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ABSTRACT

Modularity is one of the four key principles of software design
and architecture. According to this principle, software should be
organized into modules that are tightly linked internally (high cohe-
sion), whereas at the same time as independent from other modules
as possible (low coupling). However, in practice, this principle is
violated due to poor architecting design decisions, lack of time, or
coding shortcuts, leading to a phenomenon termed as architectural
technical debt (ATD). To alleviate this problem (lack of architec-
tural modularity), the most common solution is the application
of a software refactoring, namely Move Class—i.e., moving classes
(the core artifact in object-oriented systems) from one module to
another. To identify Move Class refactoring opportunities, we em-
ploy a search-based optimization process, relying on optimization
metrics, through which optimal moves are derived. Given the ex-
tensive search space required for applying a brute-force search
strategy, in this paper, we propose the use of a genetic algorithm
that re-arranges existing software classes into existing or new mod-
ules (software packages in Java, or folders in C++). To validate the
usefulness of the proposed refactorings, we performed an indus-
trial case study on three projects (from the Aviation, Healthcare,
and Manufacturing application domains). The results of the study
indicate that the proposed architecture reconstruction is able to
improve modularity, improving both coupling and cohesion. The
obtained results can be useful to practitioners through an open
source tool; whereas at the same point, they open interesting future
work directions.
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1 INTRODUCTION

Quality assessment in early stages of software development (such
as architecture) is prominent, in the sense that changing early
design artifacts usually leads to substantial rework—increasing
maintenance costs[13]. The magnitude of maintenance costs can
accumulate up to 50%-70% of the complete lifecycle cost for soft-
ware development[15] Therefore, it is of paramount importance to
reduce such costs; usually caused by poor development quality. One
of the main problems regarding architecture quality is architecture
decay[8]: i.e., a phenomenon through which the quality of an ar-
chitecture diminishes along evolution and starts to drift away from
the original architectural decisions. According to van Vliet [15] ar-
chitectural quality can be perceived through assessing three central
object-oriented concepts: abstractness, modularity, and complexity.
Among those, in this paper we focus on modularity, i.e., the level
of internal coherence and independence of a software component.
In the literature, the aforementioned two factors of modularity
are termed as coupling and cohesion[1]. The desired evolution (in
terms of modularity) would be that coupling decreases and cohe-
sion increases over time; however, in practice this rarely occurs,
since modules become larger, providing more diverse functionality,
and become in need of more external modules [1].

To ensure the viability of software (i.e., decrease maintenance
cost) by preventing architecture decay, we need to reconstruct the
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originally planned architecture, so as to optimize it current state
(in this paper in terms of modularity): improved modularity would
make the design more reusable and extensible [12]. In this study,
we propose a method for refactoring existing software architec-
tures aiming to improve modularity, by identifying conceptually
similar artifacts, placing them in the same component, and cre-
ating a hierarchical component-based architecture. The outcome
of the method is a modified architectural decomposition, which
could be instantiated by applying the “Move Class” refactoring [5]1.
The proposed method, namely Design Reconstruction based on a
Genetic Evolutionary Algorithm (DeRecGEA), which relies on Ge-
netic Evolutionary Algorithms (GEA). This choice was influenced
by several factors, since through GEA we are able of: (a) solving
problems of varying complexity; and (b) identifying a possible so-
lution faster than a Brute Force algorithm, given the complexity
of a problem and the amount of necessary calculations. Until now,
modularity has been intensively studied at both class and method
level by applying the “Move Method”, the “Extract Class”, and the
“Extract Method” refactorings. However limited research has been
performed for supporting the application of the “Move Class” refac-
toring. We note that as input for DeRecGEA we provide the source
code of the examined software. This decision was made since: (a)
the intended architecture (as captured by design / architecture doc-
uments) rarely available in practice [9]—thus, the applicability of
the method would be limited; and (b) all changes that are applied
along evolution are applied in the implemented architecture—i.e.,
the source code. Therefore, the proposal of “Move Class” refactoring
would be more straightforward; and would not imply the existence
of traceability links between architecture elements and source code.

To evaluate the proposed approach, we have performed a case
study on three industrial projects: one from the aviation domain
(written in C++), one from the healthcare domain (written in C++),
and the final one from the smart manufacturing domain (written
in Java). In particular, we obtained the original code of the projects,
and refactored them, using the proposed GEA algorithm. To explore
if the application of the GEA improved modularity, we followed a
pre-post analysis, i.e., we compared the values of modularity before
the application of the treatment (i.e., the application of the architec-
tural refactoring) to the values of modularity. The rest of the paper
is organized as follows: in Section 2 we present background infor-
mation necessary to understand the proposed process, and related
work (i.e., automated approaches for architectural refactorings);
and in Section 3 we present the DeRecGEA approach. In Section 4,
we present the case study design and the obtained results. Finally,
in Section 5 we conclude the paper by providing some implications
for researchers and practitioners and threats to validity.

2 BACKGROUND INFORMATION AND
RELATED WORK

Several attempts — methodologies exist for the identification of
Architectural Refactorings, or otherwise known as solutions to Ar-
chitectural Smells. The methodologies identified in the literature
utilize either manual or semi-manual processes; therefore, there is a
lack of purely automated processes. Garcia et al. [6] propose the use

The move class refactoring suggests to move one class from one package to another,
to which it is more conceptually relevant
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of schematic diagrams, utilized by architects to detect architectural
smells in both conceptual and recovered / implemented architecture.
After detection a manual analysis is performed by the architect,
to assess the impact of the smell on relevant qualities. Marinescu
[10] suggests the use of Detection Strategies (quantifiable expres-
sions of a rule), to detect conforming source code fragments. These
strategies, analyze source code models by using metrics. Tourwe
and Mens [14] use a semi-automated approach, based on meta
programming logic, to detect if refactorings are needed, identify
which refactorings should be applied and finally automatically ap-
ply them. Finally, Arnold [2] remarks that system modularization
currently requires much human judgment, and lists a few principles
for manually performing the identification of smell and applying
the refactoring. It has been argued that search-based software engi-
neering can provide acceptable solutions to many problems with
competing constraints employing metaheuristic approaches such
as Genetic Algorithms, Simulated Annealing and Tabu Search[7].
The optimum assignment of responsibilities to classes has been
for example tackled with the help of multi-objective genetic algo-
rithms[4].

Genetic Evolutionary Algorithms are inspired by biology; thus,
they adopt characteristics and processes found in nature. These
stem mainly from Darwin’s theory of evolution, and utilize the
process of natural selection[3]. GEA is basically a random process
of evolving solutions (each new solution stems from a combina-
tion of existing ones) that will eventually end-up with an optimal
solution. In order for the GEA iterations to end we need to define
a termination criterion. We note that the use of a Genetic Evolu-
tionary Algorithm, contrary to the use of a Brute Force algorithm,
will most likely not provide us with the best possible result (global
optimum); however, the result will be adequate (local optimal), but
it will be timely retrieved. The basic steps of any GEA are the fol-
lowing: (a) Population Initialization; (b) Selection; (c) Crossover; and
(d) Mutation—see Figure 1; whereas the basic entities are: (a) the
population, (b) the individual, and (c) the gene. The individual is a
representation of a possible solution, the gene is the actual useful
information about the solution (contained in each Individual), and
the population is the collection of our calculated possible solutions
(Individuals). Imitating nature, steps 2-4 are repeated over several
generations, resulting in a final solution [3]. The basic steps are out-
lined below; whereas their application in DeRecGEA are detailed
in Section 3:

o Selection refers to the evaluation of an Individual. The eval-
uation is based on the fitness value representing each Indi-
vidual of the Population. The Fitness value is the score of
the proposed solution (gene).

e Crossover is the function of combining two or more exist-
ing Individuals, usually the ones with already good Fitness,
and producing a new one. The main purpose of this is the
improvement of the solution pool, by making the population
more diverse, and introducing new high Fitness Individuals
to the population.

e Mutation process although different, serves a similar pur-
pose as Crossover. The process uses a single Individual and
mutates — changes its gene, in order to diversify it and pro-
duce new combinations.
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Figure 1: Genetic Evolutionary Algorithm process

3 ARCHITECTURAL DESIGN
RECONSTRUCTION BASED ON A GENETIC
EVOLUTIONARY ALGORITHM
(DERECGEA)

In this section, we present the proposed algorithm for applying the
Move Class refactoring. In particular, we organize the section, based
on the generic steps of the GEA, presented in Section 2. The goal of
DeRecGEA is to group classes, into modular components, in a recur-
sive manner (as dictated by GEA), resulting into sub-components.
These sub-components, act as the input of GEA input, to achieve
the intended hierarchical structure. The component structure is a
non-restrictive one, in the sense that they only aim at characteriz-
ing groups of classes. As a result if two components of two different
individuals have the same name, they are not considered the same,
because they could be labeling two different class groups.

Entities Representation: The main entity of DeRecGEA, the In-
dividual contains a representation of the classes that we want to
group into components, the components themselves and the rela-
tion between the two—see Figure 2. In particular, the gene of the
individual is represented as a vector, with size equal to the number
of classes. The index of the vertex corresponds to an id of the class,
whereas the value of the vertex to the component that it is mapped
to. For the selection process the required information is the Fitness
value. The fitness value is a compound metric relying to coupling
and cohesion (since we aim to increase modularity) [1]. To assess
class Cohesion and Coupling, we are utilizing the classes’ outgoing
“Desired” and “Non-Desired” edges. By edges we mean the outgoing
dependencies of a class. A Correct edge (3 green dependency) would
be a dependency where the classes belong to the same component;
similarly, a False edge (3 red dependency) would refer to one where
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Figure 3: Correct (green) and False (red) edges between
Classes

the classes belong to different components. Ultimately the Cohesion
of a class would be the total of its “Desired” edges and its Coupling
would be that of its “Non-Desired” edges. The calculation of the
fitness value relies on the following equation.

Fitness Value
|Desired Edges| — |[Non Desired Edges|
|Total Edges|

The fitness value is bounded in the [-1, 1] range; and follows the
generic practice that modularity is positively affected by cohesion,
and negatively affected by coupling [15]. Given the fact that both
coupling and cohesion are calculated as edges (similarly to the total
number of edges), we consider the aggregation through subtraction
and division as appropriate. The component fitness is defined by
the mean value of its contained classes. Similarly, the fitness of an
Individual is the mean value of its components. The termination
condition is the lack of improvement in the fitness score for 30
evolution generations.

Population Initialization is randomly performed in DeRecGEA,

Modularity =

in the sense that all the Individuals comprising the population are
created with a random structure regarding the number of compo-
nents and the classes belonging to them. To accelerate the solu-
tion process, some restrictions (upper and lower component num-
ber limitations) are in place guided by the rules of good software
engineering—e.g., a single component should contain at most 30
entities (methods to classes, classes to packages, etc.)[11]. Consider-
ing the aforementioned rule, we set as upper limit for our number
of components the number of classes divided by 20 (instead of
30) to provide some leeway, considering that the dictated number
of objects to components is not absolute and applicable to all the
real-world implementations. As the lower limit for the number of

Gene Representation for class Ato E

Figure 2: Component Class distribution
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components we simply chose the number 2, to enable at least one
split.

The Selection starts by calculating the Fitness value of each In-
dividual. It happens on two occasions, before the Crossover and
before the Mutation. For the Crossover, the 10% of the best per-
forming Individuals are selected to undergo the process. Similarly,
for the Mutation the 20% of the best performing Individuals are
selected. All the new Individuals that are produced, as a result of
the two aforementioned processes, are put back into the popula-
tion pool. The population pool has a fixed number of Individuals;
therefore any excess ones are automatically deleted. This selection
is aided again by the fitness value, where the Individuals that are
performing the worst are discarded.

During Crossover process, two (parent) Individuals are combined,
resulting in the creation a new (child) Individual. The new Individ-
ual is reinserted into the population pool, thus representing part
of the population’s new generation. The child inherits character-
istics from its parents, mainly the number of components and the
way that the classes are distributed to them. The inherited char-
acteristics are not exact copies of the ones the parents had, but a
combination of the two. The two important elements of our Algo-
rithm’s Crossover process are: (a) the selection of the component
number of the new Individual; (b) the distribution of classes
to the available Components. For the number of components, the
choice is restricted between the parents’ number of Components,
but the exact number is randomly chosen. To increase the GEA’s
performance, the new random component number value has an in-
creased probability to be closer to value of the parent with the best
fitness. This is achieved by using a shifted Gaussian Distribution
in favor of the better performing parent’s component number, to
decide the resulting component number. For the class distribution
we check in which parent component each class had a better fitness,
and then assigned it to that.

The implemented Mutation function is a simple component
change for a class. The mutation process is repeated for a number
of times, equal to that of a fifth of the total Individual classes. The
class that will undergo a component change is selected by the Fit-
ness value. Classes with the lowest value are selected for mutation;
the selection of its new component however is random. There are
complimentary functions to the mutation process, which are used
on special occasions and help with the avoidance of local optimums.
These functions either split a component into two separate ones
(in case a component has low cohesion), or join two components
together to create a larger one (in case the two components have
high coupling). On a final note, as mentioned before the GEA is
executed recursively for the entirety of the project, including its
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newly made components. Except for the GEA’s termination condi-
tion, there also needs to be a recursion termination condition. By
following the aforementioned rules of good software engineering,
we set the recursion to terminate when all components contain 30
or less classes.

4 EMPIRICAL VALIDATION

Study Design: To validate DeRecGEA, we have performed an ex-
ploratory case study on three industrial codebases, retrieved as part
of the SKD4ED consortium?. SDK4ED is a research project that
focuses (among others) on the management of technical debt, in em-
bedded systems. Therefore, the retrieved codebases are embedded
applications that can be classified as Aviation (App1), Healthcare
(App2), and Smart Manufacturing (App3). Some demographics
of the applications are presented in Table 1. In the table apart from
the descriptive statistics, we also report the initial scores of cou-
pling, cohesion, and modularity—i.e., the metric scores before the
applying DeRecGEA.

Given the initial versions of the three codebases, we have applied
DeRecGEA, through the SDK4ED toolbox>. The source code of the
application is also available online*. Subsequently, we have re-
calculated the three metrics: coupling, cohesion, and modularity
and contrasted the results. By considering the small sample size,
we were not able to perform any statistical analysis further than
descriptive statistics. The results aim to answer the following high-
level question: “Is the application of DeRecGEA able to improve
the modularity of the implemented architecture?”.

Results: Upon the application of the DeRecGEA algorithm, we
have observed that in 2 out of 3 cases the modularity of the sys-
tems has improved, whereas in the other it was slightly decreased.
The results are visualized in Figure 4 in the figure, as positive or
negative, we do not refer to the increase or decrease in absolute
numbers, but to positive or negative effects (as positive we consider
increase in the score of modularity and cohesion, and decrease
in the scores of coupling and size). By focusing on specific qual-
ity properties, regarding cohesion we can observe effects ranging
from -17% to 67%; whereas for coupling from -50% to 28%. The
fact that DeRecGEA performs better in optimizing cohesion rather
than coupling (in all three cases) suggests that there might be some
room for calibration of the algorithm (e.g., the fitness function or
the mutation) to favor moves that decrease coupling. Regarding
modularity the impact of DeRecGEA is ranging from -13% to 167%,
whereas in terms of size the impact was ranging from no impact to
22% improvement. Thus, we can claim that the proposed algorithm

2https://sdkded.eu/
3http://16(140.52. 130:3000/
“https://github.com/teomaik/DeRecGEA

Table 1: Sample Demographics

Project Programming Initial Initial Initial Size in Size in Lines of Code
Language Cohesion Coupling Modularity Packages
Appl C++ 0.30 2.20 -0.76 152 398578
App2 C++ 2.40 3.50 0.00 2 5964
App3 Java 1.20 7.70 -0.73 7 2700
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Figure 4: Application of DeRecGEA on Software Modularity

tends to not increase the number of components in systems, but
either just re-arranges classes or merges packages. Nevertheless,
the negative effect of DeRecGEA optimization on one pilot case,
suggests that the aforementioned refinement, might be necessary.

5 CONCLUSIONS

In this paper, we present the results of an initial attempt to im-
prove software architecture modularity, through the application of a
metrics-driven Evolutionary Genetic Algorithm. The proposed algo-
rithm has been tested in three industrial projects: two small-scaled
and one large scale. The results on the two small-scale projects
are satisfactory, in the sense that their modularity is significantly
improved. However, regarding the large-scale project the results are
encouraging, but still not satisfactory. In particular, we have been
able to reduce the size of the project (in terms of number of compo-
nents), by only getting a limited modularity penalty. Nevertheless,
the degradation of coupling in the retrieved solution is alerting, and
points into an interesting research direction, on how the algorithm
of the fitness function can be calibrated to lead to more coupling-
wise viable solutions. Nevertheless, we encourage practitioners (esp.
of small- and medium-scale applications) to experiment with the
developed tool and Move Class refactorings, since they seem as
promising solutions for architecture decay in terms of modularity.
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