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Abstract. Crime is a well-known social problem faced worldwide. With
the availability of large city datasets, the scientific community for predictive
policing has switched its focus from people-centric to place-centric, focusing
on heterogeneous data points related to a particular geographic region in
predicting crimes. Such data-driven techniques identify micro-level regions
known as hotspots with high crime intensity. In this paper, we adapt the
state-of-the-art spatial-temporal prediction model STDenseNetFus to pre-
dict crime in geographic regions in the presence of external factors such as a
region’s demographics, seasonal events and weather. We demonstrate that
STDenseNet maintains prediction performance compared to previous re-
sults [1] on the same dataset despite significantly reduced parameter count.
We further extend STDenseNetFus architecture from two-dimensional to
three-dimensional convolutions and show that it further improves the pre-
diction results. Finally we investigate the use of the DeepShap model expla-
nationmethod to provide insights into the important input features effecting
the model forecasts.

1 Introduction

The analysis of historical crime events in urban areas in particular, the location
and time of crime can play an important role in data analysis for intelligent polic-
ing. These spatial and temporal(ST) dimensions of city data can help in profiling
regions for a particular type of crime.

ST data has a unique challenge of data sparsity in most domains, particularly
crime. Investigating both spatial and temporal dimensions together has the ef-
fect of spreading available data across a potentially large number of individual
cells/regions. This sparse data provides a weak signal for traditional temporal
analysis techniques. In this work we address the above spatial and temporal chal-
lenges with Deep Neural Network techniques. Our contributions are as follows:

• We infuse heterogeneous external factors such census data, ethnicity stats
and weather data with crime reports to investigate their use in crime fore-
casting.

• Wecompare STResNetwith STDenseNetFus anddemonstrate both perform
almost equally.

• We extend STDenseNetFus to use 3D convolutions and observe a modest
performance improvement.

• We investigate the use of DeepShap to provide insights into which features
from the infused dataset contribute to predictions the most.
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2 Related Work

Given the large quantities of crime report data available, Neural Networks (NN)
based models make an obvious choice. Crime rate data can be displayed as a grid
over a city, with the intensity of each grid representing the rate of crimes within
that grid area. These crime rate grid maps can be thought of as low-resolution
images, with each grid representing a pixel. Given Convolutional Neural Networks
(CNNs) impressive performance when handling image tasks, there is a clear incen-
tive to use CNNs to predict crime rates over a city. The CNN can learn features
of how neighbouring grids interact with regards to crime in a similar fashion to
learning spatial features within an image. It is expected that the influence that
neighbouring grids have on each other is somewhat common across the city, allow-
ing the shared weights of the CNN kernels to efficiently learn these interactions.

In [1] the authors introduce STResNet, a CNN based model which takes crime
intensity maps as input and encodes temporal features as additional channels in
these images. STResNet report impressive accuracy in predicting crime in Los
Angeles (LA).

STDenseNetFus [2] builds on STResNet, also using three CNN sub-networks
to model temporal features. In place of using ResNets, STDenseNetFus makes
use of Densely Connected convolutions networks (DenseNets). These DenseNets
use the same premise as ResNets, passing inputs through shortcut connections.
DenseNets take this concept further, appending the output of all presiding layers
to the input of the next layer. This makes the network more efficient, allowing
the network to reuse features from previous layers. Where STResNet makes use
of weather data, STDenseNetFus expands this concept to include several external
contextual inputs Such as 1D weather data and 2D geographical context data such
as points of interest in a region.

Both STResNet and STDenseNetFus model temporal data by adding multiple
time steps as separate image channels, However, research into video classification
has found that most of the temporal data is lost in the early layers of a CNN with
this setup [3]. The researchers found that the later into a CNN the temporal data
is merged the greater the results for video classification. Based on this premise,
in [4] the authors develop a 3-dimensional convolutional network model for action
classification in videos. 3D CNNs are similar in structure to 2D CNNs but in place
of 2D feature kernels they use 3D kernels, moving through the video input with a
3D window of 3x3x3. These kernels maintain the temporal structure of the input
video, keeping the order of the frames correct. Crime data can be interpreted as
a video sequence, by treating each crime map per time period as a frame, these
3D CNN architectures show promise in predicting crime, similar to predicting the
next frame of a video.



3 Experiments

3.1 Dataset Description

We used the LA Crime reports dataset, which includes the location, date and time
of incident, the type of crime and the weapon used. The dataset covers from 2010
toMay 2019 and includes approximately 1.9 million events. Additional contextual
data was added, for spatial context, demographics data was retrieved from the US
census bureau. This data was collected in 2010 and includes population, average
income, median age, average size of family and other demographics breakdowns.
Temporal context was added as weather and event data. Weather data was re-
trieved from the National Oceanic and Atmospheric Administration for LA over
the period of 2010 to May 2019 and a list of US holiday dates was compiled for
the same period as temporal events.

3.2 2D DenseNet Model Design

The model design is based on the STDenseNetFus [2] model which has been al-
tered to facilitate crime predictions in place of network demand predictions. The
model consists of 3 separate parts, crime density DenseNets, a geographical con-
text DenseNet and a temporal context fully connected layers sub network.

Crime Density DenseNet - Made up of 3 separate DenseNet blocks. Each
sub network models a different time range, Daily, weekly and monthly time steps.
For each day the model takes in a density map where each grid, or pixels value
corresponds to the number of crimes that occurred in that grid over that time pe-
riod. The output of the crime density DenseNet blocks are fused with a weighted
fusion layer that can give weight to one time span over another. Geographical

context DenseNet - Demographics data are input to a separate DenseNet sub
network, the blue box in fig 1. Temporal Context - The temporal context data,
holidays and weather data is fed into a fully connected network which increases the
dimensions to match those of the grid dimensions. Finally the outputs of all sub
networks are concatenated together and passed through a final 1x1 convolution
layer. The final output represents the expected total crime rates of the next day.

3.3 3D Model Design

The 3D model makes use of 3-dimensional DenseNet blocks, which in turn follow
the same design as traditional DenseNets but make use of 3D convolutional layers.
As the separate time ranges are not aggregated together as they are in traditional
CNNs, there is only a single DenseNet sub network used for all time ranges.

4 Results and Discussions

4.1 Evaluation

To evaluate the forecasts generated by the models we chose the Predictive Ac-
curacy Index(PAI) and Predictive Efficiency Index(PEI). The PAI and PEI have



Fig. 1: STDenseNetFus Fig. 2: STDenseNetFus3D

Table 1: Forecast results from 2016-2017
Model rmse f1 hit rate PEI Params

Naive 1.18 0.75 75.4 73.5 0
STResNet 0.89 0.75 96.1 82.7 1,794,117

STDenseNetFus 0.88 0.75 95.2 82.6 887,740
STDenseNetFus No Geo 0.88 0.77 95.9 82.5 794,565
STDenseNetFus3D 0.86 0.79 96.3 83.1 924,394
STDenseNetFus3D No geo 0.87 0.78 96.2 83.1 830,851

been used previously to determine the effectiveness of forecasts when it comes to
choosing patrol areas for law enforcement agencies(LEA), for example in a 2017
competition held by the national institute of justice into predictive policing 1.

For all given PEI scores in table 1, the maximum area allowed to be predicted
is set to 1% of the the total area, higher areas are assumed too large for useful
patrol planning.

4.2 Results

Table 1 shows results comparing four models. Naive which takes the last known
value for each grid as the current prediction. STResNet, defined in [1], imple-
mentation taken fromGitHub 2, changes weremade to predict over 24 hours rather
than the papers original 1 hour predictions. STDenseNetFus, using 2D convolu-
tions with geographical and spatial context input data and finally STDenseNet-

1https://nij.gov/funding/Pages/fy16-crime-forecasting-challenge-document.aspx
2https://github.com/lucktroy/DeepST/tree/master/scripts



Fus3D. For both STDenseNet models one is trained with Geographical context
data in the form of Census data, for models labeled “No Geo” this data was not
included. All models were trained on LA crime report data using June 2010 to
December 2016 for training data and December 2016 to December 2017 for valida-
tion data. The city was divided into 32x32 uniform grids enclosing the area from
Latitude, Longitude (33.79, -118.7) to (34.38, -118.11). One-step predictions were
made for each day in the training set. Table 1 shows the average metrics over this
period. The results show a small improvement in all metrics for STDenseNet3D
model. This finding is consistent with work done in [3] which showed that keeping
the temporal ordering of video clips further into a model produced better results
for the task of action recognition. STDenseNetFus shows very similar results to
STResNet, in particular in PEI forecasting efficiency. This is despite having 51%
of the parameters, shown in table 1 under ’Params’. This is consistent with the
initial findings of using DenseNets on image recognition tasks in [5] which found
DenseNet models could achieve similar results with reduced parameter counts.
Adding Geographical Context data appears to have no significant effect on model
performance. This may be due to the fact that the census data is static and out
of date, having been collected in 2010. A more recent and dynamic geographical
dataset may produce better results.

4.3 Forecast Explanations

Forecasting bias is a considerable concern of any predictive policing strategy. Black
box models, such as deep learning architectures, provide little insight into why one
area is considered a hotspot over another. As a possible mitigation to this, we in-
vestigated the use of the DeepShap3 model explainability technique described in
[6]. In brief, DeepShap can provide a weight of how much each feature in the input
was responsible for a given output. It does this by calculating the difference in
activation values for the given input compared to a baseline input. This differ-
ence is then back propagated through the model to arrive at an estimation for
the shapely values for each input feature. An LEA can use this information to
determine which input datatype is causing an area to be a hotspot and make a
judgment call as whether to use the forecast or not. To make use of DeepShap we
reconfigure the model as a regression problem, with the crime intensity of a single
grid set as the output for the overall model. The DeepShap method requires a set
of baseline inputs which represents the default input to compare against, for these
experiments we chose a baseline of zero for all crime intensities.

We generated explanations for a number of dates and verified the explanations
produced expected results. As an example, on Grid 440 4 on the 6th of Febru-
ary 2019, the total number of crimes (the target variable) in a region dominates
the forecast weight with 83% and 16% positive and negative effects respectively.
Temporal context values make small contributions to the forecast, such as the
maximum temperature, having a 0.03% positive effect on the forecast. Addi-

3https://github.com/slundberg/shap
4block Latitude and Longitude (34.050825, -118.2441625), (34.032387, -118.2626)



tionally we viewed the contribution of individual input grids and viewed how the
shapely weights are spatially distributed. As expected the total crime intensity of
the target grid itself had the highest weight of 10.05% along with a number of key
neighbouring grids, such as grid number 471 which had a 2.9% positive impact
on the forecasted value. This information may provide LEAs insights into how
neighbouring areas effect each others at particular times and circumstances.

5 Conclusion and Future Work

In these experiments we have found that the DenseNet based STDenseNet model
produces comparable results to the ResNet based STResNet with significantly
reduced parameter counts. We have found that the addition of geographical con-
text data, in the form of census information, did not produce appreciable gains in
the performance. Using a 3D DenseNet design did provide modest performance
improvements in PEI scores, likely due to the ability to keep temporal information
intact further into the model. Additionally we explored the DeepShap model ex-
planation method as a possible remedy to opaque forecasts being used by LEAs.
We confirmed from shapely weight values that census data had a minimal affect
on forecasts. We plan to explore the impact of other geographic contexts such
as point of interest in future work along with getting direct LEA feedback on
Deepshap values.
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