull	works,	showing	the	different	functionalities,	participants	we	carefully	following	and	some
were	taking	pictures	of	the	screen	and	some	videos	to	capture	the	moment	of	interest.

M6	told	participants	that	“after	understanding	the	Zuul	job	status	and	how	gating	works,	we	will
now	move	to	‘Elastic	Recheck’	that	enables	contributors	to	(i)	Enhance	the	automatic	testing,
which	OpenStack	community	encourages	and	enforced	on	every	patchset	that	is	submitted	to
gerrit.	(ii)	Report	recurring	bugs	so	that	you	don’t	need	to	manually	‘recheck	.	”

M6	explained	in	detail	over	slides	and	video	what	Elastic	Recheck	is	and	how	it	works:	“Elastic-
recheck	is	a	tool	used	to	track	failures	in	test	jobs.	Elastic-recheck	is	built	on	top	of	an	ELK
(Elastic	Search,	Logstash,	Kibana)	stack	where	we	use	Logstash	to	store	all	logs	from	CI	jobs	in
an	ElasticSearch	cluster	…	”

P63	asked	the	mentors	that	“should	we	master	how	these	technologies	work	before	running	jobs
on	Zuul?”

M7	answered	that	“Not	really	upfront	because	the	system	has	bee	configured	already	by	the	infa
team,	but	it's	good	to	know	what	each	stage	is	doing	to	be	an	expert.	This	also	comes	with	time.	I
know	that,	It	took	me	over	4	years	to	have	a	good	mastery	of	how	everything	fits	perfectly	together
and	I	still	learn	everyday.	So,	…”

1.	 Exercise	1

M5	opened	the	Zuul	status	page	and	instructed	participants	to	“Look	at	the	Zulu	status	page
Find	Information	That	Can	Be	Retrieved	Foreach	patch	in	a	pipeline	What	happens	if	you
click	on	a	patch	under	test	How	Many	Gate	And	Check	Jobs	Are	Running	Pick	your	favorite
project	and	report	how	many	jobs	has	running	in	IRC	What	Is	The	Significance	Of	The
Dots,	lines	and	colors	Discuss	Your	Findings	With	Your	Group”	OB1	observed	that	all	the
participants	were	flooding	the	IRC	channel	with	responses	and	the	mentors	were	given
feedback	immediately	to	each	response	as	they	came	in.	Moreover,	on	the	fourth	point,	M9
highlights	that	all	participants	should	mention	the	project	that	the	pick	alongside	the	number
of	jobs	that	are	running.	P2	said	that	they	have	noticed	that	the	jobs	on	Zuul	are	running	real

https://zuul.openstack.org/

time	and	changes	every	time,	so	the	values	they	are	reporting	may	change	when	the	mentors
want	to	verify	their	responses.	M10	recommended	P2	observation	and	explain	that	that	is
the	reason	why	the	last	point	is	asking	them	to	discuss	their	findings	with	their	respective
groups.

OB1	To	demonstrate,	M1	walk	through	all	the	steps	and	explain	to	the	participants	what
happens	at	each	stage.

2.	 Exercise	2

M6	instructed	participants	to	“find	how	Checks	are	categorized	and	discuss	with	your	table
how	you	would	Determine	that	you	have	encountered	one	of	these	bugs?”	OB1	to	further
simplified	the	task,	M6	walk	participants	through	a	serie	of	video	explanations	to	show
classification	in	rechecks.

All	the	participants	watch	and	follow	the	video	explanation	and	discuss	how	they	will
determine	bugs	in	recheck.

P51	said	“I	think	I	am	now	getting	more	confidence	with	my	understanding	on	this	Zuul
ands	recheck,	especially	when	M6	explain	a	few	minutes	ago,	that	was	a	great	explanation!”

P29	on	his	part	said:	“I	think	the	load	of	materials	has	been	too	overwhelming	but	the
mentors	are	making	it	looks	too	easy	for	me	to	follow	the	concepts.”

Each	topic	in	this	agenda	for	Day-02	follows	a	series	of	hands-on	exercises	that	the	mentors
ask	participants	to	do,	with	an	exception	of	the	hackathon	that	exposes	the	participants	to
critical	thinking	and	self-developed	skills.	There	is	a	lunch	break	between	12-00	pm	and	12-
30	pm,	with	a	short	break	interval	of	5	mins	after	every	Task.

Task7	(vii)

1.	 Hackathon	(Dive	deep	code	challenge)

Demo	environment

Code	exercises	(Testing)

OB1	::	Demo	environment	→	Running	OpenStack	deployment	through	DevStack
documentation:https://docs.openstack.org/devstack/

M8	Instructed	participants	to	spin	up	DevStack	in	the	local	environment,	and	understand
OpenStack	cloud	services	to	do	the	code	challenge.

git clone https://opendev.org/openstack/devstack
cd ./devstack
cp ./samples/local.conf . vim ./local.conf

M8	instructed	participants	that	“Go	to:	http://localhost/	and	access	the	horizon	portal	Follow	the
step-by-step	instructions	in	your	material	guide	documentation	and	issue	all	the	commands.”

OB1	observed	that	participants	were	busy	throughout,	reading	documents	and	practicing	the
commands.	They	were	also	asking	questions	to	the	mentors	on	the	IRC	channel.	Some	example
questions	are:	P6	“Can	I	deploy	DevStack	to	the	cloud?	Since	it	pulls	all	OpenStack	services”	M7
answered	that	based	on	the	documentation,	it	is	stated	that	DevStack	is	only	used	for	testing
services	and	in	development,	but	can’t	be	used	for	production	because	once	you	shutdown
DevStack,	it	destroys	all	the	VMs.

M41	Asked	that	“Should	all	the	services	of	OpenStack	be	up	and	running	to	use	DevStack?”	M3
answered	“No,	you	can	run	only	the	services	that	you	want	to	test,	or	experiment	with.”

OB1	some	participants	were	experimenting	with	the	CLI	meanwhile	others	were	using	the	GUI	to
interact	with	VMs	and	services.

OB1	asked	some	participants	that	were	using	CLI	and	GUI	to	know	the	reason	why.	P34	said:	“I

https://docs.openstack.org/devstack/
http://localhost/

have	always	been	more	comfortable	with	commandline	doing	stuff.	For	example,	at	schools,	I
usually	do	most	of	my	work	with	the	terminal	mode,	such	as	Weka,	Java,	Python,	and	many	more,
it's	more	of	a	culture	to	me.”	Meanwhile,	P70	said:	“I	am	more	of	a	visual	person	and	when
learning	something	new	for	the	first	time,	I	like	to	see	the	interface	and	how	it	behaves	,	that	is	just
me.”

1.	 Exercise1	Code	exercises	(Testing)

DevStack	exercise:	M9	instructed	participants	to	“Start	DevStack	in	a	VM	on	your	laptop	or
public	cloud.	Make	sure	that	the	services	are	running.	Choose	a	service	and	issue	an	API	call
or	use	its	client	to	verify	functionality”	OB1	observe	that	participants	that	are	more	familiar
with	GUI	used	interfaces	app	to	make	API	calls,	whereas,	CLI	users	call	it	from	the	terminal.
Also,	mentors	were	actually	demonstrating	how	things	work	by	example.	Making	it	easy	for
participants	to	follow	and	understand	the	operations.	LOG	message	exercise	M4	“Add	a	few
extra	LOG.debug()	lines	to	one	of	the	methods	of	the	API	call	you	chose	in	the	previous
exercise.	Restart	the	corresponding	service	in	your	DevStack	environment	and	find	the	new
message	in	the	logs.	Find	out	what	parameters	were	passed	to	that	method	by	using	the	LOG
messages”	P46	Asked	the	mentors	“what	level	of	logging	should	we	use?”	M11	responded
that	“Good	questions,	you	can	use	DEBUG	and	INFO	and	observe	how	both	work,	beside
you	can	modify	the	code	and	try	with	other	levels.	It's	up	to	you,	but	the	default	will	be
INFO.”	OB1	observed	that	participants	were	practicing	without	the	help	of	mentors	fewer
than	three	questions	were	asked	by	participants	on	the	IRC	channel	and	within	the
individual	groups.

Testing
Testsuites	Unit

Functional
Integration

Testing	Framework
Tox

2.	 Exercise2	Group	Challenge

OB1	Collaborating	in	Ecosystem	projects
the	aim	of	this	section	is	to	introduce	participants	on	collaboration,	how	to	work	in	a
team	project	using	divide	and	conquer	technique.

M10	In	this	Exercise	run	the	test	suite	with	the	tox	framework.	OB1	observe	that
participants	divided	their	task	into	three	groups,	One	group	ran	one	test	suit	and	the	group
shared	their	knowledge	and	explain	how	all	the	test	cases	fit	together.	Mentors	were	mostly
providing	only	guidance	rather	than	directly	helping	participants	to	solve	their	problems.	In
most	cases,	mentors	questioned	the	rationale	of	participants	rather	than	answering	their
questions	directly,	this	guided	participants	to	think	deeply	and	figure	out	their	own	solutions.
M5	Mentors	in	each	group	will	break	the	tested	code	of	one	test	case	and	in	your	group,	you
are	allow	to	find	the	modification	that	they	did	by	running	the	test	and	analyzing	the	test
output	OB1	In	each	group	the	mentor	of	that	group	broke	the	code	that	participants	tested
above	and	asked	the	participants	to	identify	and	break	in	the	code,	after	running	the	test
case.	Different	groups	apply	different	test	cases	and	methods	of	analyzing	the	test	output.
However,	all	the	12	groups	were	able	to	identify	the	broken	code.	Hackathon:	M1	Find	an
open	review,	which	is	less	complex	and	download	the	patch.	Remove	the	code	changes	and
run	the	tests	Check	whether	the	tests	failed	or	not	Explain	what	it	means	if	they	didn't
Comments	on	open	review

OB1	real	world	contribution	use	case

Participants	are	asked	to	go	on	the	Gerrit	system	of	OpenStack	and	practice	with	a	code	that
has	been	submitted	ready	for	review.	Mentors	are	not	required	to	provide	assistance	in	this
task.	Until	the	end	if	a	group	didn’t	do	it	right,	mentors	can	then	provide	guidance.

OB1	observed	that	all	12	groups	used	different	functionalities	and	projects.	Moreover,	Some
groups	spent	time	reading	and	understanding	the	commit	messages	before	they	started	doing
the	exercise	for	example,	Groups	2,	4,	5,	9,11,	12,	whereas	the	other	groups	only	focused	on

the	sections	of	the	code	that	was	modified.

Also,	OB1	was	walking	around	to	see	how	different	groups	were	working	to	understand	the
ways	in	which	each	group	approached	the	problem.

Group	members	spend	much	time	deliberating	on	their	approach	and	solution	than
implementing	the	solution.

Participants	were	required	to	use	all	the	materials	that	they	have	learned	so	far	to	solve	this
problem	within	a	25	min.

In	the	end,	10	groups	submitted	their	solutions	and	got	feedback	from	the	mentors,	except
two	groups	(1	and	6)	that	were	not	able	to	submit	a	complete	solution	on	time.	Moreover,
group	2	was	the	first	to	submit	their	solution.

Finally,	after	doing	through	all	the	groups	submission,	group	two	was	declared	the	winner
and	all	group	members	were	awarded	a	ticket	for	a	banquet	with	swangas	each.	The	mentors
then	gave	final	remarks	and	encouraged	participants	to	make	good	use	of	the	mentoring
program,	which	is	the	next	step	available	free	for	those	who	are	interested	in.	A	group	photo
and	refreshment	closed	the	event.

OB1	asked	participants	to	drop	in	a	few	words	on	the	IRC	channel	what	activity	they	like
most	and	which	they	didn’t	like?

Likes:	P48	:	“I	like	the	hands-on	section	most	and,	of	course,	the	sticker	prizes!”	P1	:	“I
admired	the	explanations	of	different	projects	and	how	the	form	an	ecosystem”	P15	The
testimony	on	mentoring	was	great!	I	love	it.	P6	“The	CI/CD	and	testing	sections	was	my
favorite,	I	didn’t	do	something	like	that	at	school”	P5	“The	documentations	were	well
structured	and	elaborative”	P31	“Mentors	were	great	inspirations	and	knows	their	stuffs
well”	P40	“We	need	more	exercises	like	the	hackathon,	besides	the	mentors	were	great!”
P62	“”	Dislikes:	P13	“Remove	the	events	sections	complete	waste	of	time,	my	opinion
though”	P4	“There	are	lots	of	account	to	create,	this	can	be	very	confusing”	P2	“Lots	of
things	to	master	in	a	short	period	of	time”

Technical	Details	Guidelines

Debugging	Code
LOG.debug()

M4	Thought	participants	techniques	how	to	debug	their	source	code	and	how	debugging	applies	to
Projects.

1.	 Technical	Activities	during	Day-02

All	72	participants	were	actively	participating	in	the	coding	activities	that	the	mentors	assigned
them	with.

2.	 Writing	and	maintaining	Quality	Code

1.	 Git	(best	practices	on	git	Commit	messages)

M7
gave	detailed	layout	structures	of	commit	messages	that	respect	best	practices.

M7	stated	that:	"Based	on	many	years	of	practical	experiences	doing	code	development,	bug
troubleshooting	and	code	review	across	OpenStack	projects	and	other	communities	such	as
Linux	kernel,	CoreUtils,	GNULIB,	etc.,	we	suggest	a	fairly	common	practice,	which	is
motivated	by	OpenStack	strong	desire	to	improve	the	quality	of	it's	projects'	Git	histories."

M7
"…	We	will	demonstrate	the	benefits	in	splitting	up	changes	into	a	sequence	of

individual	commits,	and	the	importance	in	writing	good	commit	messages	to	go	along	with

them."

M7	divided	the	topic	of	commits	in	two	sub	topics	(A/B),	and	gave	the	advantages	in
splitting	commits.

The	structured	set/split	of	the	code	changes	"If	a	code	change	can	be	split	into	a
sequence	of	patches/commits,	then	it	should	be	split."

The	smaller	the	amount	of	code	changed,	the	easier	it	is	to	review	&	identify	potential
flaws.

If	a	change	is	found	to	be	flawed	later,	it	may	be	necessary	to	revert	the	broken
commit.	This	is	much	easier	to	do	if	there	are	not	other	unrelated	code	changes
entangled	with	the	original	commit.

When	troubleshooting	problems	using	Git's	bisect	capability,	small	well	defined
changes	will	aid	in	isolating	exactly	where	the	code	problem	was	introduced.

When	browsing	history	using	Git	annotate/blame,	small	well	defined

changes	aids	isolates	exactly	where	&	why	a	piece	of	code	came	from.

commit 3114a97ba188895daff4a3d337b2c73855d4632d [ID-1]
 Author: [removed]
 Date: Mon Jun 11 17:16:10 2012 +0100

 Update default policies for KVM guest PIT & RTC timers

 commit 573ada525b8a7384398a8d7d5f094f343555df56 [ID-2]
 Author: [removed]
 Date: Tue May 1 17:09:32 2012 +0100

 Add support for configuring libvirt VM clock and timers

Furthermore,	M7	explain	these	two	commits,	which	provide	support	for	configuring	the
KVM	guest	timers.	The	introduction	of	the	new	APIs	for	creating	libvirt	XML	configuration
have	been	clearly	separated	from	the	change	to	the	KVM	guest	creation	policy,	which	uses
the	new	APIs.

1.	 The	information	provided	in	the	commit	message

M3
highlight	some	key	points	when	writing	a	good	commit	message

Reflect	on	these	points	whenever	you	are	about	to	write	a	commit	message:

1.	 Do	not	assume	the	reviewer	understands	what	the	original	problem	was.
2.	 Do	not	assume	the	reviewer	has	access	to	external	web	services/site;	The	commit

message	should	be	totally	self-contained,	to	maintain	that	benefit.
3.	 Do	not	assume	the	code	is	self-evident/self-documenting.
4.	 Describe	why	a	change	is	being	made.
5.	 Read	the	commit	message	to	see	if	it	hints	at	improved	code	structure.
6.	 Ensure	sufficient	information	to	decide	whether	to	review.
7.	 The	first	commit	line	is	the	most	important.
8.	 Describe	any	limitations	of	the	current	code.
9.	 Do	not	include	patch	set-specific	comments.

10.	 Always	use	the	appropriate	tags;	Change-id,	bug-ID,	etc.

Summary	of	Git	commit	message	structure

Provide	a	brief	description	of	the	change	in	the	first	line.
Insert	a	single	blank	line	after	the	first	line.
Provide	a	detailed	description	of	the	change	in	the	following	lines,	breaking
paragraphs	where	needed.
The	first	line	should	be	limited	to	50	characters	and	should	not	end	with	a	period.
Subsequent	lines	should	be	wrapped	at	72	characters.

$ git commit -s [--signed-off-By:]

Example	of	a	good	commit	message	shown	to	participants

commit 3114a97ba188895daff4a3d337b2c73855d4632d (1)
 Author: [removed] (2)
 Date: Mon Jun 11 17:16:10 2012 +0100 (3)
 (S)
 Update default policies for KVM guest PIT & RTC timers (4)
 (S)
 The default policies for the KVM guest PIT and RTC timers (5)
 are not very good at maintaining reliable time in guest
 operating systems. In particular Windows 7 guests will
 often crash with the default KVM timer policies, and old
 Linux guests will have very bad time drift
 (S)
 Set the PIT such that missed ticks are injected at the (6A)
 normal rate, ie they are delayed
 (S)
 Set the RTC such that missed ticks are injected at a (6B)
 higher rate to "catch up"
 (S)
 This corresponds to the following libvirt XML (7A)
 (S)
 <clock offset='utc'> (7B)
 <timer name='pit' tickpolicy='delay'/>
 <timer name='rtc' tickpolicy='catchup'/>
 </clock>
 (S)
 And the following KVM options (7C)
 (S)
 -no-kvm-pit-reinjection (7D)
 -rtc base=utc,driftfix=slew (7E)
 (S)
 This should provide a default configuration that works (8)
 acceptably for most OS types. In the future this will
 likely need to be made configurable per-guest OS type.
 (S)
 Closes-Bug: #1011848 (9)
 (S)
 Change-Id: Iafb0e2192b5f3c05b6395ffdfa14f86a98ce3d1f (10)

(S)	->	White	Spaces

(1)	->	Commit	ID

(2)	->	Author	ID

(3)	->	Date

(4)	->	change	request	subject	(first	line	of	the	commit	message)

(5)	->	describes	the	original	problem	(bad	KVM	defaults)

(6)	->	describes	the	functional	change	being	made	(the	PIT/RTC	policies)

(7)	->	describes	what	the	result	of	the	change	is	(the	XML/QEMU	args)

(8)	->	describes	scope	for	future	improvement	(the	possible	per-OS	type	config)

(9)	->	uses	the	Closes-Bug	notation

(10)	->	Change-Id

OB1	::	M3,	Made	changes	to	the	Sahara	project,	a	cross-projects	repository,and
explained	the	changes	to	participants,	then	asked	participants	to	write	a	complete

commit	message	following	the	best	practices,	to	describe	the	changes	that	were	made	on	the
Sahara	project.	M3:	cross"each	one	of	you	should	discuss	with	a	mentor	before	submitting
the	message	to	the	IRC	and	etherpad	doc."

2.	 Code	Quality

Best	Practices

Code	Quality	—	Coding	Guidelines,	Syntax	checks	and	Testing.

M1	gave	a	brief	explanation	on	hacking	style	and	listed	some	advantages	"Hacking	style
guide	was	enforced	by	reviewers	manually,	but	the	process	has	been	automated.	Therefore,
hacking	makes	code	written	by	many	different	authors	easier	to	read	by	making	the	style
more	uniform.	(example:	unix	vs	windows	newlines)

Call	out	dangerous	patterns	and	avoid	them.	(example:	shadowing	built-in	or	reserved
words)."

M3:	gave	several	use-cases	to	show	how	contributors	can	improve	the	quality	of	code	by
following	the	Coding	Guidelines	suggested	by	OpenStack.

(M3)	:	"to	ensure	high	quality	code,	OpenStack	recommends	some	syntax
checks	Frameworks	such	as:	(eslint-config-openstack,	Hacking,	bashate,	etc.),
and	enforces	the	OpenStack	Coding	standard.	Experience	shows	that	when
contributors	write	code	that	respect	the	Coding	Guidelines	proposed	by
OpenStack,reviewers	spent	less	effort	and	smaller	amount	of	time	to	understand
the	code,	this	also,	reduces	the	iterations.	Therefore,	we	encourage	you	to	use
the	best	practices	when	writing	code,	commenting	on	codes,	commit	messages
and	testing."

An example of an acceptable function docstring is:

def mult(a: Union[intho, float],
 b: Union[int, float]) -> Union[int, float]:
 """Multiple a * b and return the result"""
 return a * b

def some_function(a: FineObject):
 """Do something with a FineObject

 :param: a is used in the context of doing something.
 """
 do_something_with(a)

In	addition,	M9	also	said	that	OpenStack	has	a	large	code	base,	spanning	dozens	of	git	trees,
with	over	a	thousand	developers	contributing.	As	such,	common	style	helps	developers
understand	code	in	reviews,	it	also	move	between	projects	smoothly,	and	overall	make	the
code	more	maintainable.

M9:	"One	of	the	beauties	of	ESLint	is	that,	despite	there	being	one	standardized
set	of	rules	created	for	OpenStack,	ESLint	permits	the	overriding	of	these	rules
on	a	per-project	basis	to	ensure	that	no	project	is	hindered	by	a	generalised
decision	and	projects	do	not	have	to	forgo	the	use	of	eslint-config-openstack	due
to	fears	of	these	restrictions.	Saying	this	however,	the	point	of	having	these
standardizations	may	be	slightly	defeated	if	the	aim	is	not	to	stay	as	close	to	the
common	guidelines	as	possible."

Furthermore,	M9	gave	some	code	samples	to	the	participants	that	were	written	and
committed	by	core-contributors	at	OpenStack.	He	instructed	the	participants	to	explore	the
code,	learn	the	style	in	writing	code	and	apply	the	techniques	they	have	just	learned	on
reviewing	code.	Then	explain	their	review	with	their	mentors,	and	commit	their	reviews	to
the	sandbox	project	repository.

All	the	participants	were	engaged	in	the	activity	and	after	the	mentors	have	gone	over	their
reviews,	the	participants	posted	their	review	on	the	etherpad	doc.

Next,	the	mentors,	showed	couple	of	bad	samples	of	commits	that	reviewers	rejected
because	the	commits	violated	the	code	style,	which	OpenStack	enforces.	Besides,	M9	told
participants	to	avoid	such	bad	practices,	which	will	certainly	increase	the	efforts	that	they
put	in	to	make	changes	and	also	increase	the	time	to

3.	 Insight	from	lead	mentors

OB1	asked	M1	and	M2	"Can	you	summarize	what	the	onboarding	training	is	all	about,	and	what
values	it	brings	to	the	OpenStack	ecosystem?	How	has	the	training	material	evolved	overtime?

M1

Onboarding at OpenStack is an intensive program designed for newly
graduated student in mind who are motivated and about to startn their
carrier in open source ecosystem such as OpenStack but lack the technical know-
how.
We give them materials and hands-on training that equipes them to master
the tools, which they will use in making contributions to the codebase;
add new features, fix-bugs, write documentation and participate in
working groups to OpenStack as they join a community of thousands of
developers from hundreds of companies worldwide.

Students will also learn how to use a prepared development environment
to test, prepare and upload new code snippets or documentation for review.

This year, Lenovo is sponsoring the onboarding event. But the Onboarding
is organized and run by people embedded in the community, the fast-track
course gives students a more accurate taste of what working in the
community is really like and the opportunity to ask experienced
contributors questions and gain more insight into their work with OpenStack.

There’s help beyond the classroom, too: attendees can join an ongoing
 mentoring program.

As the training evolves, our focus continually shifts towards providing a
highly interactive course where students can learn about the social norms,
modes of communication and variety of possible contributions through
 experience as opposed to lectures.

M2	supported	M1	response	and	added	that:

M2

"Onboarding new contributors is incredibly important in any open source
ecosystem and particularly one as large as OpenStack.There’s a constant
flow of people joining our community and some moving on to other endeavors.

The best way to maintain a healthy community is to educate newcomers and
give them the tools they need to become effective contributors.
One of ways OpenStack does this is through the two-day long Upstream
Institute Training offered prior to each OpenStack Summit."

4.	 Project	Onboarding

Towards	the	end	of	the	two-days	event,

M1	said:	"During	mentoring,	OUI	participants	are	strongly	encouraged	(required)	to

join	at	least	one	project	team.	Once	signed	up	to	join	a	project	team,	they	are	assigned	mentors	to
follow	them	up."

M2:	"Project	Onboarding	gives	participants	a	chance	to	meet	some	of	the	project	team	and
get	to	know	the	project.	Participants	will	learn	about	the	project	itself,	the	code	structure/
overall	architecture,	etc,	and	places	where	contribution	is	needed.	Participants	will	also	get
to	know	some	of	the	core	contributors	and	other	established	community	members.	Ideally,
participants	will	know/	have	completed	the	OUI	basics."

5.	 Mentoring	Program

Prospective	Participants
All	72	participants	signed	up	to	participate	for

the	mentoring	program.

P1,	P2,	P3,	…,	P72.	Moreover,	they	indicated	interest	in	different	project	teams.

	Observational Studies On Onboarding.
	Onboarding Event
	Outline
	Theoretical Knowledge (Day-01)
	Practical Knowledge (Day-02)

	DAY-01 Theoretical Activities
	SESSION-START 12:00 PM, November 09-10, 2018.
	PRESENTATION of mentors and the training program
	TASKING : How mentors coordinated activities
	LEARNING-METHOD How new contributors are adapting within the ecosystem.
	FEEDBACK and Testimonies from mentors who were mentees previously.
	OpenStack Events

	DAY-02 Practical Activities
	Observable tasks
	Day-02 Agenda

	Learning Exercises
	Task1 (i)
	Task2 (ii)
	Task3 (iii)
	Task4 (iv)
	Task5 (v)
	Task6 (vi)
	Task7 (vii)
	Technical Details Guidelines

