
Participant	Observation	—	The	How.

Onboarding	Event	-	Details	on	Technical
Activities
Typical	Observation	study	at	Berlin	Germany,	OpenStack	Upstream	Institute	(OUI).

Mentors
(M1,	M2,	…,	M12)

Participants
(P1,	P2,	…,	P72),	17	females,	23	neutrals,	and	32	males	seated	on	12	tables	forming	12	groups

Outline

Theoretical	Knowledge	(Day-01)	[100%]

[X]	Introduction
[X]	Accounts	creation	and	setup
[X]	Setting	up	the	Development	Environment
[X]	How	OpenStack	is	Made
[X]	OpenStack	Events

Practical	Knowledge	(Day-02)	[100%]

[X]	Workf-low	and	Tools	for	participation
[X]	Code	Dive	Deep
[X]	Technical	Activity

DAY-02	Technical	Activities	(The	"How")
Survey	Form

M1	and	M2	reminded	Mentors	to	be	fully	engaged

General	Tips	for	Mentors	before	day	02	session

1.	 Remain engage with the rest of the class even if you are not presenting.
2.	 Choose a table and sit with the students to help
3.	 If there aren’t enough mentors or every table has one already, float around the

room checking in on people, especially during exercises
4.	 When possible, sit at a table and build connections (networking) with

participants
5.	 Talk slowly when you are presenting - English may not be their first language
6.	 Pause to ask students if they have questions on the material throughout your

presentation
7.	 Ask the students questions to make sure they are engaged and understand the

material
8.	 Join the IRC channel of the class and participate during the training
9.	 Give out swag and make sessions competitive
10.	 Promote ideas for next steps after training is done; mentoring, Project

Onboarding and other related conference sessions

The	Lead	mentors	encouraged	participants	to	be	interactive

General	Tips	for	Participants

1.	 Use every opportunity you have to give us feedback. It's important for the

https://openstackfoundation.formstack.com/forms/upstream_training_feedback_survey

community
2.	 Discuss your solutions with mentors and explain to them how

 you derived the solutions.
3.	 Use IRC for answering questions or the training etherpad if an exercise requires

more space
4.	 Be prepared with the "deep dives" exercise, usually, participants have very

different levels of knowledge and skillset.

Guidelines

Debugging	Code
LOG.debug()

M4	Thought	participants	techniques	how	to	debug	their	source	code	and	how	debugging	applies	to
Projects.

1.	 Technical	Activities	during	Day-02

All	72	participants	were	actively	participating	in	the	coding	activities	that	the	mentors	assigned
them	with.

2.	 Writing	and	maintaining	Quality	Code

1.	 Git	(best	practices	on	git	Commit	messages)

M7
gave	detailed	layout	structures	of	commit	messages	that	respect	best	practices.

M7	stated	that:	"Based	on	many	years	of	practical	experiences	doing	code	development,	bug
troubleshooting	and	code	review	across	OpenStack	projects	and	other	communities	such	as
Linux	kernel,	CoreUtils,	GNULIB,	etc.,	we	suggest	a	fairly	common	practice,	which	is
motivated	by	OpenStack	strong	desire	to	improve	the	quality	of	it's	projects'	Git	histories."

M7
"…	We	will	demonstrate	the	benefits	in	splitting	up	changes	into	a	sequence	of

individual	commits,	and	the	importance	in	writing	good	commit	messages	to	go	along	with
them."

M7	divided	the	topic	of	commits	in	two	sub	topics	(A/B),	and	gave	the	advantages	in
splitting	commits.

The	structured	set/split	of	the	code	changes	"If	a	code	change	can	be	split	into	a
sequence	of	patches/commits,	then	it	should	be	split."

The	smaller	the	amount	of	code	changed,	the	easier	it	is	to	review	&	identify	potential
flaws.

If	a	change	is	found	to	be	flawed	later,	it	may	be	necessary	to	revert	the	broken
commit.	This	is	much	easier	to	do	if	there	are	not	other	unrelated	code	changes
entangled	with	the	original	commit.

When	troubleshooting	problems	using	Git's	bisect	capability,	small	well	defined
changes	will	aid	in	isolating	exactly	where	the	code	problem	was	introduced.

When	browsing	history	using	Git	annotate/blame,	small	well	defined

changes	aids	isolates	exactly	where	&	why	a	piece	of	code	came	from.

commit 3114a97ba188895daff4a3d337b2c73855d4632d [ID-1]
 Author: [removed]
 Date: Mon Jun 11 17:16:10 2012 +0100

 Update default policies for KVM guest PIT & RTC timers

 commit 573ada525b8a7384398a8d7d5f094f343555df56 [ID-2]
 Author: [removed]
 Date: Tue May 1 17:09:32 2012 +0100

 Add support for configuring libvirt VM clock and timers

Furthermore,	M7	explain	these	two	commits,	which	provide	support	for	configuring	the
KVM	guest	timers.	The	introduction	of	the	new	APIs	for	creating	libvirt	XML	configuration
have	been	clearly	separated	from	the	change	to	the	KVM	guest	creation	policy,	which	uses
the	new	APIs.

1.	 The	information	provided	in	the	commit	message

M3
highlight	some	key	points	when	writing	a	good	commit	message

Reflect	on	these	points	whenever	you	are	about	to	write	a	commit	message:

1.	 Do	not	assume	the	reviewer	understands	what	the	original	problem	was.
2.	 Do	not	assume	the	reviewer	has	access	to	external	web	services/site;	The	commit

message	should	be	totally	self-contained,	to	maintain	that	benefit.
3.	 Do	not	assume	the	code	is	self-evident/self-documenting.
4.	 Describe	why	a	change	is	being	made.
5.	 Read	the	commit	message	to	see	if	it	hints	at	improved	code	structure.
6.	 Ensure	sufficient	information	to	decide	whether	to	review.
7.	 The	first	commit	line	is	the	most	important.
8.	 Describe	any	limitations	of	the	current	code.
9.	 Do	not	include	patch	set-specific	comments.

10.	 Always	use	the	appropriate	tags;	Change-id,	bug-ID,	etc.

Summary	of	Git	commit	message	structure

Provide	a	brief	description	of	the	change	in	the	first	line.
Insert	a	single	blank	line	after	the	first	line.
Provide	a	detailed	description	of	the	change	in	the	following	lines,	breaking
paragraphs	where	needed.
The	first	line	should	be	limited	to	50	characters	and	should	not	end	with	a	period.
Subsequent	lines	should	be	wrapped	at	72	characters.

$ git commit -s [--signed-off-By:]

Example	of	a	good	commit	message	shown	to	participants

commit 3114a97ba188895daff4a3d337b2c73855d4632d (1)
 Author: [removed] (2)
 Date: Mon Jun 11 17:16:10 2012 +0100 (3)
 (S)
 Update default policies for KVM guest PIT & RTC timers (4)
 (S)
 The default policies for the KVM guest PIT and RTC timers (5)
 are not very good at maintaining reliable time in guest
 operating systems. In particular Windows 7 guests will
 often crash with the default KVM timer policies, and old
 Linux guests will have very bad time drift
 (S)
 Set the PIT such that missed ticks are injected at the (6A)
 normal rate, ie they are delayed
 (S)
 Set the RTC such that missed ticks are injected at a (6B)
 higher rate to "catch up"
 (S)
 This corresponds to the following libvirt XML (7A)
 (S)
 <clock offset='utc'> (7B)
 <timer name='pit' tickpolicy='delay'/>
 <timer name='rtc' tickpolicy='catchup'/>
 </clock>
 (S)
 And the following KVM options (7C)
 (S)
 -no-kvm-pit-reinjection (7D)
 -rtc base=utc,driftfix=slew (7E)

 (S)
 This should provide a default configuration that works (8)
 acceptably for most OS types. In the future this will
 likely need to be made configurable per-guest OS type.
 (S)
 Closes-Bug: #1011848 (9)
 (S)
 Change-Id: Iafb0e2192b5f3c05b6395ffdfa14f86a98ce3d1f (10)

(S)	->	White	Spaces

(1)	->	Commit	ID

(2)	->	Author	ID

(3)	->	Date

(4)	->	change	request	subject	(first	line	of	the	commit	message)

(5)	->	describes	the	original	problem	(bad	KVM	defaults)

(6)	->	describes	the	functional	change	being	made	(the	PIT/RTC	policies)

(7)	->	describes	what	the	result	of	the	change	is	(the	XML/QEMU	args)

(8)	->	describes	scope	for	future	improvement	(the	possible	per-OS	type	config)

(9)	->	uses	the	Closes-Bug	notation

(10)	->	Change-Id

OB1	::	M3,	Made	changes	to	the	Sahara	project,	a	cross-projects	repository,and
explained	the	changes	to	participants,	then	asked	participants	to	write	a	complete

commit	message	following	the	best	practices,	to	describe	the	changes	that	were	made	on	the
Sahara	project.	M3:	cross"each	one	of	you	should	discuss	with	a	mentor	before	submitting
the	message	to	the	IRC	and	etherpad	doc."

2.	 Code	Quality

Best	Practices
Code	Quality	—	Coding	Guidelines,	Syntax	checks	and	Testing.

M1	gave	a	brief	explanation	on	hacking	style	and	listed	some	advantages	"Hacking	style
guide	was	enforced	by	reviewers	manually,	but	the	process	has	been	automated.	Therefore,
hacking	makes	code	written	by	many	different	authors	easier	to	read	by	making	the	style
more	uniform.	(example:	unix	vs	windows	newlines)

Call	out	dangerous	patterns	and	avoid	them.	(example:	shadowing	built-in	or	reserved
words)."

M3:	gave	several	use-cases	to	show	how	contributors	can	improve	the	quality	of	code	by
following	the	Coding	Guidelines	suggested	by	OpenStack.

(M3)	:	"to	ensure	high	quality	code,	OpenStack	recommends	some	syntax
checks	Frameworks	such	as:	(eslint-config-openstack,	Hacking,	bashate,	etc.),
and	enforces	the	OpenStack	Coding	standard.	Experience	shows	that	when
contributors	write	code	that	respect	the	Coding	Guidelines	proposed	by
OpenStack,reviewers	spent	less	effort	and	smaller	amount	of	time	to	understand
the	code,	this	also,	reduces	the	iterations.	Therefore,	we	encourage	you	to	use
the	best	practices	when	writing	code,	commenting	on	codes,	commit	messages
and	testing."

An example of an acceptable function docstring is:

def mult(a: Union[intho, float],
 b: Union[int, float]) -> Union[int, float]:

 """Multiple a * b and return the result"""
 return a * b

def some_function(a: FineObject):
 """Do something with a FineObject

 :param: a is used in the context of doing something.
 """
 do_something_with(a)

In	addition,	M9	also	said	that	OpenStack	has	a	large	code	base,	spanning	dozens	of	git	trees,
with	over	a	thousand	developers	contributing.	As	such,	common	style	helps	developers
understand	code	in	reviews,	it	also	move	between	projects	smoothly,	and	overall	make	the
code	more	maintainable.

M9:	"One	of	the	beauties	of	ESLint	is	that,	despite	there	being	one	standardized
set	of	rules	created	for	OpenStack,	ESLint	permits	the	overriding	of	these	rules
on	a	per-project	basis	to	ensure	that	no	project	is	hindered	by	a	generalised
decision	and	projects	do	not	have	to	forgo	the	use	of	eslint-config-openstack	due
to	fears	of	these	restrictions.	Saying	this	however,	the	point	of	having	these
standardizations	may	be	slightly	defeated	if	the	aim	is	not	to	stay	as	close	to	the
common	guidelines	as	possible."

Furthermore,	M9	gave	some	code	samples	to	the	participants	that	were	written	and
committed	by	core-contributors	at	OpenStack.	He	instructed	the	participants	to	explore	the
code,	learn	the	style	in	writing	code	and	apply	the	techniques	they	have	just	learned	on
reviewing	code.	Then	explain	their	review	with	their	mentors,	and	commit	their	reviews	to
the	sandbox	project	repository.

All	the	participants	were	engaged	in	the	activity	and	after	the	mentors	have	gone	over	their
reviews,	the	participants	posted	their	review	on	the	etherpad	doc.

Next,	the	mentors,	showed	couple	of	bad	samples	of	commits	that	reviewers	rejected
because	the	commits	violated	the	code	style,	which	OpenStack	enforces.	Besides,	M9	told
participants	to	avoid	such	bad	practices,	which	will	certainly	increase	the	efforts	that	they
put	in	to	make	changes	and	also	increase	the	time	to

3.	 Insight	from	lead	mentors

OB1	asked	M1	and	M2	"Can	you	summarize	what	the	onboarding	training	is	all	about,	and	what
values	it	brings	to	the	OpenStack	ecosystem?	How	has	the	training	material	evolved	overtime?

M1

Onboarding at OpenStack is an intensive program designed for newly
graduated student in mind who are motivated and about to startn their
carrier in open source ecosystem such as OpenStack but lack the technical know-
how.
We give them materials and hands-on training that equipes them to master
the tools, which they will use in making contributions to the codebase;
add new features, fix-bugs, write documentation and participate in
working groups to OpenStack as they join a community of thousands of
developers from hundreds of companies worldwide.

Students will also learn how to use a prepared development environment
to test, prepare and upload new code snippets or documentation for review.

This year, Lenovo is sponsoring the onboarding event. But the Onboarding
is organized and run by people embedded in the community, the fast-track
course gives students a more accurate taste of what working in the
community is really like and the opportunity to ask experienced
contributors questions and gain more insight into their work with OpenStack.

There’s help beyond the classroom, too: attendees can join an ongoing
 mentoring program.

As the training evolves, our focus continually shifts towards providing a
highly interactive course where students can learn about the social norms,
modes of communication and variety of possible contributions through
 experience as opposed to lectures.

M2	supported	M1	response	and	added	that:

M2

"Onboarding new contributors is incredibly important in any open source
ecosystem and particularly one as large as OpenStack.There’s a constant
flow of people joining our community and some moving on to other endeavors.

The best way to maintain a healthy community is to educate newcomers and
give them the tools they need to become effective contributors.
One of ways OpenStack does this is through the two-day long Upstream
Institute Training offered prior to each OpenStack Summit."

4.	 Project	Onboarding

Towards	the	end	of	the	two-days	event,

M1	said:	"During	mentoring,	OUI	participants	are	strongly	encouraged	(required)	to

join	at	least	one	project	team.	Once	signed	up	to	join	a	project	team,	they	are	assigned	mentors	to
follow	them	up."

M2:	"Project	Onboarding	gives	participants	a	chance	to	meet	some	of	the	project	team	and
get	to	know	the	project.	Participants	will	learn	about	the	project	itself,	the	code	structure/
overall	architecture,	etc,	and	places	where	contribution	is	needed.	Participants	will	also	get
to	know	some	of	the	core	contributors	and	other	established	community	members.	Ideally,
participants	will	know/	have	completed	the	OUI	basics."

5.	 Mentoring	Program

Prospective	Participants
All	72	participants	signed	up	to	participate	for

the	mentoring	program.

P1,	P2,	P3,	…,	P72.	Moreover,	they	indicated	interest	in	different	project	teams.

	Participant Observation — The How.
	Onboarding Event - Details on Technical Activities
	Outline
	Theoretical Knowledge (Day-01) [100%]
	Practical Knowledge (Day-02) [100%]

	DAY-02 Technical Activities (The "How")
	Guidelines

