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ABSTRACT: Recently it has been suggested that natural variability in sea surface temperature (SST) patterns over the
historical period causes a low bias in estimates of climate sensitivity based on instrumental records, in addition to that
suggested by time variation of the climate feedback parameter in atmospheric general circulation models (GCMs) coupled
to dynamic oceans. This excess, unforced, historical “pattern effect”” (the effect of evolving surface temperature patterns on
climate feedback strength) has been found in simulations performed using GCMs driven by AMIPII SST and sea ice
changes (amipPiForcing). Here we show, in both amipPiForcing experiments with one GCM and by using Green’s functions
derived from another GCM, that whether such an unforced historical pattern effect is found depends on the underlying SST
dataset used. When replacing the usual AMIPII SSTs with those from the HadISST1 dataset in amipPiForcing experiments,
with sea ice changes unaltered, the first GCM indicates pattern effects that are indistinguishable from the forced pattern
effect of the corresponding coupled GCM. Diagnosis of pattern effects using Green’s functions derived from the second
GCM supports this result for five out of six non-AMIPII SST reconstruction datasets. Moreover, internal variability in
coupled GCMs is rarely sufficient to account for an unforced historical pattern effect of even one-quarter the strength
previously reported. The presented evidence indicates that, if unforced pattern effects have been as small over the historical
record as our findings suggest, they are unlikely to significantly bias climate sensitivity estimates that are based on long-term

instrumental observations and account for forced pattern effects obtained from GCMs.
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1. Introduction

It has become clear that, in general circulation climate
models (GCMs) at least, the spatial pattern of the planet’s
surface warming, which is largely determined by that over the
ocean, is a key factor controlling the global-mean radiative
response to surface warming, or the global climate feedback
parameter, creating so-called pattern effects (Stevens et al.
2016). Inference of Earth’s climate sensitivity, on all time
scales, based on centennial historical warming and a linear
energy balance framework is sensitive to assumptions about
the strength of pattern effects over the historical period and in
the future, since these control the ratio of future warming, both
transient and in equilibrium, to that estimated in a fixed-
feedback response framework.

On physical grounds, warming in tropical (30°S-30°N) as-
cent regions relative to elsewhere is expected to produce a
strongly cooling global radiative response, in the form of an
increase in outgoing radiation at the top of atmosphere, while
warming in tropical descent regions alone should produce a
warming global radiative response. That is because surface
temperature in convective areas, of which the most important
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is the Indo-Pacific warm pool, controls temperature in the
tropical free troposphere, which spatially is fairly uniform, and
influences temperature in the extratropics, while low clouds
are a key determinant of outgoing shortwave radiation in
tropical descent regions such as the eastern Pacific (Sobel et al.
2002). In addition to directly increasing outgoing longwave
radiation, much of which is emitted from the troposphere, an
increase in free tropospheric temperature relative to surface
temperature in descent regions strengthens the boundary layer
inversion, which is known to increase low cloud cover (Wood
and Bretherton 2006; Ceppi and Gregory 2017). Moreover,
ocean dynamics are thought to cause delayed warming in the
eastern tropical Pacific, the extratropical Southern Ocean, and
to an extent the North Atlantic, where either the mixed layer is
deep and the thermohaline circulation has sinking branches or
cool upwelling water influences SST (Winton et al. 2010;
Andrews et al. 2015, 2018). Delayed warming increases inver-
sion strength and hence low cloud cover, transiently causing a
greater radiative response. Thus, following an increase in
greenhouse gas concentrations or other imposition of a radiative
forcing, the spatial pattern of surface warming changes over
time, and a pattern effect arises. The climate system is expected
to display a stronger radiative response to warming—a larger
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climate feedback parameter A, the change in top-of-atmosphere
(TOA) global-mean outgoing radiative flux R caused by a unit
increase in global-mean surface temperature 7'—initially than
subsequently. This constitutes a time-related forced pattern ef-
fect, attributable to a reduction in deep-ocean heat uptake
over time.

Few AOGCMs (atmospheric GCMs coupled to a dynamic
ocean model) have been run to equilibrium (Rugenstein et al.
2020). However, their equilibrium climate sensitivity (ECS)—the
eventual global-mean surface warming following a doubling of
preindustrial CO, concentration—and climate feedback can be
estimated from their behavior following an initial step quadru-
pling of CO, concentration, in 150-yr-long abrupt4xCO2 simula-
tions (Gregory et al. 2004; Andrews et al. 2012). Climate feedback
can be estimated from abrupt4xCO2 simulation data, over any
selected period, as the absolute slope of top-of-atmosphere radi-
ative imbalance when regressed on 7. The AOGCM response in
these abrupt4xCO2 simulations can be well emulated as the sum
of a fast response pattern that dominates over the first 20 years,
but is almost complete by then, and thereafter a slow response
pattern (initially suppressed by deep-ocean heat uptake) with an
e-folding time scale of one to several hundred years (Held et al.
2010; Geoffroy and Saint-Martin 2014). The main differences
between the patterns are that, relative to the global mean, the slow
pattern shows much more warming poleward of 45°S, somewhat
more warming in the eastern tropical/southeastern subtropical
Pacific Ocean, and less warming in the tropical west Pacific and
Indian Ocean, than does the fast pattern (Andrews et al. 2015).
These changes appear to account, in the vast majority of
AOGCMs, for climate feedback decreasing noticeably 20 years or
so after a step in forcing is applied. As a result, deriving ECS by
extrapolating an AOGCM’s top-of-atmosphere radiative imbal-
ance versus 7 relationship estimated by regression over years
1-150 of abrupt4xCO2 simulations, as is often done (e.g., Flato
et al. 2013), tends to underestimate it. When we refer to
ECSaocem, we mean ECS estimated by regressing instead over
years 21-150 of abrupt4xCO2 simulations. Doing so better cap-
tures the AOGCM slow-pattern response and usually gives
slightly higher ECSAoGom estimates (Geoffroy et al. 2013; Lewis
and Curry 2018; Geoffroy and Saint-Martin 2020). Andrews et al.
(2015) estimated that, for the CMIP5 AOGCM mean, the CO,-
forced fast-to-slow pattern A ratio is 1.65:1, with about 60% of the
difference in global climate feedback between fast and slow re-
sponses coming from the tropics. As a result, in AOGCMs
ECSaocem generally exceeds effective climate sensitivity (EffCS), a
proxy for ECS derived by dividing A estimated from transient
changes in R and T'using a linear energy balance framework into the
effective radiative forcing from a doubling of atmospheric CO,
concentration (e.g., Senior and Mitchell 2000; Armour et al. 2013;
Armour 2017; Lewis and Curry 2018).

In recent years, EffCS estimates for the real world based on
observed warming over the historical period (EffCSpisi—obs)

1We adopt thus adopt a sign convention under which a climate
stabilizing A is positive. The shorter terms “‘climate feedback” and
“feedback” refer to the climate feedback parameter A, unless the
context requires otherwise.
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have generally been in the range from 1.5 to 2.0K (Otto et al.
2013; Lewis and Curry 2015, 2018; Mauritsen and Pincus 2017,
Skeie et al. 2018). In AOGCMs A and hence EffCS varies with
time elapsed since forcing is imposed. Therefore, EffCSy;s—obs
estimates based on observed real-world warming should be
compared with EffCS in AOGCMs over a period with a
comparable forcing duration to that over the historical period
[being from the third quarter of the nineteenth century to re-
cently (between 2009 and 2016 in the studies cited)]. Forcing was
generally not diagnosed in CMIPS historical simulations, but
comparable EffCS estimates for them (EffCSpi—a0ceMm) can
be derived from appropriate subperiods of CMIP5 CO,-forced
simulations. Armour (2017) estimated EffCSp;s— aocem from 77
and R responses at year 100 of 1% yr~ ' CO, ramping (1pctCO2)
simulations. Such EffCS; ;- AoccMm estimates range from 1.9 to
41K (Lewis and Curry 2018). The median excess in CMIP5
models of ECSpxogem over thus-estimated EffCSyig.aoceMm 1S
approximately 10%. Armour (2017) derived a significantly
higher than 10% excess of ECSsoccom over EffCSpig— aocem-
However, Lewis and Curry (2018) showed that Armour’s esti-
mate was biased high, mainly due to use of CO, forcing esti-
mates reflecting neither the nonlogarithmic element of the
forcing—concentration relationship nor all rapid adjustments.
The ratio of ECSAogcom to EffCSpisi— aogom estimates is much
smaller than their ratio of fast to slow warming pattern climate
feedback because much of the surface warming and radiative
response to a forcing change occurs while the fast response pattern
dominates, with the weaker slow warming pattern climate feed-
back only applying to the remaining response. Although the time-
related forced pattern effect causes a ~10% excess of ECSsocem
over EffCSyi—aocem, projected twenty-first-century warming
constrained by the historical record is only ~3% lower if
ECSaoceMm is set equal to EffCSpi—aocem (Mauritsen and
Pincus 2017; Geoffroy and Saint-Martin 2020).

EffCS applicable to the historical period mixture of non-
volcanic forcings does not appear to differ from that to purely
CO, forcing over a comparable period (Hansen et al. 2005;
Lewis and Curry 2018, 2020; Richardson et al. 2019). That is
consistent with the similarity of the surface temperature re-
sponse patterns to historical forcings both individually and in
combination being similar to that to CO, forcing (Hansen et al.
2005; Richardson et al. 2019). Moreover, over the historical
period the linear trend in volcanic forcing, for which the ap-
plicable EffCS does seem different (Lewis and Curry 2015;
Gregory et al. 2016, 2019), was negligible. An implication is
that any forced pattern effect over the historical period arising
from the mixture of forcings is likely to be small.

In addition to forced pattern effects, internal variability can
produce unforced pattern effects (Gregory and Andrews 2016;
Zhou et al. 2016; Mauritsen 2016; Dessler et al. 2018; Dessler
2020), in the sense of global-mean R varying with surface
temperature patterns without any change in global-mean 7.
We use the term “‘unforced historical pattern effect” to refer to
such internal variability caused deviation of the ratio of
changes in R and T over the entire historical period (at a
minimum, 1871-2005) from its underlying forced ratio, with a
positive pattern effect corresponding to a more positive change
in R than the underlying forced change. Unlike forced pattern
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effects, unforced pattern effects could, if changing negatively,
lead to rapid near-term warming, and could bias estimation of
the transient climate response and EffCS as well as ECS.
Strictly, unforced pattern effects contribute to a random
variability/error term rather than a change in climate feedback,
since that relates to the causative effect of 7' on R. However,
since measured changes in actual or simulated R include ran-
dom variability, estimation of A is affected by unforced pattern
effects, particularly over relatively short periods (Marvel et al.
2018). A positive unforced historical pattern effect has been
proposed as the explanation for A in GCM AMIP simulations,
in which they are driven over the historical period by evolving
historical sea surface temperature (SST) and sea ice patterns
from an observationally based dataset rather than by changing
forcing (amipPiForcing simulations), being surprisingly large
(Gregory and Andrews 2016; Andrews et al. 2018; Gregory
etal. 2019). The large amipPiForcing estimated A arises mainly
from a strong increase in simulated R over the last four de-
cades, during which period CO, forcing increases have domi-
nated changes in non-CO, forcing (in particular, aerosol
forcing) considerably more strongly than previously. If a
positive unforced historical pattern effect did occur, EffCS
estimates based on observed warming over the historical pe-
riod would be biased low, even if forced pattern effects are
accounted for.

Here we investigate a simpler alternative explanation,
namely that the apparent positive unforced historical pattern
effect may largely or wholly be an artifact arising from use in
amipPiForcing simulations of a particular melded, observa-
tionally based infilled SST reconstruction (AMIPII; Hurrell
et al. 2008), the warming patterns of which may be question-
able (Flannaghan et al. 2014; Fueglistaler et al. 2015). As fur-
ther discussed in section 4, the AMIPII dataset merges two SST
reconstructions that employ different bias correction and in-
terpolation methods, and its post-1981 interpolation method
may be suboptimal for the study of pattern effects.

We show that using alternative, internally consistent SST re-
constructions, which show weaker relative warming in the tropical
Indian Ocean and the west Pacific than the AMIPII reconstruction,
yields substantially lower A estimates in amipPiForcing simulations
by the ECHAM®6.3 GCM. These A estimates are close to those from
forced simulations by the parent AOGCM and hence do not in-
dicate any unforced historical pattern effect. We find similar results
using a CAMS.3-based Green’s function approach (Zhou et al.
2017), and investigate other SST reconstructions.

2. Methods and data

a. ECHAMG6.3 simulations

We investigated historical pattern effects in two ways. First,
we carried out an ensemble of GCM amipPiForcing experi-
ments over 1871-2010, using ECHAM®6.3 (Mauritsen et al.
2019). ECHAMBS6.3 is an advanced atmosphere-only GCM,
with improved representation of clouds, convection, tropo-
spheric aerosol, and radiative transfer, compared to its pre-
decessor CMIPS5 version, and was run with a T63 spectral
truncation and 47 vertical levels. Our amipPiForcing SST
boundary conditions were based on the HadISST1 dataset. The
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same sea ice boundary conditions as in the AMIPII dataset
were used, so that differences between the results using
AMIPII and HadISST1 SST data are unrelated to changes in
sea ice. Natural and anthropogenic forcings were held constant
at preindustrial levels. Accordingly, nonrandom variations in
radiative fluxes reflect only changes in SST and sea ice
boundary conditions. That enables changes in R to be obtained
directly from top-of-atmosphere radiation fields, and thus cli-
mate feedback to be diagnosed. Five simulation runs with
slightly different initial conditions were executed; except
where stated otherwise results are based on their ensemble-
mean values. Five simulation runs identical to the current
simulations apart from using AMIPII SST boundary conditions
have already been carried out using ECHAMG6.3 (Andrews
et al. 2018).

Using ECHAMG6.3 has the major advantage that the effective
radiative forcing (ERF) during historical simulations by its
parent AOGCM, MPI-ESM1.1, can be accurately estimated
from diagnostic fixed-SST simulations. Moreover, data from
very large ensembles of MPI-ESM1.1 historical and 1pctCO2
simulations are available. In this model it is therefore, uniquely,
possible to accurately estimate climate feedback strength in re-
sponse both to composite historical period ERF and to a broadly
similar time-profile of CO,-only ramped ERF, and to compare
the radiative response in the amipPiForcing simulations with
that expected on the basis of those climate feedback estimates.
A disadvantage of using a single GCM is that we cannot sample
model uncertainties. The model exhibited slightly less than av-
erage historical pattern effect in the model intercomparison of
Andrews et al. (2018), and results should be interpreted in light
of this.

As in Zhou et al. (2017), we measure 7T as surface (skin)
temperature globally; over ice-free ocean this is treated in this
GCM as equaling SST. This measure (denoted Ty), as well as
enabling use of the Green’s functions derived by Zhou et al.
(2017), is preferred to using near-surface air temperature
(denoted T) for several other reasons. First, because doing so
reduces temperature noise in SST-driven GCM experiments,
improving feedback estimation. Second, because near-surface
air temperature is not well measured over the oceans in the real
climate system. Third, because the radiative response arises
primarily from changes in surface temperature not in near-
surface air temperature. Finally, because near-surface air
temperature, unlike surface temperature, is a diagnostic rather
than prognostic variable in GCMs (Jiménez-de-la-Cuesta and
Mauritsen 2019).

We estimate A from MPI-ESM1.1 simulation data, as the
ordinary least squares (OLS) slope coefficient when regressing
annual-mean R on T, similarly to in previous work (e.g.,
Gregory et al. 2004; Gregory and Andrews 2016; Andrews et al.
2018). We use ensemble-mean data from 100 historical simu-
lation runs and 68 1pctCO2 simulation runs.

For the MPI-ESM1.1 historical and 1pctCO2 experiments R
is obtained from the relationship R = F — N, with F being the
ERF and N the net downward TOA radiative imbalance. We
obtain ERF estimates for the 1850-2005 historical simulation
from ensemble-mean N in three runs with 1850-2008 historical
atmospheric composition and land use changes but fixed SST.

Unauthenticated | Downloaded 01/21/21 12:50 PM UTC



42 JOURNAL OF CLIMATE

We augment the N values to account for the small increase in 7
due to land surface warming (Hansen et al. 2005). The applied
adjustment factor of 0.07 represents the ratio of changes in
mean 7 and N between 1860-82 and 1999-2008, being periods
unaffected by volcanism, in that simulation multiplied by a
A value of 1.36 Wm ™2 K~ ! estimated by regression over years
1-150 of the MPI-ESM1.1 abrupt4xCO?2 simulation. Volcanic
EREF exhibits a low (equilibrium) efficacy in MPI-ESM1.1: it
responds as if volcanic ERF were less than that included in the
diagnosed historical ERF (Lewis and Curry 2020). This may be
due to tropical volcanic eruptions weakening the zonal Pacific
tropical SST gradient (Clement et al. 1996; Gregory et al. 2016;
Miao et al. 2018). To eliminate any resulting bias in feedback
estimation when regressing MPI-ESM1.1 historical simulation
R on T, volcanic forcing (per the IPCC ARS estimated time
series) is included as a separate regressor. Using data over
18522005, omitting 1850 and 1851 as their forcing estimates
were affected by spinup issues, the regression fit is excellent (r =
0.96), with a A estimate of 1.56 + 0.04 Wm 2K~ (1 standard
error regression uncertainty). Estimating over 1871-2005 gave
essentially identical results: A = 1.56 = 0.0 Wm ™ >K~". So did
regressing using pentadal-mean data, with an even closer fit (r =
0.994) due to suppression of interannual variability.

We estimate F in the MPI-ESM1.1 1pctCO2 experiment
using a quadratic fit to the TOA radiative imbalances between
two MPI-ESM1.1 fixed SST runs, one with CO, increasing at 1 %
per year and the other with CO, fixed (Adams and Dessler
2019), adjusting for land surface warming in those periods on the
same basis as aforesaid. We obtain F>« cop and Fy« cop estimates
of respectively 4.00 and 8.50 W m™2. This Fyxco» value is within
1% of the average of estimates derived by regression over years
1 or 2 to years 10, 20, or 50 of the MPI-ESM1.1 abrupt4xCO2
simulation, all of which are very similar. Using the fitted F, we
estimate A over years 1-70 of the 1pctCO2 experiment as
1.59Wm ™ 2K™'; regression uncertainty in the estimate is neg-
ligible. The A estimate from regressing over years 1-100 is
1.57Wm 2K, while the estimate from regression over years
2-50 of the abrupt2xCO2 simulation—involving the same span
of average forcing age—by the nearly identical MPI-ESM1.2
model is 1.59 W m 2K ™' MPI-ESM1.1 has not performed this
simulation.

We likewise use OLS regression to estimate A in amipPiForcing
simulations, but here we regress pentadal means, for reasons ex-
plained subsequently (section 3c). For amipPiForcing experiments,
where forcing is fixed at preindustrial levels, R = —N.

We also use OLS regression to estimate trends in annual-
mean SST data, comparing area-weighted linear trends in
the Indo-Pacific warm pool with those both over the tropics
(30°S-30°N) as a whole and over the tropics and midlatitudes
combined (50°S-50°N). SST comparisons over 50°S-50°N are
preferred to those over the global mean, or over 60°S-60°N,
which are affected by the quantification and treatment of sea ice
coverage. Using instead comparisons over 60°S—60°N would
have a negligible effect on our findings. We define the Indo-
Pacific warm pool (IPWP) as area-mean SST within the region
15°S-15°N, 45°-195°E, as SST is very warm over all but a small
part of it. Dong et al. (2019) focused on a region with a similar
longitudinal boundaries (50°-200°E) but spanning 30°S-30°N.
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Earlier studies defined warm pool regions that extended over
15°S-15°N (Andrews and Webb 2018), 20°S-20°N (Visser et al.
2003), or 10°S-10°N (Barlow et al. 2002). We refer, for any
stated period, to the percentage excess IPWP SST linear trend
over the period relative to that over 30°S-30°N or 50°S-50°N,
as the “excess warm pool SST trend” in relation to the
relevant zone.

b. Green’s functions derived from CAM5.3

Second, we use a Green’s function approach to explore cli-
mate feedback in response to historical SST warming patterns.
Using Green’s functions both provides results derived from
another GCM and makes it practical to explore a wider variety
of SST datasets, including those that only provide temperature
anomalies. The Green’s function approach exploits the ap-
parent linear superpositionality in space of GCM responses to
warming (Barsugli and Sardeshmukh 2002). In particular, the
global changes AT, and AR resulting from an imposed SST
change pattern can be approximated as the sum of their global
responses to SST changes in individual locations weighted by
time-invariant Green’s function values for each location (Dong
et al. 2019). Climate feedback A can then be estimated as AR/
AT,. We use Green’s functions for AR and ATy derived from 74
pairs of patch experiments using the CAMS.3 GCM (Zhou
et al. 2017). A 6-yr control run with SST, sea ice and forcings
fixed at year 2000 levels was first performed. Each patch ex-
periment involved then imposing a centered 1K average
cosine-squared humped SST warming or cooling spanning a 20°
latitude X 80° longitude patch. Sea ice was held fixed.
Distorting effects of the associated changes in SST gradients
were reduced by differencing the warming and cooling re-
sponses when computing the Green’s functions. Between
them, the 74 patches, which are at 10° latitude and 40° longi-
tude spacings and hence overlap, cover the ice-free ocean. The
Green’s functions for individual grid cells (each 1.9° latitude X
2.5° longitude) were generated by first allocating the simulated
global AR and AT responses to SST change in each patch ex-
periment between grid cells falling within the patch pro-
portionately to their ocean area. For each grid cell the average
of those allocated global responses across all patches within
which the grid cell falls, weighted by the SST changes at that
grid cell imposed in each of the patch experiments involved,
was then taken. Fuller details are given in Zhou et al. (2017).
The Green’s function approach thus includes nonlocal 7 and R
responses to local SST change, but does not incorporate the
effects of changes in sea ice.

Zhou et al. derived global AR,uq responses to local SST
change by applying radiative kernels to the Green’s function
total (all-sky) AR and clear-sky AR responses. We use the total
AR responses directly. Figure 1 shows the CAMS.3 Green’s
function global-mean T and R responses at all gridcell loca-
tions, as well as the climate feedback A implied by their ratio.
The T response is positive everywhere and particularly strong
in the west Pacific warm pool, while A is strongly positive over
most of the tropical west and central Pacific, the Indian, and the
North Atlantic Oceans. Elsewhere A is more commonly neg-
ative. Outside the tropics the global R response to local SST
change is generally small.
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F1G. 1. CAMS5.3 Green’s functions. (a),(b) The change, respectively, in global-mean T
(K) and in global-mean R (W m™?) per 1 K increase in local gridcell SST. (c) The global climate
feedback parameter A (Wm™2K™!) for a change in local gridcell SST [the ratio of the values
plotted in (b) to those plotted in (a)].

Although the Dong et al. (2019) Green’s function experi-
ments, which used CAM4, involve more patches and varying
rather than fixed sea ice, we prefer the Zhou et al. (2017) Green’s
functions since CAMS5.3 appears to have a more a realistic
representation of clouds than CAM4. Cloud behavior is key to
the realism of the radiative response to SST warming patterns.
Zhou et al. (2017) showed that use of their Green’s functions
provided good emulation of cloud response for a variety of SST
warming patterns, notwithstanding nonnegligible radiative ker-
nel error. Our results show that direct use of their Green’s
functions likewise provide good emulation of A, estimated by
regression, in the CAMS.3 amipPiForcing simulation. For the
Zhou et al. (2017) pattern experiments based on CMIP5 mean
SST warming over years 1-150 and 1-20 of abrupt4xCO2 sim-
ulations, A estimated from the CAMS5.3 Green’s functions (as
AR/ATy) is respectively fairly accurate (2.3% high) and modestly

underestimated (by 6.1%). The CAMS5.3 Green’s functions also
reasonably emulate A for the Zhou et al. (2017) AMO pattern
experiment (underestimating A by 7.6%), despite AT being
quite small (0.37K). The other Zhou et al. (2017) CAMS5.3
pattern experiments (PDO and ENSO) produced very small
global-mean AT, and AR values, preventing meaningful esti-
mation of A. Their CAMS5.3 Green’s functions typically some-
what underestimate the actual simulated A7y and AR, but with
only minor resulting bias in the estimated A, which is diagnosed
from the relationship between changes in AR and in AT;. One
might expect that the absence of sea ice variation in the for-
mulation of the Green’s functions would cause misestimation of
A; however, there presumably are compensating errors in the
Green’s-function-emulated AR and in AT} values that counter-
act much of the sea ice feedback-related bias. It is unfortunately
not possible to test the accuracy of the Green’s function

Unauthenticated | Downloaded 01/21/21 12:50 PM UTC



44 JOURNAL OF CLIMATE

A estimates on SST patterns from CAMS.3-based coupled model
abrupt4xCO2 or 1pctCO2 simulations, as none have been carried
out—hence Andrews et al. (2018) did not estimate a historical
pattern effect for CAMS.3.

c. SST datasets

We use the following infilled SST datasets, all of which
provide complete coverage over the ice-free ocean for the
periods stated.

1) HADISST1 (1870 ONWARD)

The HadISST1 dataset (Rayner et al. 2003) provides SST
and sea ice data at 1° X 1° resolution. The SST data are based
on ship and buoy data taken from the Met Office Marine Data
Bank; SSTs for 1871-1995 from the Comprehensive Ocean—
Atmosphere Dataset (COADS: Woodruff et al. 1987) were
also used. After 1981 surface skin-temperature estimates from
the Advanced Very High Resolution Radiometer (AVHRR)
satellite instrument are used in conjunction with the in situ
data. The AVHRR data provide nearly complete observa-
tional coverage, but require time-varying bias correction, as do
the in situ ship SST data. The sea ice data were taken from a
variety of sources. HadISST1 temperatures are reconstructed
using a two-stage reduced-space optimal interpolation proce-
dure, followed by superposition of quality-improved gridded
observations onto the reconstructions to restore local detail.
SSTs near sea ice are estimated using statistical relationships
between SST and sea ice concentration.

2) AMIPII (1870-2017)

AMIPII (Hurrell et al. 2008) uses HadISST1 SST fields before
November 1981 and thereafter uses Optimum Interpolation v2
(O1v2; Reynolds et al. 2002) SST fields, which are based on es-
sentially the same sources of ship and buoy data as HadISST1
uses. OIv2 uses the same AVHRR data source as HadISST1,
from November 1981 onward, but employs different methods
for assimilation and bias correction. OIv2 applies optimum in-
terpolation directly rather than in a reduced space, achieving
greater spatial resolution (Flannaghan et al. 2014) but possibly
preserving climate signals at subregional and larger scales less
well (Kaplan et al. 1997). Prior to merging the two 1° X 1° res-
olution datasets, HadISST1 SST anomalies are rebased so that
each grid cell’s mean SST over 1971-2000 is the same as in OIv2.
Doing so alters relative gridcell temperatures prior to 1981.
HadISST1 sea ice data are used throughout, with some adjust-
ments. Monthly data are adjusted so as to preserve the seasonal
cycle amplitude when interpolated to daily resolution. Use of the
AMIPII dataset is standard for historical AMIP experiments,
including amipPiForcing.

3) HADISST?2 (1850-2010)

HadISST2 is intended to improve on HadISST1 in a number of
key areas. Compared with HadISST1, its treatment of sea ice uses
new data sources, applies new bias adjustments, and improves the
method of estimating concentrations where only information about
the sea ice edge is known, with the aim of providing a more con-
sistent records of sea ice concentrations (Titchner and Rayner
2014). The SST component of HadISST2, which has 0.5° X 0.5°
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resolution, assimilates Along-Track Scanning Radiometer (ATSR)
as well as AVHRR satellite data. Greater reliance is placed on the
lower-coverage but higher-quality ATSR data. Only the sea ice
component of HadISST2 is currently fully documented and regu-
larly updated. However, an ensemble of 10 realizations of the SST
component spanning 1850-2010 is publicly available (at https:/
www.metoffice.gov.uk/hadobs/hadisst2/data/HadISST.2.1.0.0/
index.html), is documented in outline (at https:/www.eeo.ed.ac.uk/
earthtemp/themes/1_in_situ_satellite/Rayner_EarthTemp_
Edinburgh_2012_Poster.pdf), and has been used elsewhere
(Andrews et al. 2018). We use ensemble-mean HadISST2
SST data.

4) COWTAN AND WAY (HAD4_KRIG_V2_0_0 AND
HAD4SST4_KRIG_V2_0_0: 1850 ONWARD)

The had4_krig_v2_0_0 dataset (Cowtan and Way 2014a,b,c)
is a version of HadCRUT4v6 (Morice et al. 2012), infilled
using kriging. Its SST data are a kriged version of HadSST3
(Kennedy et al. 2011a,b), while the SST data in had4sst4_krig_
v2_0_0 are a kriged version of HadSST4 (Kennedy et al. 2019).
HadSST3 and HadSST4 are produced, at 5° X 5° resolution,
from in situ SST measurements from ships and buoys. Both
employ detailed bias correction methods, but the actual ad-
justments applied differ somewhat.

5) COBE-SST2 (1850-2017)

The COBE-SST2 dataset (Hirahara et al. 2014a,b) is pro-
duced from in situ SST measurements from ships and buoys.
Bias adjustments applied to ship SST measurements are de-
rived somewhat differently from those applied in constructing
HadSST3, HadSST4, HadISST1, and HadISST2. COBE-SST2
is infilled at 1° X 1° resolution using multi-time-scale analysis,
as the sum of a time-varying secular trend with a fixed pattern,
and spatially varying interannual variations and daily changes.
Satellite observations are used only in producing empirical
orthogonal functions for an optimal interpolation scheme used
in reconstructing interannual-to-decadal fluctuations. The au-
thors find their infilling method to be superior to direct use of
optimal interpolation, at least when data are sparse.

6) ERSSTV5 (1854 ONWARD)

The Extended Reconstructed Sea Surface Temperature,
version 5, SST dataset (Huang et al. 2017) uses in situ SST
measurements from ships and buoys. However, up to 2010 its
ship SST values are effectively replaced, on decadal and longer
time scales, with HadNMAT2 nighttime marine air tempera-
ture data (Kent et al. 2013), which are less widely sampled than
SST data. ERSSTVS uses the same OIv2 dataset for infilling as
does the AMIPII SST dataset, but indirectly (for reduced-
space interpolation of high-frequency SST components) as
part of a complex infilling procedure, with low-frequency SST
components instead being infilled by a nearest-neighbor
method and then smoothed.

d. Preprocessing and regridding SST data

We mark as NA (not available) all gridcell values in each
SST dataset that appear to represent only land and/or sea
ice. Where necessary we deduce full sea ice coverage from
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near-freezing gridcell SSTs. We form annual-mean SSTs for each
grid cell, marked as NA if SST is NA in any month. We then
regrid all the observational datasets to the same 2.5° X 1.875°
resolution grid as CAMS.3, for use with the CAMS.3 Green’s
functions, using bilinear interpolation (to a subdivision of the
CAMS.3 grid, followed by aggregation, where the observa-
tional dataset has significantly finer resolution than CAMS.3).
We give NA values to any NA valued grid cell in the regridded
HadISST1 dataset in the same year (which indicates that some
original grid cell contributing to it represents entirely land and/
or sea ice), thus eliminating possible inconsistencies in re-
gridded data at the boundaries of land and sea ice covered
areas and also ocean-masking the combined land and ocean
Cowtan and Way data. When carrying out regressions, we
exclude grid cells that were marked as NA in any year during
the analysis period, to avoid influence from changes in sea ice
differing between SST datasets. We also regrid HadISST1 data
to match the ECHAMSG6.3 grid for our amipPiForcing simula-
tion experiments, using with it the HadISST1-based AMIPII
sea ice boundary condition dataset.

3. Results

a. ECHAMG6.3 simulations

We first present the ECHAMG6.3 amipPiForcing simulation
results, using the standard OLS regression method (Andrews
et al. 2018; Gregory et al. 2019). Figures 2a and 2b show the
1871-2010 ensemble-mean 7 and R time series for the
AMIPII- and HadISST1-based experiments, while the scat-
terplots in Fig. 2c show their relationships in each experiment,
on a pentadal-mean basis, along with the best-fit lines, the slope
of which represents the estimated A value (Apjsi—amip)- Until
November 1981, AMIPII SST was based on HadISST1 SST
data, although with the pattern of absolute temperatures al-
tered by the AMIPII method of merging HadISST1 and OIv2
SST data. The post-1980 differences between the AMIPII and
HadISST1 T; time series are relatively small and well within
the uncertainty ranges attributable to surface temperature
observation datasets. All major differences between AMIPII
and HadISST1 R anomalies arise after 1980. The AMIPII-
HadISST1 R difference spiked in 1982; T, was much less affected.
It is possible that the first year or so of OIv2 data had some issues,
or that the effects of the El Chichén eruption differentially af-
fected HadISST1 and OIv2 SST patterns. The R differences rose
again in 1997, and remained high for another decade.

Table 1 shows excess warm pool SST trends and feedback
strengths for the AMIPII- and HadISST1-based amipPiForcing
experiments and, for comparison, for the parent MPI-ESM1.1
coupled model’s 1pctCO2 and historical forced experiments, over
both the full 1871-2010 amipPiForcing period and 1871-2005 (for
comparison with the historical simulation ending then). The
A estimates for the HadISST1-based experiment are significantly
lower than for the AMIPII-based experiment. Applying Welch’s ¢
test (Welch 1947) to the A estimates over 1871-2010 from both sets
of five individual runs gives the probability that the HadISST1-
based and AMIPII-based single-run A estimates came from pop-
ulations with the same mean A as 0.01%. For the estimates over
1871-2005 the probability was 0.03%.
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F1G. 2. Comparison of changes over 1871-2010 in annual
ensemble-mean (a) surface temperature (AT;) and (b) TOA out-
going radiation flux (AR) in the two ECHAMSG6.3 amipPiForcing
experiments, and (c) the relationship in the two experiments be-
tween pentadal ensemble-mean ATy and AR, with the best-fit lines
to those pentadal-mean points. Changes are relative to 1871-
1900 means.

Comparing each of the sets of five amipPiForcing 1871-2010
A estimates with the 68 A estimates over years 1-70 of indi-
vidual 1pctCO2 runs using the same test gives a 39% proba-
bility that the HadISST1-based single-run A estimates came
from populations with the same mean A as the 1pctCO2 run
A estimates, whereas for AMIPII the corresponding probabil-
ity is merely 0.07%. Accordingly, the 1871-2010 HadISST1-
based amipPiForcing ensemble-mean A estimate, but not the
AMIPII-based estimate, is statistically indistinguishable from
that over years 1-70 of the 1pctCO2 experiment. Similarly, we
found that the 1871-2005 HadISST1-based amipPiForcing
ensemble-mean A estimate, but not the AMIPII-based esti-
mate, is statistically indistinguishable from that over the same
period of the historical experiment (the relevant probabilities
being respectively 12% and 0.2%).

Figure 3 maps SST 1871-2010 spatial warming trends in
the AMIPII and HadISST1 datasets, and their differences.
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TABLE 1. Excess Indo-Pacific warm pool SST trends and climate feedback, in ECHAMS6.3 amipPiForcing simulations and in MPI-
ESM1.1 coupled 1pctCO2 and historical simulations. All values are based on ensemble-mean 7, and R data (except for AMIPII and
HadISST1 SST trends and standard deviations of individual run feedback estimates). Feedback estimates are from OLS regression of
pentadal-mean data for amipPiForcing simulations (see section 3c). Values in parentheses are standard errors of the OLS regression
feedback estimates, which reflect underlying deviations from a linear relationship as well as internal variability.

ECHAMG6.3/MPI-ESM1.1
simulation data and SST
data source

Excess warm pool vs

Excess warm pool vs
30°S—-30°N SST trend (%) 50°S—50°N SST trend (%) simulation (Wm 2K™1)

Standard deviation of
individual run feedback
estimates (Wm ™ 2K™!)

Climate feedback on 7y in

AMIPII amipPiForcing 7
simulation, 1871-2010

HadISST1 amipPiForcing 2
simulation, 1871-2010

1pctCO2 coupled 5
simulation, years 1-70

AMIPII amipPiForcing 5
simulation, 1871-2005

HadISST1 amipPiForcing 0
simulation, 1871-2005

Historical coupled 7

simulation, 1871-2005

0 1.92 (0.11) 0.08
-7 1.56 (0.09) 0.06

7 1.59 (0.01) 0.06
-3 1.85 (0.11) 0.10
-10 1.49 (0.09) 0.09
12 1.56 (0.04) 0.09

AMIPII warms more than HadISST1 in both the west Pacific
and deep tropical Indian Ocean, and also in the tropical
southeastern Pacific, but less in the tropical northeastern
Pacific and extratropical North Pacific. There are mixed dif-
ferences in the Atlantic Ocean, while in the southern extra-
tropics AMIPII warms less apart from over a narrow band
centered on 55°-60°S, where it warms considerably more. Since
sea ice boundary conditions are identical in the two experi-
ments, there are no differences in areas covered by sea ice.

Averaged across the two periods involved, feedback in the
amipPiForcing simulation was 19% lower with HadISST1
rather than AMIPII SST boundary conditions. Feedback in the
amipPiForcing simulation when using HadISST1 was also slightly
lower than in the historical simulation, and almost the same as that
over years 1-70 of the 1pctCO2 simulations, by the parent AOGCM.
Thus, in this model there is little evidence for any unforced historical
pattern effect when using HadISST1 SST boundary conditions.
Moreover, the similarity of feedback in the 1pctCO2 and historical
coupled simulations implies that a forced historical pattern effect due
to non-CO, changes, as found by Shindell (2014) in a subset of
CMIP5 models, is absent in this model.

The Indo-Pacific warm pool SST trend was lower, relative to
both the whole tropics and to 50°S-50°N, in the amipPiForcing
simulation with HadISST1 boundary conditions than in the
amipPiForcing simulation with AMIPII boundary conditions or
in either MPI-ESM1.1 coupled simulation (Table 1). However,
there were no clear relationships between the Indo-Pacific
warm-pool-relative SST trends and feedback differences of ei-
ther amipPiForcing simulation or the two coupled simulations.
As is evident from Table 1, the relationship between the Indo-
Pacific warm pool SST trend relative to S0°S-50°N and the dif-
ferences between feedback in the amipPiForcing simulation
with AMIPII boundary conditions and in the two coupled sim-
ulations was negative. These results indicate that there are also
other factors, such as sea ice variation, determining feedback
besides relative SST trends in the warm pool.

We estimate the unforced historical pattern effect in
ECHAMSG6.3 by differencing ensemble-mean feedback esti-
mates in respectively the ECHAM6.3 AMIPII and HadISST1
amipPiForcing simulations from those in the 1pctCO2 and his-
torical coupled simulations, and quantify one standard deviation
uncertainty in them by adding in quadrature our standard error
estimates for the feedback estimates being differenced. The
resulting unforced historical pattern effect estimates over 1871—
2005, relative to feedback in historical coupled simulations, are
0.30 + 0.12 and —0.07 = 0.10 Wm™ 2K~ for respectively AMIPII-
and HadISST1-based amipPiForcing simulations. The resulting
unforced historical pattern effect estimates over 1871-2010, rela-
tive to feedback over years 1-70 in 1pctCO2 coupled simulations,
are 033 + 0.11 and —0.02 = 0.09Wm 2K~ for respectively
AMIPII- and HadISST1-based amipPiForcing simulations.

Dessler (2020) quantified the possible magnitude of the
unforced historical pattern effect based on internal variability
in the MPI-ESM1.1 ensemble of 100 historical coupled simu-
lations, measuring climate feedback relative to the ensemble
mean (thus implying zero effect on average). We use the same
data to evaluate whether our unforced historical pattern effect
estimates are consistent with AMIPII and/or HadISST1 rep-
resenting single realizations of possible SST trajectories that
might be generated by such internal variability, allowing for
the uncertainty in the unforced historical pattern effect esti-
mates. The standard deviation of 1871-2005 regression-based
feedback estimates from individual historical simulations, be-
ing 0.09Wm™2K™!, provides the appropriate estimate of
variability of the unforced historical pattern effect in MPI-
ESM1.1. Making the assumption that error distributions are
approximately normal, the estimated unforced historical pat-
tern effect in ECHAMS6.3 for the HadISST1 amipPiForcing
experiment (of —0.07 + 0.10 or —0.02 * 0.09Wm 2K rel-
ative to feedback in, respectively, the historical experiment and
the 1pctCO2 experiment) are statistically consistent with in-
ternal variability (p = 0.63 and p = 0.87 respectively). On the
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FIG. 3. Local SST linear warming trends over 1871-2010 (K century™") (a) in the AMIPII
dataset, (b) in the HadISST1 dataset, and (c) for AMIPII minus HadISST1 data. Note that
(c) has a 4-times-finer SST trend scale. No values are shown for areas where HadISST1 lacks
data for any month during 1871-2010, indicating coverage by land or sea ice.

other hand, the estimated unforced historical pattern effect for
the AMIPII amipPiForcing experiment (of 0.30 * 0.12 or
0.33 = 0.11Wm 2K relative to feedback in, respectively,
the historical experiment and the 1pctCO2 experiment) is
statistically inconsistent with internal variability (p = 0.05 and
p = 0.02, respectively). We caution that these probability es-
timates are dependent inter alia on the realism of internal
variability in MPI-ESM1.1.

b. Investigating historical period feedback using Green’s
functions derived from CAM5.3
Using the Green’s functions, we are able to emulate, in a
computationally inexpensive way, time series for the 7 and R

responses to historical warming patterns in a wide range of
observational SST datasets, and hence produce associated
feedback estimates by the same regression method as for the
simulation data discussed above. Table 2 shows that using the
CAMS.3 Green’s functions provides an accurate estimate of
feedback in the AMIPII-based amipPiForcing simulation, al-
though that does not imply that the Green’s function feedback
estimates are necessarily similarly accurate in the other cases.
The Green'’s function feedback estimates based on regressing,
using pentadal means, emulated global-mean 7 and R responses
to evolving 1871-2010 warming patterns in the CESM1-CAMS5
1pctCO2 and historical simulations, and per HadISST1 and five
other observationally based SST datasets, are also shown.
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TABLE 2. Excess Indo-Pacific warm pool SST trends and Green’s function derived estimates of climate feedback in CAMS.3 AMIPII-
based amipPiForcing simulations, in CESM1-CAMS coupled 1pctCO2 and historical/ RCP8.5 simulations, and for warming in six ob-
servational SST datasets, along with feedback estimated from the actual CAMS.3 AMIPII-based amipPiForcing simulation data.
Feedback estimates are from OLS regression of pentadal-mean R and 7 values derived from the evolving SST warming patterns in the
relevant simulation or observationally based dataset. Data over 1871-2010, the amipPiForcing experiment period, is used, with data from
the historical experiment extended using RCP8.5 experiment data, except in the 1pctCO2 simulation case where years 1-70 data are used.
Small differences in AMIPII and HadISST1 excess warm pool SST trends from those in Table 1 reflect regridding to different grids.

Model or SST data source Excess warm pool vs

Excess warm pool vs

Green’s function

feedback on T Feedback on Ty in

involved 30°S—30°N SST trend (%) 50°S-50°N SST trend (%) estimate (Wm 2K™')  simulation (Wm™2K™")

AMIPII amipPiForcing 8 0 1.71 1.70
simulation (CAMS.3)

1pctCO2 coupled 7 11 1.68 —
simulation
(CESM1-CAMS)

Historical coupled 10 5 1.65 —
simulation
(CESM1-CAMYS)

HadISST1 warming 2 -8 1.56 —
pattern

HadISST2 warming 1 -6 1.59 —
pattern

Had4_krig_v2 warming -2 -9 1.56 —
pattern

HadSST4 krig_v2 warming -1 -5 1.64 —
pattern

COBE-SST2 warming 0 -3 1.69 —
pattern

ERSSTvS warming -3 0 1.84 —
pattern

CESM1-CAMS is the most closely related coupled model to
CAMS 3 for which such simulation data were available.” Indo-
Pacific warm-pool-relative SST trends are also given. The use of
SST linear trends derived by OLS regression matches the
method of estimating feedback. Using instead differences in
mean SST between the first and last decades would show higher
excess warm pool SST trends, but with the differences between
the various observational datasets showing a similar pattern to
that for 1871-2010 linear trends.

Two points are noteworthy. First, the excess warm pool SST
trends are lower in all the non-AMIPII observationally based
SST datasets than in the AMIPII-based amipPiForcing simu-
lation and the 1pctCO2 and historical CESM1-CAMS coupled
simulations, apart from ERSSTv5 matching the AMIPII zero
excess warming over 50°S-50°N. The Green’s function feed-
back estimates for the seven observationally based SST data-
sets are strongly correlated with warm pool SST trends relative
to those over the tropics and midlatitudes (» = 0.90), but not
relative to those over the tropics alone (r = —0.10) (Fig. 4).
Second, there is no systematic tendency for Green’s function
feedback estimates from all the non-AMIPII observationally
based SST datasets to be above those for the SST warming

% No forcing estimates are available for CESM1-CAMS5 1pctCO2
and historical simulations, so feedback in them cannot be estimated
directly from simulation data.

patterns in the CESM1-CAMS historical and 1pctCO2 simu-
lations; in a majority of cases they are lower. Moreover, feed-
back estimated from the warming pattern in the AMIPII
amipPiForcing simulation is only slightly higher than that for
the CESM1-CAMS5 1pctCO2 and historical coupled simula-
tions. These findings appear to imply that unforced historical
pattern effects are relatively weak in this model. Based on
CAMS.3 Green’s function SST warming pattern-based feed-
back estimates, the seven observationally based SST datasets ex-
hibit almost zero average unforced historical pattern effect relative
to the feedback estimates for the CESM1-CAMS 1pctCO2 simu-
lation pattern. ERSSTVS produces a +10% unforced historical
pattern effect; in other cases it ranges between —7% (HadISST1,
Had4_krig_v2) and +2% (AMIPII). It is not possible to enumerate
statistical significances for these effects as the accuracy of the
Green’s function—derived A estimates is not adequately quantified.
However, the magnitude of the largest fractional error in the
Green’s function—derived A estimates in cases where it has been
quantified, being 7.6% (section 2) could be taken as providing a
crude uncertainty bound. On that basis, the pattern effect would be
regarded as indistinguishable from zero for all datasets except
ERSSTVS.

We have also used the CAMS.3 Green'’s functions to identify
the fractional contributions of differences between AMIPII and
HadISST1 warming trends in different zones to differences in
the resulting trends in global R and 7 (Fig. 5). SST trend dif-
ferences over 15°S-15°N, primarily in the IPWP, contributed
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FIG. 4. The relationship between climate feedback strength, esti-
mated using the CAMS5.3 Green’s functions and pentadal regression,
and the warming trend in the Indo-Pacific warm pool relative to that
over either 30°S-30°N (blue circles) or 50°S-50°N (red circles), both
over 1871-2010, for SST per seven observational datasets (AMIPII,
HadISST1, HadISST2, Had4_krig_v2, HadSST4_krig v2, COBE-
SST2, and ERSSTVS5). The red line shows a linear fit between the
warming trend in the IPWP relative to that over 50°S—50°N and es-
timated climate feedback strength (r = 0.90). No equivalent fit is
shown for the warming trend in the IPWP relative to that over 30°S—
30°N, as the relationship is very weak (r = —0.10).

slightly over two-thirds of the total difference in the global R/T
trend ratio (a proxy for the difference in A) between the two SST
datasets. Additional contributions for SST trend differences
between latitudes 15° and 30°, mainly from east of Australia, led
to 30°S-30°N contributing five-sixths of the total difference in
the global R/T trend ratio. Differences over 50°S-50°N con-
tributed one-fifth more than the global difference, with AMIPII
producing less warming, but a stronger increase in R, than
HadISST1 over much of 30°-50°N, where A is generally negative
for local SST changes. Poleward of 50° the overall difference in
global R trend between the AMIPII and HadISST1 datasets was
positive but small, while the difference in global 7§ trend was
large and positive, due to much stronger warming for AMIPII
over 60°S-50°S, mainly over 45°W—45°E. Therefore, SST trend
differences poleward of 50° reduced the overall excess R/ ratio
per AMIPII over that per HadISST1.

As Fig. 2c shows, it is the last 15 years (1996-2010) that show
the largest difference in AMIPII- and HadISST1-based feed-
back estimates in ECHAMS6.3 simulations. The same is true for
the CAMS.3 Green’s function-based feedback estimates. Based
on regressing 1871-1995 pentadal data, the difference between
the AMIPII and HadISST1 based Green’s function feedback
estimates is reduced from 0.15Wm 2K™! per Table 2 to
0.03Wm™2K™!. Since the two SST datasets are essentially
identical until late 1981, and the post-1995 period has the
strongest signal, one would expect excluding that period to
greatly reduce the difference between feedback estimates from
the two datasets. The 1998 El Nifio event appears to be re-
sponsible for at most a small part of the difference. When ex-
cluding 1997-2000, the period affected by the buildup of El
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(a)

FIG. 5. The difference in 1871-2010 linear trend in (a) global-
mean 7, (K century ') and (b) global-mean R (W m™2 century ™),
as estimated using the CAMS.3 Green’s functions, caused by the
local gridcell SST evolving as per the AMIPII dataset rather than as
per the HadISST1 dataset. Values have been divided by each cell’s
area weight, so that they reflect the magnitude of the difference per
unit area. Note that trends in (a) include the estimated global land
T, response as well as the local SST change and hence are generally
higher than those in Fig. 3c, which includes only the local SST
change and has a different scale.

Niflo, its peak and the subsequent La Nifa, or the 19962000
pentad, the difference in AMIPII and HadISST2 based feedback
estimates is little changed from when regressing over the full
1871-2010 period.

It follows that it is SST differences over the 2001-10 period
that account for the majority of the difference in the Green’s
function—derived full-period feedback estimates. Figure 6 re-
peats the Fig. 5 analysis but based on changes in 2001-10 mean
R and Ty anomalies. The patterns of R and T differences are
similar to the full-period regression-derived patterns in Fig. 5.

We computed feedback estimates when regressing annual
data over 1871-2010 but with each year from 2001 to 2010
excluded in turn. The resulting AMIPII versus HadISST1
feedback differences are on average marginally smaller than
when no year is excluded, but they have a standard deviation of
only 0.005Wm 2K~ with no years standing out as having
unusually large effects.

c. Regression issues when estimating feedback in

amipPiForcing experiments

We are cautious of feedback estimates based on the usual
method of regressing annual-mean data, instead preferring es-
timates from regressing pentadal-mean data. Using pentadal-
mean data substantially reduces noise in the regressor variable,
which through regression dilution causes a downward bias in the
slope coefficient, and also greatly diminishes the effect of re-
sponses to interannual fluctuations (Gregory et al. 2019), thus
providing more robust estimation. When estimating A from
MPI-ESM1.1 historical and 1pctCO2 simulation large
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FIG. 6. The difference between average 1871-1900 and 2001-10
(a) global-mean T, (K) and (b) global-mean R (Wm™2), as esti-
mated using the CAMS.3 Green’s functions, caused by the local
gridcell SST evolving as per the AMIPII dataset rather than as per
the HadISST1 dataset. Values have been divided by each cell’s area
weight, so that they reflect the magnitude of the difference per
unit area.

ensemble-mean data, which contain little interannual fluctuation
noise, results from regressing annual and pentadal-mean data
were essentially identical. However, for the amipPiForcing
simulations, feedback estimates tended to be slightly lower when
regressing pentadal rather than annual-mean data, contrary to
what regression dilution alone would cause.

Table 3 shows, for the eight models analyzed in Andrews
et al. (2018), feedback estimates (here based on 2-m air tem-
perature T, not Ty, to match their results) when each per-
formed, for the number of runs stated, an AMIPII-based
amipPiForcing experiment over 1871-2010 (over 1871-2004
for GFDL-AM2.1 and GFDL-AM3). The feedback estimates,
per Andrews et al. in column 3, are essentially identical to
means of estimates from regressing annual-mean R on 7 data
for each run separately. Columns 4 and 6 show feedback esti-
mates from regressing ensemble-mean data using respectively
annual and pentadal means, with associated standard errors.
The standard deviations of individual run feedback estimates
are also given. In these simulations, where identical SST and
sea ice boundary conditions are imposed in each run, regres-
sion dilution is minimal and it makes very little difference
whether ensemble means are taken before or after regression.
Feedback estimates over years 1-50 of abrupt4xCO2 simula-
tion runs (A4xcoz 1-s0) are shown for comparison, this period
providing a broadly comparable average forcing duration to
the historical period.” EffCS estimated over the first 50 years of
abrupt4xCO2 simulations is very similar to that estimated over

3 Temperature changes are much larger in this case so it makes little
difference whether annual or pentadal-mean data are regressed.
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the first 100 years of 1pctCO?2 simulations, which has the same
average forcing duration as a 50-yr constant forcing (Lewis and
Curry 2018). EffCS estimated over the first 100 years of
1pctCO2 simulations in turn corresponds closely to that esti-
mated from historical forcing (Armour 2017).

Feedback estimates from regressing annual ensemble-mean
data are on average 0.06 Wm >K™! (4%) higher than the
more robust estimates from regressing pentadal ensemble-
mean data, and 7%-9% higher for two of the models. The
within-model standard deviations of all the individual run
differences in A estimated by regressing annual and pentadal
means were small: 0.02Wm 2K ™! on average. Investigation
indicated that these ensemble-mean differences were due to
responses to interannual fluctuations generally being consid-
erably stronger than those to longer-term climate change.
Feedback estimates from regressing year-to-year changes in
annual-mean R and T were 8%—-55% higher than those from
regressing annual-mean R on 7, and those excesses correlated
strongly (r = 0.92) with the excesses of estimates from re-
gressing annual-mean R on T over pentadal-mean R on 7. We
obtained very similar results when using smoothing splines
with 32 degrees of freedom to remove low-frequency vari-
ability in annual-mean R and 7, rather than taking year-to-year
changes. With AMIP simulations, interannual fluctuations in 7’
mainly arise from fluctuations in the prescribed boundary
conditions and hence do not average out when ensemble-mean
values are used, unlike with coupled simulations. However,
interannual fluctuations have less influence on pentadal means,
which therefore provide more robust regression-based feed-
back estimates. Moreover, the standard deviation of feedback
estimates from separate amipPiForcing runs was slightly lower
when using pentadal rather than annual-mean data. Given the
varying and in some cases material bias when estimating cli-
mate feedback in amipPiForcing experiments using annual-
mean data, it seems clearly preferable to regress instead
pentadal-mean data. The AMIPII-based amipPiForcing feed-
back estimates when doing so are still significantly higher than
comparable feedback estimates from the first 50 years of ide-
alized CO, forced experiments by the parent coupled models,
except for GFDL-AM2.1, thus still indicating positive un-
forced historical pattern effects when using the AMIPII
dataset.

d. Inconsistency of AMIPII-based historical pattern effects

with AOGCM internal variability

Another way of appraising whether the AMIPII-based
amipPiForcing feedback estimates reported in Andrews et al.
(2018) are likely to represent an unforced historical pattern
effect is to investigate whether the magnitude of their deviation
from Apise_aoceMm can be reproduced by internal variability in
AOGCM piControl simulations. We have tested this for the
five GCMs listed in Table 3 for which Ap;s_aoGem can be es-
timated (as equal to A4xcoz_1_s0) and a significant unforced
historical pattern effect was detected (CAM4, ECHAMS6.3,
GFDL-AM3, HadAM3, and HadGEM?2). It should be noted
that this test will provide purely statistical evidence, with no
recourse to a physical principle that would enable one SST
dataset to be preferred over another.
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TABLE 3. Climate feedback parameters A (for 2m air temperature) in amipPiForcing simulations with AMIPII boundary conditions as
estimated from 1871-2010 data (1871-2004 for GFDL-AM2.1 and AM3 models) using different OLS regression approaches. Feedback for
the parent AOGCM of GFDL-AM?2 is the mean of those for GFDL-ESM2G and GFDL-ESM2M. All climate feedback values are in
W m™2K™!. Values in parentheses are standard errors of the OLS regression feedback estimates, which reflect underlying deviations from

a linear relationship as well as internal variability.

Feedback per Standard Standard
Andrews et al. deviation of deviation of Feedback from
(2018): mean of  Feedback by individual run Feedback by individual run regressing
each run’s regressing annual regressing pentadal parent AOGCM
No. of annual annual regression pentadal regression years 1-50
runs in regression ensemble- feedback ensemble- feedback abrupt4xCO2
Model ensemble estimate mean data estimates mean data estimates run annual data
CAM4 1 227 2.27 (0.13) — 2.27 (0.17) — 1.52 (0.06)
CAMS5.3 1 1.71 1.71 (0.11) — 1.70 (0.16) — —
ECHAMS6.3 5 1.90 1.92 (0.08) 0.08 1.88 (0.10) 0.08 1.46 (0.04)
GFDL- 6 1.67 1.70 (0.09) 0.05 1.56 (0.10) 0.05 1.57 (0.09)
AM2.1
GFDL- 6 1.40 1.44 (0.10) 0.04 1.34 (0.16) 0.04 0.97 (0.06)
AM3
GFDL- 5 1.91 1.93 (0.10) 0.04 1.86 (0.14) 0.04 —
AM4.0
HadAM3 4 1.65 1.65 (0.09) 0.02 1.57 (0.11) 0.01 1.19 (0.03)
HadGEM2 4 1.37 1.39 (0.09) 0.06 1.33 (0.11) 0.05 0.83 (0.04)
Model 1.74 1.75 — 1.69 — —
mean

We took all 140-yr-long piControl simulation segments ob-
tainable (allowing overlap between different segments) from
the control runs of 43 CMIP5 models. For each of the resulting
18391 segments we calculated the average T and R anomalies
over the last 15 years, ATpicontrol a1d ARpicontrol, Telative to
their average over years 1-30. For each of the aforementioned
five GCMs (Table 3) we then calculated as follows. For each of
the 18391 piControl segments we subtracted their AT icontrol
from the ensemble-mean 1871-1900 to 1996-2010 average AT
in their AMIPII-based amipPiForcing simulations, AT, We
then multiplied the resulting internal variability affected AT
values by the relevant Apis— aocem (thus providing an estimate
of the forced AR response). Since internal variability affects R
as well as T, we then added the corresponding ARpicontrol
anomalies from the same piControl segment to the estimated
forced radiative response. The logic here is that if internal
variability increased warming over the historical period, then
the forced warming—and thus also the forced radiative re-
sponse, based on Anisi—a0Gem, in the absence of an unforced
pattern effect—was smaller, than that in the AMIPII-based
simulation, and vice versa. We thus created, for each of the five
GCMs, a set of 18391 samples of 1871-1900 to 1996-2010 AR
values that reflected the estimated forced response of each
model to global warming equal to that over its 140-yr AMIPII-
based simulation but that were affected by temporally match-
ing 140-yr duration AT and AR internal variability from dif-
ferent CMIP5 models. We then compared each GCM’s set of
samples with the corresponding ensemble-mean AR in its
AMIPII-based amipPiForcing simulations, AR mip.

We found that in only 0.06 % of the nearly 92 000 cases tested
was simulated internal variability sufficient to increase the

estimated forced AR response enough to reach AR in the
AMIPII-based amipPiForcing simulations. Mathematically,
that equates to cases where

A — AT

mip) = (AR AR 1)

hist—AOGCM (A Tamip amip - amip) :

The probability was slightly lower still when using anomalies
over the last 20 rather than 15 years of the 140-yr periods.
These findings suggest that, if both multidecadal internal var-
iability and the radiative response to patterned warming are
realistically estimated in CMIP5 models, the historical warm-
ing patterns in the AMIPII (and, a fortiori, ERSSTv5) SST
datasets are unlikely to be correct. We issue a caveat about this
finding in that the realism of multidecadal internal variability
in AOGCMs—although regularly relied upon in detection and
attribution studies—is unproven. However, the multidecadal
internal variability would have to be unrealistic in almost all
CMIP5 models for our conclusion to be unwarranted.

We also investigated how likely it was that internal vari-
ability could account for weaker unforced historical pattern
effects than those in the AMIPII-based amipPiForcing simu-
lations by the aforementioned five GCMs listed in Table 3.
That is, for any chosen pattern effect strength 8, by replacing
ARamip by {BARamip + (1 - B)/\hist—AOGCMA Tamip} in (1)» glVIng

/\hist—AOGCM(BATamip - ATpiComrol) = ('BARamip - ARpiCuntml) .
@
The probability of internal variability being sufficient to ac-

count for a weakened, B-strength, unforced pattern effect
reached 1.6% at B = 0.5, and 10% at B8 = 0.25.
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4. Discussion and conclusions

In this study we have found no evidence for a substantial
unforced pattern effect over the historical period, arising from
internal variability, in the available sea surface temperature
datasets, except for when the AMIPII and ERSSTVS5 datasets
are used. Our results imply that the evidence suggesting
existing constraints on EffCS from historical-period energy
budget considerations are biased low due to unusual internal
variability in SST warming patterns is too weak to support
such a conclusion, and suggest that any such bias is likely to be
small and of uncertain sign. This should not be mistaken for a
finding relating to a forced pattern effect that acts to tempo-
rarily dampen global warming in AOGCM simulations on
decadal to centennial time scales.

It is worth noting that none of the datasets inspected here
provides a perfectly homogenized temperature record, which
is a source of concern when looking at changes over extended
periods. In all cases time-varying bias corrections must be ap-
plied due to the evolving observing system, and observational
data with partial coverage must be interpolated to provide a
globally complete reconstruction. Although all SST recon-
structions involve making compromises, an additional concern
with the AMIPII dataset is that it merges two SST recon-
structions that employ different bias correction and interpo-
lation methods, and in doing so alters pre-merger SST patterns.
The various datasets try, in different ways, to take advantage of
the satellite observations from when they become available
around 1980. The post-1981 AMIPII dataset interpolation
method, however, does so in a way that emphasizes small-scale
features at the expense of the large-scale patterns central to the
study of pattern effects (Hurrell et al. 2008). Perhaps as a re-
sult, AMIPII warms more in the western tropical ocean basins
and less in the eastern subsidence regions when compared to
HadISST1. Earlier studies have in other contexts pointed to
issues with the patterns of tropical warming in AMIPII
(Rayner et al. 2003: Fig. 16f; Flannaghan et al. 2014). These
potential issues with the AMIPII dataset are particularly problem-
atic since the ongoing CFMIP protocol contains amipPiForcing ex-
periments (Webb et al. 2017). On a separate point, in relation to
ERSSTV5 it may be relevant that over most of its record gradual
changes are actually determined by measurements of nighttime
marine air temperatures, which are arguably poorer than SST data
(Rayner et al. 2003).

Although only indirect evidence, we find that in only 0.06%
of the cases is internal variability as generated in preindustrial
control simulations with CMIP5 coupled climate models able
to capture the strong unforced pattern effects estimated in
amipPiForcing experiments based on the AMIPII dataset
(Andrews et al. 2018), and in only 10% of cases is it sufficient to
capture unforced pattern effects of one-quarter their strength.
Therefore, if internal variability in at least some CMIPS
AOGCMs is realistic, it seems highly probable that either the
AMIPII SST dataset is flawed or at least part of the historical
pattern effect detected when using AMIPII SST data is forced.
Supporting this argument, Zhou et al. (2016) found that if
decadal time scale internal variability in CMIP5 piControl
simulations is realistic then at least part of the 1980-2005
AMIPII SST trend pattern was likely forced. Moreover, if there
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were strong unforced pattern effects associated with internal vari-
ability one would expect the rate of warming relative to the rate of
forcing to vary substantially over time. However, such variations
appear surprisingly small. Taking non-overlapping 15-yr means to
average out shorter-term variability and adjusting for the low effi-
cacy of volcanic forcing, since 1941 that ratio has remained re-
markably constant, being unusually low only over 1972-86 (Lewis
and Curry 2018).

It is unclear from our results to what extent there is a robust
relationship between stronger climate feedback and higher
SST trends in the Indo-Pacific warm pool compared with
elsewhere, at least where the comparison is limited to the
tropics.

We caution that care is needed when using regression to
estimate feedback in AMIP simulations, with nonnegligible
bias toward overly strong estimates possible when regressing
annual-mean data.

Sea ice variation is an important factor for climate feedback
in AOGCM simulations. A limitation of this study, and those
with which it compares and contrasts results, is that AMIP
experiments are used in which sea ice is prescribed, generally
using AMIPII sea ice (essentially HadISST1) data. There are
large uncertainties in sea ice data prior to the satellite era,
particularly around Antarctica. Nevertheless, Gregory and
Andrews (2016) showed that even when sea ice is fixed at cli-
matological 1871-1900 levels, much the same SST-driven pat-
tern effect arises. They found that feedback for the AMIPII
SST pattern with fixed climatological sea ice does not differ
greatly from that when sea ice varies per the AMIPII dataset,
and feedback for the years 1-20 abrupt4xCO2 SST pattern
with fixed climatological sea ice is little different from that in
the AOGCM abrupt4xCO2 experiment. However, Andrews
et al. (2018) found that climate feedback in amipPiForcing
simulations by two Met Office GCMs was much weaker when
the HadISST2 rather than the AMIPII sea ice dataset was
used, in conjunction with HadISST2 SST data, mainly due to
the change in sea ice data rather than in SST data, and corre-
sponded to a negative unforced historical pattern effect.*

Although sea ice uncertainty represents a further, unquan-
tified, source of uncertainty in estimates of the absolute level of
the unforced historical pattern effect, it is unlikely to greatly
affect our estimates of the differences in that effect between
SST datasets. The main focus of our Green’s function based
investigations, which suffer from greater limitations in relation
to sea ice (since they incorporate no variation in it), is on the
differences in estimated feedbacks between various SST da-
tasets. Moreover, the accurate estimation of climate feedback
in the AMIPII driven amipPiForcing simulation provided by
the CAMS.3 Green’s functions suggests that the lack of sea ice
variation is unlikely to significantly bias the Green’s function—
based feedback estimates for other SST datasets.

A further limitation of this study is that it is based on sim-
ulations by a single GCM, combined with estimates using

4 Using feedback estimated by regression over years 1-50 of the
parent AOGCMSs’ abrupt4xCO2 simulations as a proxy for their
forced historical feedback over 1871-2010.
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Green’s functions derived from a different GCM. It would
therefore be useful if simulations employing alternative SST
datasets were run with more models such that the feedback
parameter can be compared with that from the corresponding
coupled AOGCMs in historical and purely CO, forced simu-
lations. The necessary forcing estimates, which were only
available to us for ECHAMSG6.3, could become available from a
range of models through experiments in the RFMIP protocol
(Pincus et al. 2016).

The potential presence of a strong unforced pattern effect, as
suggested by studies based on the AMIPII dataset, is particularly
worrying since such internal variability could change in unpre-
dictable ways over short periods of time. More so, since these
patterns were thought to dampen global warming one might assert
that rapid global warming could lie ahead. On the contrary, if it
turns out that the historical record is not substantially influenced
by unforced pattern effects—as suggested here—then global
warming could continue in a more predictable fashion in line with
anthropogenic and natural forcing over this century.

Acknowledgments. We thank Chen Zhou for providing the
CAMS.3 Green’s functions, four reviewers for constructive
comments, and Andrew Dessler and Stephen Po-Chedley for
valuable discussions that helped advance this study. Thorsten
Mauritsen acknowledges funding from the European Research
Council (ERC) Grant agreement 770765 and the European
Union’s Horizon 2020 program Grant agreement 820829.
Computational resources were made available by Deutsches
Klimarechenzentrum (DKRZ), the Swiss National Computing
Centre (CSCS), and the National Supercomputing Centre in
Sweden (NSC). We acknowledge the World Climate Research
Programme’s (WCRP) Working Group on Coupled Modelling
(WGCM) and the climate modeling groups for producing and
making their output available.

REFERENCES

Adams, B. K., and A. E. Dessler, 2019: Estimating transient
climate response in a large-ensemble global climate
model simulation. Geophys. Res. Lett., 46, 311-317,
https://doi.org/10.1029/2018 GL080714.

Andrews, T., and M. J. Webb, 2018: The dependence of global
cloud and lapse rate feedbacks on the spatial structure of
tropical Pacific warming. J. Climate, 31, 641-654, https://
doi.org/10.1175/JCLI-D-17-0087.1.

—— J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing,
feedbacks and climate sensitivity in CMIP5 coupled
atmosphere—ocean climate models. Geophys .Res. Lett., 39,
L09712, https://doi.org/101029/2012GL051607.

——, ——, and ——, 2015: The dependence of radiative forcing
and feedback on evolving patterns of surface temperature
change in climate models. J. Climate, 28, 1630-1648, https://
doi.org/10.1175/JCLI-D-14-00545.1.

——, and Coauthors, 2018: Accounting for changing temperature
patterns increases historical estimates of climate sensitivity.
Geophys. Res. Lett., 45, 8490-8499, https://doi.org/10.1029/
2018GL0O78887.

Armour, K. C., 2017: Energy budget constraints on climate sensi-
tivity in light of inconstant climate feedbacks. Nat. Climate
Change, 7, 331-335, https://doi.org/10.1038/nclimate3278.

MAURITSEN 53

——, C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sen-
sitivity from regional feedbacks. J. Climate, 26, 4518-4534,
https://doi.org/10.1175/JCLI-D-12-00544.1.

Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and
Southwest Asia: La Nifia, the warm pool, and Indian Ocean
precipitation. J. Climate, 15, 697-700, https://doi.org/10.1175/
1520-0442(2002)015<0697:DICASA>2.0.CO;2.

Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric
sensitivity to tropical SST anomalies throughout the Indo-
Pacific basin. J. Climate, 15, 3427-3442, https://doi.org/10.1175/
1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric
stability to climate sensitivity and Earth’s observed radiation
budget. Proc. Natl. Acad. Sci. USA, 114, 13 126-13 131, https://
doi.org/10.1073/pnas.1714308114.

Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An
ocean dynamical thermostat. J. Climate, 9, 2190-2196, https://
doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.
CO:;2.

Cowtan, K., and R. G. Way, 2014a: Coverage bias in the
HadCRUT4 temperature series and its impact on recent
temperature trends. Quart. J. Roy. Meteor. Soc., 140, 1935—
1944, https://doi.org/10.1002/qj.2297.

——, and ——,2014b: Coverage bias in the HadCrut4 temperature
record and its impact on recent temperature trends. Update:
Temperature reconstruction by domain: Version 2.0 temper-
ature series. 9 pp., https://www.webcitation.org/6t09bN8vM.

——, and ——, 2014c: Coverage bias in the HadCrut4 temperature
record and its impact on recent temperature trends. University
of York Department of Chemistry, accessed 20 March 2019
and 8 October 2019, https://www-users.york.ac.uk/%7Ekdc3/
papers/coverage2013//had4sst4_krig_v2_0_0.nc.gz.

Dessler, A. E., 2020: Potential problems measuring climate sensi-
tivity from the historical record. J. Climate, 33, 2237-2248,
https://doi.org/10.1175/JCLI-D-19-0476.1.

——, T. Mauritsen, and B. Stevens, 2018: The influence of internal
variability on Earth’s energy balance framework and impli-
cations for estimating climate sensitivity. Atmos. Chem. Phys.,
18, 5147-5155, https://doi.org/10.5194/acp-18-5147-2018.

Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019:
Attributing historical and future evolution of radiative feed-
backs to regional warming patterns using a Green’s function
approach: The preeminence of the western Pacific. J. Climate,
32, 5471-5491, https://doi.org/10.1175/JCLI-D-18-0843.1

Flannaghan, T. J., S. Fueglistaler, I. M. Held, S. Po-Chedley,
B. Wyman, and M. Zhao, 2014: Tropical temperature trends in
atmospheric general circulation model simulations and the im-
pact of uncertainties in observed SSTs. J. Geophys. Res. Atmos.,
119, 13 327-13 337, https://doi.org/10.1002/2014JD022365.

Flato, G., and Coauthors, 2013: Evaluation of climate models.
Climate Change 2013: The Physical Science Basis, T.F. Stocker
ct al., Eds., Cambridge University Press, 741-866.

Fueglistaler, S., C. Radley, and I. M. Held, 2015: The distribution of
precipitation and the spread in tropical upper tropospheric tem-
perature trends in CMIPS/AMIP simulations. Geophys. Res. Lett.,
42, 60006007, https://doi.org/10.1002/2015GL064966.

Geoffroy, O., and D. Saint-Martin, 2014: Pattern decomposition of
the transient climate response. Tellus, 66A, 23393, https://
doi.org/10.3402/tellusa.v66.23393.

——, and ——, 2020: Equilibrium- and transient-state dependen-
cies of the radiative feedback: Are they important for climate
projections? J. Climate, 33, 1863-1879, https://doi.org/10.1175/
JCLI-D-19-0248.1.

Unauthenticated | Downloaded 01/21/21 12:50 PM UTC



54 JOURNAL OF CLIMATE

—— ——, G. Bellon, A. Voldoire, D. J. L. Olivié, and S. Tytéca,
2013: Transient climate response in a two-layer energy-balance
model. Part II: Representation of the efficacy of deep-ocean
heat uptake and validation for CMIP5 AOGCM:s. J. Climate,
26, 1859-1876, https://doi.org/10.1175/JCLI-D-12-00196.1.

Gregory, J. M., and T. Andrews, 2016: Variation in climate sensi-
tivity and feedback parameters during the historical period.
Geophys. Res. Lett., 43, 3911-3920, https://doi.org/10.1002/
2016GL068406.

——, and Coauthors, 2004: A new method for diagnosing radiative
forcing and climate sensitivity. Geophys. Res. Lett., 31,
L03205, https://doi.org/10.1029/2003GL018747.

——, T. Andrews, P. Good, T. Mauritsen, and P. M. Forster, 2016:
Small global-mean cooling due to volcanic radiative forcing.
Climate Dyn., 47, 3979-3991, https://doi.org/10.1007/s00382-
016-3055-1.

——, ——, P. Ceppi, T. Mauritsen, and M. J. Webb, 2019: How
accurately can the climate sensitivity to CO, be estimated
from historical climate change? Climate Dyn., 54, 129-157,
https://doi.org/10.1007/S00382-019-04991-Y.

Hansen, J., and Coauthor, 2005: Efficacy of climate forcings. J. Geophys
Res., 110, D18104, https:/doi.org/10.1029/2005JD005776.

Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K.
Vallis, 2010: Probing the fast and slow components of global
warming by returning abruptly to preindustrial forcing. J. Climate,
23, 2418-2427, https://doi.org/10.1175/2009J CLI3466.1.

Hirahara, S., M. Ishii, and Y. Fukuda, 2014a: Centennial-scale sea
surface temperature analysis and its uncertainty. J. Climate,
27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

_ , and ——, 2014b: COBE-SST2 data provided by the
NOAA/OAR/ESRL PSD, accessed 8 November 2019, ftp://
ftp.cdc.noaa.gov/Datasets/COBE2/sst.mon.mean.nc.

Huang, B., and Coauthors, 2017: Extended Reconstructed Sea
Surface Temperature, version 5 (ERSSTvS5): Upgrades, vali-
dations, and intercomparisons. J. Climate, 30, 8179-8205,
https://doi.org/10.1175/JCLI-D-16-0836.1.

Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski,
2008: A new sea surface temperature and sea ice boundary
dataset for the Community Atmosphere Model. J. Climate, 21,
5145-5153, https://doi.org/10.1175/2008JCLI2292.1.

Jiménez-de-la-Cuesta, D., and T. Mauritsen, 2019: Emergent
constraints on Earth’s transient and equilibrium response to
doubled CO, from post-1970s global warming. Nat. Geosci.,
12, 902-905, https://doi.org/10.1038/s41561-019-0463-y.

Kaplan, A., Y. Kushnir, M. A. Cane, and M. B. Blumenthal, 1997:
Reduced space optimal analysis for historical data sets: 136
years of Atlantic sea surface temperatures. J. Geophys. Res.
Oceans, 102, 27 835-27 860, https://doi.org/10.1029/97JC01734.

Kennedy, J. J., N. A. Rayner, R. O. Smith, M. Saunby, and D. E.
Parker, 2011a: Reassessing biases and other uncertainties in sea-
surface temperature observations since 1850: 1. Measurement
and sampling errors. J. Geophys. Res., 116, D14103, https:/
doi.org/10.1029/2010JD015218.

— ——, ——, ——, and ——, 2011b: Reassessing biases and
other uncertainties in sea-surface temperature observations
since 1850: 2. Biases and homogenization. J. Geophys. Res.,
116, D14104, https://doi.org/10.1029/2010JD015220.

——,——,C.P. Atkinson, and R. E. Killick, 2019: An ensemble data
set of sea surface temperature change from 1850: The Met
Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res.
Atmos., 124, 77197763, https://doi.org/10.1029/2018TD029867.

Kent, E. C., and Coauthors, 2013: Global analysis of night marine air
temperature and its uncertainty since 1880: The HadNMAT?2

VOLUME 34

data set. J. Geophys. Res. Atmos., 118, 1281-1298, https://
doi.org/10.1002/JGRD.50152.

Lewis, N., and J. A. Curry, 2015: The implications for climate
sensitivity of ARS forcing and heat uptake estimates. Climate
Dyn., 45, 1009-1023, https://doi.org/10.1007/s00382-014-
2342-y.

——, and ——, 2018: The impact of recent forcing and ocean heat
uptake data on estimates of climate sensitivity. J. Climate, 31,
6051-6071, https://doi.org/10.1175/JCLI-D-17-0667.1.

——,and ,2020: Reply to ““Comment on ‘The impact of recent
forcing and ocean heat uptake data on estimates of climate
sensitivity.”” J. Climate, 33, 397-404, https://doi.org/10.1175/
JCLI-D-18-0669.1.

Marvel, K., R. Pincus, G. A. Schmidt, and R. L. Miller, 2018:
Internal variability and disequilibrium confound estimates of
climate sensitivity from observations. Geophys. Res. Lett., 45,
1595-1601, https://doi.org/10.1002/2017GL076468.

Mauritsen, T., 2016: Clouds cooled the earth. Nat. Geosci., 9, 865—
867, https://doi.org/10.1038/ngeo2838.

——, and R. Pincus, 2017: Committed warming inferred from ob-
servations. Nat. Climate Change, 7, 625-655, https://doi.org/
10.1038/NCLIMATE3357.

——, and Coauthors, 2019: Developments in the MPI-M Earth
System Model version 1.2 (MPI-ESM1.2) and its response to
increasing CO,. J. Adv. Model. Earth Syst., 11, 998-1038,
https://doi.org/10.1029/2018MS001400.

Miao, J., T. Wang, H. Wang, and J. Sun, 2018: Interannual weak-
ening of the tropical Pacific Walker circulation due to strong
tropical volcanism. Adv. Atmos. Sci., 35, 645-658, https://
doi.org/10.1007/s00376-017-7134-y.

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012:
Quantifying uncertainties in global and regional temperature
change using an ensemble of observational estimates: The
HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://
doi.org/10.1029/2011JD017187.

Otto, A., and Coauthors, 2013: Energy budget constraints on climate
response. Nat. Geosci., 6, 415-416, https:/doi.org/10.1038/nge01836.

Pincus, R., P. M. Forster, and B. Stevens, 2016: The Radiative Forcing
Model Intercomparison Project (RFMIP): Experimental protocol
for CMIP6. Geosci. Model Dev., 9, 3447-3460, https:/doi.org/
10.5194/GMD-9-3447-2016.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global
analyses of sea surface temperature, sea ice, and night marine air
temperature since the late nineteenth century. J. Geophys. Res.,
108, 4407, https://doi.org/10.1029/2002JD002670.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W.
Wang, 2002: An improved in situ and satellite SST analysis for
climate. J. Climate, 15, 1609-1625, https://doi.org/10.1175/
1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

Richardson, T. B., and Coauthors, 2019: Efficacy of climate forc-
ings in PDRMIP models. J. Geophys. Res. Atmos., 124,12 824—
12 844, https://doi.org/10.1029/2019JD030581.

Rugenstein, M., and Coauthors, 2020: Equilibrium climate sensitivity
estimated by equilibrating climate models. Geophys. Res. Lett.,
47, e2019GL083898, https://doi.org/10.1029/2019GL083898.

Senior, C. A., and J. F. Mitchell, 2000: The time-dependence of
climate sensitivity. Geophys. Res. Lett., 27, 2685-2688, https://
doi.org/10.1029/2000GL011373.

Shindell, D. T., 2014: Inhomogeneous forcing and transient climate
sensitivity. Nat. Climate Change, 4, 274-277, https://doi.org/
10.1038/nclimate2136.

Unauthenticated | Downloaded 01/21/21 12:50 PM UTC



1 JANUARY 2021 LEWIS AND

Skeie, R. B., T. Berntsen, M. Aldrin, M. Holden, and G. Myhre,
2018: Climate sensitivity estimates—Sensitivity to radiative
forcing time series and observational data. Earth Syst. Dyn., 9,
879-894, https://doi.org/10.5194/esd-9-879-2018.

Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO
signal in tropical tropospheric temperature. J. Climate, 15,
27022706, https://doi.org/10.1175/1520-0442(2002)015<2702:
TESITT>2.0.CO:2.

Stevens, B., S. C. Sherwood, S. Bony, and M. J. Webb, 2016: Prospects
for narrowing bounds on Earth’s equilibrium climate sensitivity.
Earth’s Future, 4, 512-522, https://doi.org/10.1002/2016EF000376.

Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley
Centre sea ice and sea surface temperature data set, version 2:
1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 2864—
2889, https://doi.org/10.1002/20131D020316.

Visser, K., R. Thunell, and L. Stott, 2003: Magnitude and timing of
temperature change in the Indo-Pacific warm pool during degla-
ciation. Nature, 421, 152-155, https://doi.org/10.1038/nature01297.

Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model
Intercomparison Project (CFMIP) contribution to CMIP6.
Geosci. Model Dev., 2017, 359-384, https://doi.org/10.5194/
gmd-10-359-2017.

MAURITSEN 55

Welch, B. L., 1947: The generalization of “Student’s” problem
when several different population variances are involved.
Biometrika, 34, 28-35, https://doi.org/10.1093/BIOMET/34.1-
2.28.

Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean
heat uptake efficacy to transient climate change. J. Climate, 23,
2333-2344, https://doi.org/10.1175/2009JCLI3139.1.

Wood, R., and C. S. Bretherton, 2006: On the relationship between
stratiform low cloud cover and lower-tropospheric stability.
J. Climate, 19, 6425-6432, https://doi.org/10.1175/JCLI3988.1.

Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A
comprehensive ocean—atmosphere data set. Bull. Amer. Meteor.
Soc., 68, 1239-1250, https://doi.org/10.1175/1520-0477(1987)
068<1239:ACOADS>2.0.CO;2.

Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal
cloud variations on the Earth’s energy budget. Nat. Geosci., 9,
871-874, https://doi.org/10.1038/nge02828.

—— —— and , 2017: Analyzing the dependence of global cloud
feedback one the spatial pattern of sea surface temperature change
with a Green’s function approach. J. Adv. Model. Earth Syst., 9,
2174-2189, https://doi.org/10.1002/2017MS001096.

Unauthenticated | Downloaded 01/21/21 12:50 PM UTC



