
A Modern Compiler for the French Tax Code CC ’21, March 2–3, 2021, Virtual, Republic of Korea

A Artifact Appendix
A.1 Abstract
The artefact consists in Mlang, the compiler for the French Tax
Code described in the research article.

A.2 Artifact check-list (meta-information)
● Run-time environment: Virtualbox image (Virtualbox
6.1, Ubuntu 20.04). Source code is available.● Hardware: Tested on an Intel Core i7-8650U with 32GB
memory. The compiler is not resource-intensive, but test
suites are run in parallel on all available cores. The Virtualbox
image uses 12GB memory because the AFL fuzzer may need
that much memory.● Experiments: Provided make commands.● Time needed to prepare artefact: 5 minutes (time to im-
port virtualbox image).● Time needed to complete experiments: Around 1 hour
(plus 5 hours of compilation for one result).● Publicly available: https://github.com/MLanguage/mlang/
releases/tag/cc21-v1.0● Archived: DOI: 10.5281/zenodo.4456774

A.3 Description
This artefact is provided as a compiled binary in a virtualbox image.
Its sources are also publicly available.

A.4 Installation
We recommended to use the provided virtualbox image to avoid
having to manage dependencies. Just import the appliance in virtu-
albox and run it (the root password is cc21). A terminal is opened,
with the current directory being the mlang repository. Being at
mlang root directory is necessary to run the commands provided
the reproduce the results.

If needed,manual installation instructions are provided inMlang’s
README.md.

To launch a single test from the test suite, use
$ TEST_FILE=path/to/test make test

To launch the default test suite, use:
$ make tests

A.5 Evaluation and expected result
Formal Semantics of Section 2 (est. time: < 10 minutes). The
formal semantics of 𝜇M and the type safety theorem are written in
Coq: formal_semantics/semantics.v. Correspondance between
the Coq names and the ones used in the paper are given in formal_-
semantics/README.md. You can run coqc semantics.v to check
that the semantics and proofs are correct.

Reproducing Figure 11 (est. time: < 10 minutes). The M spec-
ification files are located in folder m_specs/. Table 18 provides the
equivalence between the names of Figure 11 and the M specification
files.

To run Mlang with a given M specification file, just write:
$ M_SPEC_FILE=m_specs/your-file.m_spec make from_spec

Mlang then displays the number of inputs and outputs given by
the specification file, as well as the number of instructions generated
in the end. For example, tests.m_spec yields:

$ M_SPEC_FILE=m_specs/tests.m_spec make from_spec
[...]
[DEBUG] M_spec has 1732 inputs and 651 outputs
[...]
[DEBUG] Optimizations done! Total effect: 656719 → 115297
[...]

Note that the initial number of instructions differs from each M
specification file, because some initialization assignments depend
on the number of inputs.

Partially reproducing Figure 16 (est. time: 2 minutes with
default -O0). Figure 16 shows 6 lines. The first 2 lines cannot
be reproduced since the replication would require access to the
private compiler and C code of the DGFiP. We were able to access
the code after signing a non-disclosure agreement with the DGFiP,
and doing the same is out of reach of artifact reviewers. The next
two lines correspond to a old compilation scheme that corresponds
to an obsolete state of our Mlang codebase, that we chose to get
rid completely in order to keep the codebase clean. Indeed, this
compilation scheme is less performant than the newer compilation
scheme “Array” presented in the last 2 lines of Figure 16.

To replicate the last two lines from the figure, launch:

$ make test_c_backend_perf

This will run an executable that pass the same test 1000 times.
To get the execution time for one run, divide the time result (in
user category) by 1000. The last command should build with LLVM
and option -O0. To get the -O1 time, launch

$ C_OPT=-O1 make test_c_backend_perf -B

Be careful, -O1 optimizations with LLVM currently take about 5
hours to complete, and will use approximately 10 GB of memory.

Reproducing the results of Section 5.2 (est. time: < 15 min-
utes).

1024-bit floats. In this mode, double-precision floats are re-
placed with arbitrary-precision floats, here 1024 bits. This mode
uses the MPFR library and its equality function to test whether
computed test values meet the expected. This equality function is
stricter than the usual equality function; for instance 0 and -0 are
different in MPFR. This yields spurious test errors, which is why we
have to allow an error margin in the comparison between expected
and computed values. We set this value to a small number, here
0.0000001. You can choose any reasonable 𝜀 > 0.

To pass all tests using 1024 bits precision, launch:
$ TEST_ERROR_MARGIN=0.0000001 PRECISION=mpfr1024 make tests

Spec. name Spec file

All all_ins_and_outs_2018.m_spec
Selected outs all_ins_selected_outs_2018.m_spec
Tests tests.m_spec
Simplified simulateur_simplifie_2018.m_spec
Basic basic_case.m_spec

Figure 18.Correspondance between the specification names
and files

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Denis Merigoux, Raphaël Monat, and Jonathan Protzenko

Rounding mode. Here, floats are replaced by floating-point
intervals, with down rounding for the lower-bound and up rounding
for the upper bound.
$ PRECISION=interval make tests

Some tests fail with “Tried to convert interval to float, got two dif-
ferent bounds”: in those cases, the chosen rounding mode changes
the results of the computation.

Fixed precision. To pass the tests using infinite-precision inte-
gers with a fixed points of 40 fractional bits, launch:
$ TEST_ERROR_MARGIN=0.0000001 PRECISION=fixed40 make tests

You can replicate the failure of some tests due to low fractional
precision by launching something like:
$ TEST_ERROR_MARGIN=0.0000001 PRECISION=fixed30 make tests

Rationals. To pass the tests with infinite precision using MPFR
rationals, launch:
$ TEST_ERROR_MARGIN=0.0000001 PRECISION=mpq make tests

Checking the results of Section 5.3 (est. time: 5minutes). The
randomized tests are provided in tests/2018/randomized. You
can run the compiler on them with:
$ TESTS_DIR=tests/2018/randomized/ make tests

The fuzzing-based tests are used by default in make tests, they
can be found in tests/2018/fuzzing/.

Reproducing Figure 17 (est. time: 10 minutes). To measure
coverage, just add CODE_COVERAGE=1 before the make command.
The coverage results are given in the last three lines of the execution
trace. On the fuzzed tests, this gives:
$ CODE_COVERAGE=1 make tests
[...]
[RESULT] Test results: 275 successes
[RESULT] No failures!
[RESULT] Here is the estimated code coverage of this set of test runs,
[RESULT] broken down by the number of values statements are covered with:
[RESULT] zero values → 14 (0.0021% of statements)
[RESULT] one values → 576923 (88.0561% of statements)
[RESULT] two or more values → 78074 (11.9165% of statements)

For the randomized tests, you need to run:
$ CODE_COVERAGE=1 TESTS_DIR=tests/2018/randomized/ make tests

The DGFiP private tests are not publicly available, due to secrecy
and security reasons invoked by the DGFiP.

A.6 Experiment customization
Inspecting the generated code. You can test the C backend with
the test_c_backendmake target. The generated code will be left in
files like examples/c/backend_tests/ir_tests.c. You can then
inspect these files to get a sense of what Mlang generates.

Similarly for Python, use the test_python_backend target. The
generated code is examples/python/backend_tests/tests.py.

Switching year. Mlang is also available on the 2019 version of
the income tax computation. To use this year, simply prefix all your
make calls by YEAR=2019 make

Creating new fuzzer tests. To create new fuzzer tests, move to
examples/c/backend_tests. Then, create the executable to fuzz
with:
$ make fuzz_harness.exe

You can tweak the crash condition by modifying the code in
fuzz_harness.c. Before running AFL, you need to run echo core
| sudo tee /proc/sys/kernel/core_pattern (the root pass-
word is cc21). Fuzzing instances can then be created with
$ NO_JOB=<0,1,2...> make launch_fuzz

