
Vol.:(0123456789)

SN Computer Science (2021) 2:12
https://doi.org/10.1007/s42979-020-00406-6

SN Computer Science

ORIGINAL RESEARCH

The Risk of Generating Technical Debt Interest: A Case Study

Georgios Digkas1 · Apostolos Ampatzoglou2 · Alexander Chatzigeorgiou2 · Paris Avgeriou1 · Oliviu Matei3 ·
Robert Heb3

Received: 1 July 2020 / Accepted: 13 November 2020
© The Author(s) 2020

Abstract
Technical Debt (TD) interest refers to the extra maintenance costs incurred by the very existence of TD items in a system. The
generation of TD interest can make or break a system: too little interest and the effect of TD is negligible; too much interest
and the system becomes unsustainable. In this paper, we consider the generation of interest as a risk and present a metric to
quantify this risk. Subsequently, we validate this metric in two ways. First, we explore whether the metric can be effectively
used to prioritize TD remediation. Second, we investigate if adding new code reduces the risk of interest generation. The
results of the study suggest that: (a) the proposed risk management metric is capable of efficiently prioritizing TD items; and
(b) that the new code that is introduced in the system is usually less risky for producing interest, compared to legacy code.

Keywords  Technical debt · Maintainability · New code · Clean code

Introduction

Technical Debt is a software engineering metaphor that
draws an analogy between shortcuts in development and
taking out a loan [14]. In particular, the metaphor considers

that a software development organization (intentionally
or unintentionally) limits the development time/resources
through shortcuts, and thus saves a specific amount of
money (amount of loan–TD Principal) [1, 2]. This benefit
comes with an associated cost, as the product is released
with sub-optimal quality, leading to the occurrence of main-
tenance costs [18]; such costs are termed TD Interest and
include bug fixing, understanding the existing code, adding
new features, etc. [1, 2]. While TD Principal is deterministic,
TD interest is probabilistic: we are not sure how frequently
and to what extent a software artifact will change in the
upcoming versions (thus generating interest). The probabil-
ity of an artifact to generate interest is termed TD Interest
Probability [28].

The generation of interest plays a crucial role for the
impact of TD on software maintenance. Modules that are
rarely maintained do not cause real problems along software
evolution even if they suffer from high TD; paying back the
TD is in such cases unnecessary. On the contrary, modules
with TD that are often maintained can cause severe over-
head when performing future changes. Thus, we consider
the generation of interest as a risk that threatens software
maintainability.

In this study, we propose a metric, namely Interest Gen-
eration Risk Importance (IGRI), to estimate the risk of
interest generation. According to Barry Boehm [9], the
importance of a risk can be calculated as the product of

This article is part of the topical collection “Interaction between
Energy Consumption, Quality of Service, Reliability and Security,
Maintainability of Computer Systems and Network” guest edited
by Erol Gelenbe.

 *	 Georgios Digkas
	 g.digkas@rug.nl

	 Apostolos Ampatzoglou
	 a.ampatzoglou@uom.edu.gr

	 Alexander Chatzigeorgiou
	 achat@uom.edu.gr

	 Paris Avgeriou
	 paris@cs.rug.nl

	 Oliviu Matei
	 oliviu.matei@holisun.com

	 Robert Heb
	 robert.heb@holisun.com

1	 Institute of Mathematics and Computer Science, University
of Groningen, Groningen, Netherlands

2	 Department of Applied Informatics, University
of Macedonia, Macedonia, Greece

3	 Holisun SRL, Baia Mare, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00406-6&domain=pdf

	 SN Computer Science (2021) 2:12 12   Page 2 of 12

SN Computer Science

its impact and likelihood to occur. In the case of IGRI, the
likelihood of the risk corresponds to interest probability,
whereas the impact to the amount of technical debt interest.

The proposed metric can be useful in a number of ways;
in this study, we validate two of them. The first is to assist
TD Prioritization, i.e., the priority to refactor a software
artifact [22]. Artifacts that pose a higher risk to generate
TD interest would be more urgent for refactoring to prevent
excessive maintenance costs. The second is to assess the
effect of writing clean new code on the technical debt evo-
lution of the system. If new code is less risky to generate
interest, the sustainability of the system can be improved by
the addition of clean new code. The clean code paradigm is
supported in the literature as an alternative to refactoring for
the improvement of software quality [23], and it tends to be
preferable from the developers’ side, as a means to control
the amount of technical debt in the system [5].

The research work reported in this study has been con-
ducted in the context of the SDK4ED1 project, funded by
the European Union’s Horizon 2020 research and innovation
programme. The goal of the project is to investigate trade-
offs between optimizations applied to improve Technical
Debt, Security, and Energy dissipation in software inten-
sive systems. Furthermore, the SDK4ED platform aims at
assisting decision-making with respect to investments on
software improvements. The assessment of artifacts which
pose a high risk of generating TD interest outlined in this
study is aligned with the overall goal of the project to nar-
row down the recommended refactoring opportunities.
Choosing among optimizations to mitigate software vulner-
abilities detected through static analysis [32], to improve
performance [30, 31] and energy consumption [37], and to
improve software maintainability [3, 11] is a non-trivial task.
Research has proved the existence of interrelations between
these qualities [25, 33, 34] rendering the extraction of the
best possible sequence of software refactoring subject to a
Multi-Criteria Decision-Making (MCDM) analysis which
has been implemented in the SDK4ED platform.

The rest of the paper is organized as follows. In “Related
Work and Background Information”, we present: (a) related
work on technical debt prioritization; (b) background work
on software risk management. The framework that we use
for calculating Technical Debt Interest and Interest Prob-
ability, as well as the proposed metric are introduced in
“Assessing the Risk of Generating Interest”. In “Case Study
Design”, we present the empirical design through which we
explore the two aforementioned usage scenarios of the met-
ric. In “Results”, we answer the research questions. In “Dis-
cussion”, we discuss the main findings, whereas in “Threats

to Validity”, the main threats to validity. Finally, in “Conclu-
sions”, we conclude the paper.

Related Work and Background Information

In this section, we present related work and background
information necessary for understanding this study. In
particular, in “Technical Debt Prioritization”, we present
related work: i.e., studies on technical debt prioritization;
whereas in “Software Risk Management”, we discuss
background concepts from the software risk management
literature.

Technical Debt Prioritization

The process of TD prioritization ranks identified TD items,
according to certain predefined rules to support deciding
which TD items should be repaid first and which TD items
can be tolerated until later releases [22]. According to Li
et al. [22], TD Prioritization has been studied in 18% of the
TD research corpus.

TD prioritization methods can be discussed under two
perspectives: based on the concepts used as inputs, as well
as, based on the approach used for prioritization per se. With
respect to inputs, according to Seaman and Guo [28], TD
prioritization can be performed, either based on Technical
Debt principal, Technical Debt interest, or Technical Debt
interest probability. With respect to approach, existing meth-
ods for TD prioritization can be categorized into four main
classes.

–	 The first class uses cost/benefit analysis, suggesting that
if resolving a TD item can yield a higher benefit than
cost, then this TD item should be repaid. TD items with
higher cost/benefit ratios of repayment should be repaid
first [29].

–	 The second class suggests that TD items that are more
costly to resolve should be repaid first [20].

–	 The third class uses portfolio management. In these
approaches, TD items along with other new function-
alities and bugs are considered as risks and investment
opportunities (i.e., assets). “The goal of portfolio man-
agement is to select the asset set that can maximize the
return on investment or minimize the investment risk
[17]”

–	 The final class suggests that TD items incurring the
higher interest should be repaid first [28].

Software Risk Management

Risk management is a software engineering practice
(involving processes, methods, and tools) that: (a) assesses 1  https​://sdk4e​d.eu/.

https://sdk4ed.eu/

SN Computer Science (2021) 2:12 	 Page 3 of 12  12

SN Computer Science

continuously what can go wrong (risks); (b) determines what
risks are important to deal with; and (c) implements strate-
gies to deal with those risks [7]. According to Boehm, there
are three main categories of risks: project risks, product
risks, and business risks [10]. Among these categories, the
generation of Technical Debt Interest falls in the product risk
category: i.e., “risks that affect the quality or performance
of the software being developed”. In this paper, we focus on
Risk Analysis (see Sommerville [36]): risk analysis aims
at assessing the likelihood and consequences of all risks
identified in a system. Therefore, the rest of this sub-section
focuses on how risks can be assessed. In the literature, there
are two main schools for risk assessment: categorical risk
assessment and continuous risk assessment.

Categorical risk assessment. According to Sommerville
[36], risk analysis relies on judgement and experience to
find the probability of a risk (rare, unlikely, possible, likely,
or almost certain) and the effects of the risk (catastrophic,
major, moderate, minor, or negligible). Based on this, the
project managers generate a table according to seriousness
of risk and update it during each iteration of the risk process,
as shown in Fig. 1.

Continuous risk assessment. In a seminal work of
software project management, Boehm [10] introduced the

basic principles of software risk management. As part of
risk analysis, he suggests that risk exposure (also termed
as risk impact) can be calculated as the product of the
probability of unsatisfactory outcome and the loss caused
by the unsatisfactory outcome.

Assessing the Risk of Generating Interest

This section focuses on tailoring the concepts covered
in “Software Risk Management” to fit the technical debt
metaphor. IGRI is meant to quantify the impact of a possi-
ble change in a specific artifact that suffers from technical
debt, by assessing the probability of this artifact to change
and the amount of interest that is going to be generated,
upon such a tentative change. The rationale of the met-
ric relies on the risk importance formula, as proposed by
Boehm [8], which can be formulated as:

The rest of this section describes the way that TD Interest
and TD Interest Probability are calculated.

(1)IGRI = Interest × Interest Probability.

Fig. 1   Risk assessment matrix

	 SN Computer Science (2021) 2:12 12   Page 4 of 12

SN Computer Science

Technical Debt Interest

In this study, we calculate Technical Debt Interest based on
the FITTED framework [2]. The estimation of Technical
Debt Interest is a challenging endeavor as interest refers to the
“additional” maintenance costs, incurred by inefficiencies in
software. The nominal software maintenance effort, i.e., the
effort that would have been required in case the system had
zero technical debt, is unknown. The FITTED methodology,
which has been proposed [2] and empirically validated in our
previous work [4, 38], attempts to calculate interest by estimat-
ing the “sub-optimality” of any given software artifact. FIT-
TED assumes that any software artifact (or an entire system)
has an actual implementation, and a hypothetical optimal one
(in terms of maintainability). Maintaining the optimal system
would require less effort than maintaining the actual system
(see Fig. 2).

Despite the fact that a system can by no means be charac-
terized as globally optimal, based solely on the optimization
of some structural characteristics, several studies in the area
of multi-objective software optimization aim at extracting
an optimal sequence of refactoring operations that improve
the software quality [24]. As shown in Fig. 2, adding a new
feature A to the optimal system would need a certain effort,
noted as Effort(optimum), whereas adding the same feature to
the actual system necessitates a larger effort, noted as Effort
(actual). The difference between these two efforts represents
the Technical Debt Interest that is accumulated during this
maintenance activity. The overarching assumption of FITTED
is that maintenance effort is inversely proportional to the main-
tainability of the system (or of an individual artifact)—see
Eq. 2:

(2)Effort = � × (1∕maintainability).

Given Eq. 2, the ratio of the maintenance effort for the
optimal system (which is unknown) over the effort for the
actual system can be expressed as:

For convenience, we call the ratio in the right-hand side
of Eq. 3 Maintainability Level of the actual artifact, as it
expressed its relative quality compared to its hypothetical
optimal implementation. Thus, the effort for maintaining the
optimal system can be expressed as:

Finally, based on its definition, Technical Debt Interest can
be calculated using the difference between the actual and the
optimal effort, as follows:

Maintainability. Although no single function can capture
all aspects of quality, for the sake of simplicity, we assume
that the hypothetical ’optimal’ system is the one that opti-
mizes a certain fitness function assessing the quality of soft-
ware (e.g., in terms of complexity, cohesion, coupling, etc.
or any aggregate form of selected qualities). To enable the
calculation of the aforementioned maintainability level, we
first identify a set of artifacts (e.g., classes, packages, and
systems [4]) that can be considered (structurally) similar,
i.e., in terms of lines of code, number of methods, cogni-
tive complexity, etc. Next, we calculate the optimal value
of selected metrics among the set of similar artifacts. These
best metric scores are assumed to characterize the hypotheti-
cal ‘optimal’ which the artifact under study could potentially
reach. A simplified example is outlined in Fig. 3.

Then, we calculate the average ratio of the metric score
of the artifact under study, compared to the optimal value,
yielding its maintainability level. The metrics that we have
selected to use in our study for quantifying maintainability
(see Table 1) belong to well-known metric suites [12, 21].
The metric selection was based on a secondary study by Riaz
et al. [26], which reported on a systematic literature review
(SLR) aimed at summarizing software metrics that can be
used as maintainability predictors.

Maintenance Effort. Since the evolution of software
cannot be predicted under normal circumstances, it is not
possible to foresee what kind of modifications (e.g., bug
fixes, introduction of new features, refactoring, etc.) will be
made in a system during future releases. Hence, we follow
a simple, yet relatively reasonable approach, and base our
assessment of future maintenance effort on historical data.
In particular, to consider past effort spent on maintenance

(3)
Effortopt

Effortact
=

maintainabilityact

maintainabilityopt
.

(4)Effortopt = Effortact ×MaintainabilityLevelact.

(5)
TD Interest = Effortact × (1 −MaintainabilityLevelact).

Fig. 2   Increased maintenance effort for technical debt items [3]

SN Computer Science (2021) 2:12 	 Page 5 of 12  12

SN Computer Science

activities for each artifact, we record the average lines of
code added/deleted/modified between all pairs of successive
versions of a system (code churn). Consequently, we project
this average maintenance effort per version to future releases
of the analyzed artifact. This strategy has been used in a
variety of studies on software evolution [13, 19].

Technical Debt Interest Probability

Interest probability is calculated based on past maintenance
data. To this end, we use the Percentage of Commits in which
a Class has Changed (PCCC) metric [6]. Despite the fact that

there is a relation between Maintenance Effort and PCCC, the
two measures correspond to different views of the same phe-
nomenon, in the sense that Maintenance Effort captures lines
of code (i.e., the average extent of change), whereas PCCC a
number of commits (frequency of changes). Thus, we con-
sider them independent and suitable for being used in the same
calculation.

Fig. 3   Notion of hypothetical
optimal among similar artifacts

Table 1   Maintainability proxy metrics

Property Metric Description

Inheritance (Inh) DIT Depth of Inheritance Tree: Inheritance level number, 0 for the root class.
NOCC Number of Children Classes: Number of direct sub-classes that the class has.

Coupling (Cpl) MPC Message Passing Coupling: Number of send statements defined in the class.
RFC Response for a Class: Number of local methods plus the number of methods

called by class methods.
DAC Data Abstraction Coupling: Number of abstract types defined in the class.

Cohesion (Coh) LCOM Lack of Cohesion of Methods: Number of disjoint sets of methods in the class.
Complexity (Com) CC Cyclomatic Complexity: Average cyclomatic complexity of methods in the class.

WMPC Weighted MethoWeighted
Size (Size) SIZE1 Lines of Code: Number of semicolons in the class.

SIZE2 Number of Properties: Number of attributes and methods in the class.

	 SN Computer Science (2021) 2:12 12   Page 6 of 12

SN Computer Science

Case Study Design

The case study is designed and reported based on the linear-
analytic structure as described by Runeson et al. [27]. This
section presents the study design in detail.

Research Goals and Questions

The goal of this study, as mentioned in the Introduction sec-
tion, is twofold: (a) to assess whether the proposed metric
can perform effective prioritization of TD items; and (b) to
examine the risk of interest generation posed by new code.
Based on the above, we have set two research questions that
correspond to these two goals:

RQ1: Is IGRI able to prioritize TD items similarly to
an expert? To answer this research question, we calculate
IGRI for all classes of a project and we record the urgency
to fix TD (specifically to improve the quality of individual
classes), based on the expert opinion of software engineers.
A correlation analysis between the IGRI values and the
expert opinions could validate or invalidate IGRI as a suit-
able prioritization indicator. In case IGRI is able to resemble
the expert opinion with a strong correlation, we would be
able to resolve an important scalability problem in TDM,
since experts cannot afford to assess hundreds or even thou-
sands of artifacts manually. Using IGRI, they would instead
get automated suggestions on which TD items to check first
for refactoring opportunities.

RQ2: Does new code pose a lower risk (in terms of
IGRI) for generating TD interest? This question is refined
through two sub-questions to distinguish between the quan-
tity and quality of new code:(RQ2.1) Is IGRI of a compo-
nent related to the amount of new code introduced to that
component over time? and (RQ2.2) Is IGRI of a component
related to the average quality of new code introduced to that
component over time?

This research question focuses on new code introduced
over time, which, as explained in “Introduction”, can be a
promising technical debt reduction approach, if the new code
is of high quality. To answer this research question, we need
to first separate new from modified code in each commit,
and then capture the extent as well as the quality of the new
code. As a second step, we need to perform the FITTED
analysis, and calculate IGRI. Finally, a correlation analysis
will be performed to answer this research question. The out-
come of the analysis can inform researchers and practitioners
whether the introduction of (clean) new code can lead to
a more sustainable evolution, that generates less technical
debt interest. We conjecture that the more and the cleaner
the new code that is added in a component, the less the risk
for that component to produce interest. Subsequently, one
could advocate the writing of clean new code as a way to

decrease the risk of generating interest, effectively reversing
the negative effect of TD.

Cases and Units of Analysis

This study is an embedded multiple case study, in which
the case is an existing software system (written in Java),
and the units of analysis are its classes. The system that
we have analyzed is MaQuali that is developed by Holisun
SRL. MaQuali is a a quality management system (ISO 9001)
supporting the handling of business processes. It consists
of approx. 100 classes (more than 150,000 lines of code)
and has been maintained for more than a decade. The sys-
tem consists of six main modules, managing the following
entities: (a) fiches of progress, (b) actions to be taken, (c)
documents involved in ISO quality control, (d) planning, (e)
useful information, and (f) milestones.

Data Collection

To answer the aforementioned research questions, we have
performed the following process. In the first step, we ini-
tially analyzed the MaQuali source code with the SDK4ED
toolkit2 and quantified IGRI (Interest Generation Risk
Importance) for every class of the software. Then, we
aggregated the results at the level of packages. Next, we ran-
domly picked3 10 packages and asked Holisun’s engineers
to provide a ranking of these packages in terms of mainte-
nance risk. This process has led us to the dataset outlined
in Table 2. The first column corresponds to the name of the

Table 2   TD interest assessment of MaQuali packages

Package Interest Interest prob-
ability

IGRI

fr.icms.db 57.67 $ 0.50 28.83
fr.icms.sorters 0.12 $ 0.00 0.00
fr.icms.models 16.22 $ 0.25 4.05
fr.icms streams 0.17 $ 0.12 0.02
fr.icms.mail 16.50 $ 0.50 8.25
fr.icms.renderers 0.46 $ 0.25 0.11
fr.icms.printing 1.71 $ 0.12 0.21
fr.icms.graph 0.70 $ 0.25 0.17
fr.icms.ui 9.97 $ 0.25 2.49
fr.icms.os 4.55 $ 0.25 1.13

2  https​://sdk4e​d.eu.
3  The selection process was as follows. First, we sorted the packages
by IGRI, and then, we have demarcated 10 areas (bins), each one con-
taining 10% of the packages. Finally, we selected 10 software pack-
ages, randomly picked from each one of the 10% bins.

https://sdk4ed.eu

SN Computer Science (2021) 2:12 	 Page 7 of 12  12

SN Computer Science

class, the second column to interest (per commit), the third
to interest probability, and the fourth to IGRI.

As a second step, we asked the software engineers of
Holisun that focus on MaQuali maintenance to rank the
aforementioned packages, based on the following question:
“Please rank the aforementioned packages (ties are accept-
able—however, not preferable) in terms of the risk that their
maintenance might lead to extreme delays. As maintenance,
please consider the time that you spend for adding a new
requirement, for fixing a bug, etc. In this question, consider
not only the time required for one maintenance action, but
also how frequently you need to maintain them. Assign 1 to
the package that is the least risky and 20 to the most risky
packages”. Packages have been shuffled for each respond-
ent, while the assessments of each package, based on the
SDK4ED platform was hidden from the engineers. The anal-
ysis of the respondents’ answers (five software engineers)
have been aggregated.

As a third step, we have performed the analysis of new
code technical debt, similarly to our earlier work [15]. For a
software system evolving through a number of revisions, we
track new methods introduced either in entirely new pack-
ages or in existing classes. We then compute the quality of
these new methods in terms of their technical debt by map-
ping identified technical debt issues to the line range of these
methods. Note that we use the concept of ��density , which
is the technical debt of these methods normalized over their
size in lines of code. TDdensity enables the comparison of
technical debt between artifacts of different sizes (such as
new methods vs. the already existing system).

The process for analyzing git repositories (such as the
repository of MaQuali) is briefly outlined in the following
phases and individual steps:

Phase 1: Retrieval of commits

1.	 First, the git history for the project under study is
retrieved from its master branch.

2.	 All commits are sorted to form a time-series of revisions
that have been performed on the source code. In case of
commits with more than one parent, we have extracted
the nodes leading to the longest path between the com-
mit node under examination and the start node (i.e.,
the only node with no parent). This choice avoids any
(chronological) inconsistencies among revisions, and at
the same time, the longest path yields the largest number
of commits to be analyzed yielding a higher granularity
for the analysis.

3.	 To reduce the computation time, a filtering step is
applied by ignoring transitions between successive com-
mits that do not involve any changes to Java files.

Phase 2: Mapping of technical debt issues to methods

To map the identified technical debt issues to the class
methods of each revision, we perform the following steps:

1.	 First, for each revision, we retrieve all technical debt
issues by performing the corresponding query to the
SonarQube database.

2.	 Next, we map the identified technical debt issues to
the methods of the corresponding revision. This is per-
formed by matching the line in which each technical
debt issue is reported by SonarQube with the method
containing that line.

Phase 3: Tracking new methods
We identify the introduction of new methods and the

associated TDdensity as follows:

1.	 For the new files of each revision (obtained from git
history), we obtain their representation in the form of
an Abstract Syntax Tree (AST)4. For each new file, we
extract all its methods from the AST representation and
then tag all these methods as new.

2.	 For the modified files of each revision, we track new
methods in each transition with the help of the Gumtree
Spoon AST Diff tool5.

Phase 4: Calculating the contribution of new methods to the
change in the system’s TDdensity

Finally, we need to calculate, for each revision in the sys-
tem’s history, the contribution of new methods to the change
of the system’s TDdensity . Let us consider a transition from
revision t-1 to revision t. The contribution of new methods
to the change in the TDdensity of the system is obtained with
the following formula:

Contribution of new methods

Based on the aforementioned process, the following dataset
has been developed: each row represented a class, whereas
the columns held the following information:

[V1]	� Package Name
[V2]	� IGRI
[V3]	� Expert opinion of Holisun Software Engineers on the

Risk of the Class

(6)

ΔTDdensity(new)

=
TDt−1 + TDnew(t)

LOCt−1 + LOCnew(t)

− TDdensity(t − 1).

4  The AST is obtained through the Eclipse Java Development Tools
(JDT).
5  https​://githu​b.com/Spoon​Labs/gumtr​ee-spoon​-ast-diff.

https://github.com/SpoonLabs/gumtree-spoon-ast-diff

	 SN Computer Science (2021) 2:12 12   Page 8 of 12

SN Computer Science

[V4]	� Average LoC added as new code in the history of the
package

[V5]	� Average contribution of new code in the TDdensity of
the package.

Data Analysis

The aforementioned data have been analyzed using descrip-
tive statistics and by Spearman Correlation in pairs. To
answer RQ1, we use the pair [V2]–[V3], and for RQ2.1,
we use the pair [V2]–[V4], whereas for RQ2.2, the pair
[V2]–[V5]. Especially, for RQ2.2, we have transformed [V5]
variable to a categorical one (positive or negative contribu-
tions) and provided additional analysis.

Results

In this section, we present the results of the case study,
organized by research question. In particular, in “Ability of
IGRI to Prioritize TD Artifacts”, we present the results on
the ability of IGRI to predict the risk of software packages
to produce high interest. Subsequently, in “Relation of IGRI
and New Code”, we use the newly proposed index to assess
the contribution of new code to the risk of producing techni-
cal debt interest.

Ability of IGRI to Prioritize TD Artifacts

As a means for validating the ability of IGRI to estimate of
the risk of a package to generate Technical Debt Interest,
we contrast the metric to the perception of stakeholders on
the risk of package maintenance to lead to extreme risks. To
achieve this goal, since: (a) the two variables have a different
value range; and (b) we focus on prioritization instead of
prediction, we preferred to treat the two variables as ordi-
nal ones. Thus, we transformed them to the rank that corre-
sponds to a specific value (i.e., the highest IGRI is assigned
the value 1; whereas the lowest IGRI is assigned the value
10). To visualize the ability of IGRI to consistently rank
packages, based on their risk to produce interest (metric
property: consistency, according to the 1061–1998 IEEE
Standard for Software Metrics [35]), in Fig. 4, we present
a scatter plot.

As it can be observed from Fig. 4, the ranking is almost
consistent (the dots are close to the main diagonal line),
with only some exceptions. The majority of deviations is by
one rank, with only one exception (package: fr.icms.
printing). The specific package is ranked as high risk
according to stakeholders, but as low risk, based on IGRI.
According to a lead developer of the MaQuali software: “the
printing package was difficult to maintain and keep sustain-
able, because of the lack of strong printing support for java

programs (especially custom HTML printing).” The fact that
the interest probability of this package is quite low, we can
infer that the opinion of stakeholders on risk is more related
to Technical Debt Interest (i.e., maintenance difficulty)
rather than maintenance frequency.

Regarding the extreme cases (highest or lowest IGRI),
the packages fr.icms.db and fr.icms.sorters
are correctly characterized as high and low risks by both
stakeholders and IGRI (the dot on lower left is ranked with
1 from both IGRI and practitioners, as well as the dot on the
upper right is ranked with 10 from both IGRI and practi-
tioners). Quoting a practitioner: “On the one hand, the fr.
icms.sorters package is rarely maintained, because the
code is pretty basic (no complex logic inside) and classes
inside are used as basic components in lots of other parts of
the application, so most of maintenance was made on the
beginning of development phase of the project. On the other
hand, the difficulty in maintaining the fr.icms.db pack-
age comes from the fact that new requested features implied
the modification of the underlying database structure.” This
confirms that both ease of maintenance and maintenance
load are deemed as important by the practitioners.

To explore if the aforementioned results are statistically
significant, we performed a Spearman Rank correlation
analysis. The results (correlation coefficient: 0.827 and
sig: 0.003) of the test suggest that the two ranks are very
strongly correlated (and statistically significant). Thus, an
IGRI-based prioritization can safely subsume [35] the rank-
ing that an experienced practitioner would provide to pack-
ages in terms of risk to generate Technical Debt Interest.

Fig. 4   Risk ranking consistency of IGRI and perception of stakehold-
ers

SN Computer Science (2021) 2:12 	 Page 9 of 12  12

SN Computer Science

This outcome is significant, in the sense that IGRI calcula-
tion is automated; therefore, it can easily scale at large code-
bases, and is unbiased from stakeholders experience. Thus,
inexperienced developers can use the ranking and identify
maintainability challenges similarly to more experienced
developers.

Relation of IGRI and New Code

In this section, we use the IGRI metric, so as to explore the
relation between new code and the risk of generating TD
Interest. New code has been discussed in the literature as an
alternative to refactoring, for reducing the amount of techni-
cal debt [16, 39]. To this end, we explore: (a) if the average
percentage of new code that is accumulated in a package
along evolution is associated with a decrease or increase of
IGRI–RQ2.1; and (b) if there is a relation between IGRI and
the quality of the new code–RQ2.2.

Regarding RQ2.1, we first explore if the average percent-
age of new code (in all versions) against all lines of code of
the package is correlated to IGRI of the package (calculated
as the average value of the IGRI score of its classes). The
results suggest that there exists a very strong (correlation
coefficient: –0.745 and sig: 0.012) negative relation, that
is statistically significant. The negative sign of the relation
suggests that the less new code is introduced in a package,
the higher the risk of the corresponding package generat-
ing interest. To visualize the aforementioned relationship, in

Fig. 5, we present the boxplots of IGRI for each percentile
(quartile) of new code density. For instance, the first per-
centile corresponds to packages that 0–25% of their code
in each version (on average) is new. Based on Fig. 5, the
median IGRI for the packages of this group is approx. 8
(mean value: 13.84), whereas the median IGRI for packages
in which new code accounts for 26–50% of their codebase
the median is almost zero (mean value: 1.09).

Regarding RQ2.2, rather than focusing on the amount
of new code that is added, we focus on the quality of the
new code. Thus, we correlated the TDdensity of the new code
with IGRI. The results of the Spearman correlation suggest
a moderate negative correlation (correlation coefficient:
–0.547 and sig: 0.100); which, however, is not statistically
significant. This result also suggests that new code of better
quality tends to reduce the risk of generating interest, but
this result cannot be generalized. To visualize the difference,
we split the dataset into two groups (poor quality—TDdensity
> 1.0 and good quality—TDdensity < 1.0 ) and provide the
boxplots of IGRI—see Fig. 6. Despite the difference in the
mean values (2.55 for Good Quality Code vs. 7.49 for Poor
Quality Code), the two samples do not differ statistically
significantly. However, this could be due to the small sample
size of our case study.

By synthesizing the results of RQ2.1 and RQ2.2, we can
claim that new code is related to the risk of generating inter-
est. In the general case, the more new code is inserted along
evolution, the lower the risk, and if this new code is “clean”,

Fig. 5   Percentage of new code
and risk of producing interest

	 SN Computer Science (2021) 2:12 12   Page 10 of 12

SN Computer Science

the impact of the Technical Debt Interest Risk is further
reduced. This result complies with the literature, suggest-
ing that clean new code reduces the amount of Technical
Debt Principal along evolution [16, 39]. Additionally, we
emphasize that the amount of new code appears to be a more
important factor for reducing the risk of producing Technical
Debt Interest, compared to the quality of the code. This find-
ing is surprising as code of better quality would be expected
to decrease the risk of heavy maintenance; thus, it deserves
further investigation.

Discussion

Interpretation of Results. The findings of this study (RQ1)
confirm that the proposed metric captures with sufficient accu-
racy and the urgency of fixing problems, as it is perceived by
software engineers. This result is reasonable: technical debt
items with limited probability to undergo changes in the future
are naturally deemed as less urgent to fix. The same holds
for items with reduced interest; software engineers are less
concerned about the maintenance of artifacts that exhibit low
interest (because they are simple or well designed). The second
research question of the study revealed that the risk of code
packages to generate interest is negatively associated with the
amount (frequency and extent) of new code introduced into
them along evolution. New code is often of better quality than
the existing code base; thus, the more new code is added in

each revision, the lower the risk of incurring technical debt
interest.

Implications for Researchers and Software Practition-
ers. Prioritizing preventive maintenance tasks is a key activity
in Technical Debt Management, especially for large codebases
with numerous opportunities for improvement. The proposed
Interest Generation Risk Importance (IGRI) captures accu-
rately the perception of software engineers as to whether a
software package should be ’refactored’ to address its technical
debt. We conjecture that IGRI can efficiently prioritize soft-
ware artifacts at other levels of granularity, as well, but this is
a subject of future work. A development team can systemati-
cally obtain IGRI by tracking technical debt interest (though a
framework such as SDK4ED) and the frequency of changes to
software artifacts. Furthermore, the preliminary evidence that
new code (and especially ‘better’ new code) is associated with
lower risk of incurring interest highlights the importance of
tracking the quality of new code. Imposing the use of Quality
Gates as a means of controlling the quality of new code can
naturally lower the risk of maintainability issues in the future.

Threats to Validity

In this section, we discuss threats to the validity of the study,
including threats to construct, external validity, and reliabil-
ity. The study does not aim at establishing cause-and-effect
relations, and is thus not concerned with internal validity.

Fig. 6   Quality of new code and
risk of producing interest

SN Computer Science (2021) 2:12 	 Page 11 of 12  12

SN Computer Science

Construct Validity reflects how far the examined phe-
nomenon is connected to the intended objectives. As primary
construct validity threat in technical debt analysis, we should
acknowledge the inherent difficulties in assessing technical
debt interest. Interest is defined as the additional (future)
maintenance effort because of code, design or architectural
inefficiencies. By definition, future maintenance cannot be
anticipated neither the additional effort compared to an ideal
TD-free implementation.

Reliability reflects whether the study has been conducted
and reported in a way that others can replicate it and reach
the same results. To mitigate any reliability threats, we
report all steps followed to obtain the dataset for the investi-
gated research questions and provide links to the employed
tools. Moreover, the employed dataset along with the vari-
able values for the statistical analysis is available in a repli-
cation package6.

External Validity is related to the ability of generalizing
the findings to other settings, e.g., other software projects,
other programming languages, and possibly other technical
debt tools. The current study suffers from such threats as
only one software system, written in a particular language,
has been analyzed. Given the importance of technical debt
prioritization, we plan to conduct further studies on the
validity of IGRI in other settings.

Conclusions

Acknowledging that efficient prioritization of technical debt
repayment is key for software sustainability, we have intro-
duced a simple, yet effective way to estimate risk importance
of technical debt items. By considering both the amount of
technical debt interest as well as the probability of artifacts
to undergo changes, we have proposed the Interest Genera-
tion Risk Importance (IGRI) measure. IGRI quantifies the
impact of a possible change in a specific artifact that suffers
from technical debt.

The empirical validation in an industrial setting revealed
that IGRI captures accurately the notion of urgency to fix
issues, as perceived by software engineers. Moreover, the
more new code is added to a software system, the lower the
risk to generate interest, compared to already existing code.
Future work can shed light into the particular characteristics
of software artifacts and development practices that lead to
increased risk of technical debt interest generation.

Acknowledgements  Work reported in this paper has received funding
from the European Union H2020 research and innovation programme
under grant agreement No. 780572 (project: SDK4ED).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Alves NS, Mendes TS, de Mendonça MG, Spínola RO, Shull F,
Seaman C. Identification and management of technical debt: a
systematic mapping study. Inf Softw Technol. 2016;70:100–21.

	 2.	 Ampatzoglou A, Ampatzoglou A, Chatzigeorgiou A, Avgeriou
P. The financial aspect of managing technical debt: a systematic
literature review. Inf Softw Technol. 2015;64:52–73. https​://doi.
org/10.1016/j.infso​f.2015.04.001.

	 3.	 Ampatzoglou A, Michailidis A, Sarikyriakidis C, Ampatzoglou A,
Chatzigeorgiou A, Avgeriou P. A framework for managing inter-
est in technical debt: an industrial validation. In: Proceedings of
the 2018 International Conference on Technical Debt; 2018. p.
115–124.

	 4.	 Ampatzoglou A, Michailidis A, Sarikyriakidis C, Ampatzoglou A,
Chatzigeorgiou A, Avgeriou P. A framework for managing interest
in technical debt: An industrial validation. In: Proceedings of the
2018 International Conference on Technical Debt, TechDebt ’18,
p. 115–124. Association for Computing Machinery, New York,
NY, USA; 2018. https​://doi.org/10.1145/31941​64.31941​75.

	 5.	 Arvanitou EM, Ampatzoglou A, Bibi S, Chatzigeorgiou A, Sta-
melos I. Monitoring technical debt in an industrial setting. In:
Proceedings of the Evaluation and Assessment on Software
Engineering, EASE ’19, p. 123–132. Association for Com-
puting Machinery. New York, NY, USA; 2019. https​://doi.
org/10.1145/33190​08.33190​19.

	 6.	 Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P. A
method for assessing class change proneness. In: Proceedings of
the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE’17, p. 186–195. Association for
Computing Machinery. New York, NY, USA; 2017. https​://doi.
org/10.1145/30842​26.30842​39.

	 7.	 Boehm B. Software risk management. In: European Software
Engineering Conference. Springer; 1989. p. 1–19.

	 8.	 Boehm B, Sullivan K. Software economics: a roadmap, the future
of software engineering. In: Proceedings of the 22nd International
Conference on Software Engineering; 2000. p. 319–343. https​://
doi.org/10.1145/33651​2.33658​4

	 9.	 Boehm BW. Software risk management: principles and practices.
IEEE Softw. 1991;8(1):32–41.

	10.	 Boehm BW. Software risk management: principles and practices.
IEEE Softw. 1991;8(1):32–41. https​://doi.org/10.1109/52.62930​.

	11.	 Charalampidou S, Arvanitou EM, Ampatzoglou A, Avgeriou
P, Chatzigeorgiou A, Stamelos I. Structural quality metrics as
indicators of the long method bad smell: An empirical study. In:

6  https​://drive​.googl​e.com/drive​/folde​rs/1c2RX​6KmmB​CLoU-ac2uE​
Pxc5F​2NMlS​gjx.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1145/3194164.3194175
https://doi.org/10.1145/3319008.3319019
https://doi.org/10.1145/3319008.3319019
https://doi.org/10.1145/3084226.3084239
https://doi.org/10.1145/3084226.3084239
https://doi.org/10.1145/336512.336584
https://doi.org/10.1145/336512.336584
https://doi.org/10.1109/52.62930
https://drive.google.com/drive/folders/1c2RX6KmmBCLoU-ac2uEPxc5F2NMlSgjx
https://drive.google.com/drive/folders/1c2RX6KmmBCLoU-ac2uEPxc5F2NMlSgjx

	 SN Computer Science (2021) 2:12 12   Page 12 of 12

SN Computer Science

2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA); 2018. p. 234–238. IEEE

	12.	 Chidamber SR, Darcy DP, Kemerer CF. Managerial use of metrics
for object-oriented software: an exploratory analysis. IEEE Trans
Softw Eng. 1998;24(8):629–39.

	13.	 Conejero JM, Rodríguez-Echeverría R, Hernández J, Clemente PJ,
Ortiz-Caraballo C, Jurado E, Sánchez-Figueroa F. Early evalua-
tion of technical debt impact on maintainability. J Syst Softw.
2018;142:92–114. https​://doi.org/10.1016/j.jss.2018.04.035http://
www.scien​cedir​ect.com/scien​ce/artic​le/pii/S0164​12121​83007​36.

	14.	 Cunningham W. The wycash portfolio management system. OOPS
Messenger. 1993;4(2):29–30 http://dblp.uni-trier​.de/db/journ​als/
oopsm​/oopsm​4.html#Cunni​ngham​93.

	15.	 Digkas G, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P. On the
temporality of introducing code technical debt. In: 13th Interna-
tional Conference on the Quality of Information and Communica-
tions Technology (QUATIC 2020). Springer; 2020.

	16.	 Digkas G, Lungu M, Chatzigeorgiou A, Avgeriou P. The evolution
of technical debt in the apache ecosystem. In: European Confer-
ence on Software Architecture. Springer; 2017. p. 51–66. https​://
doi.org/10.1007/978-3-319-65831​-5_4

	17.	 Guo Y, Seaman C. A portfolio approach to technical debt manage-
ment. In: Proceedings of the 2nd Workshop on Managing Techni-
cal Debt, MTD ’11, p. 31–34. Association for Computing Machin-
ery, New York, NY, USA; 2011. https​://doi.org/10.1145/19853​
62.19853​70.

	18.	 Harrington HJ. Poor-quality cost: implementing, understanding,
and using the cost of poor quality. Boca Raton: CRC Press; 1987.

	19.	 Kazman R, Cai Y, Mo R, Feng Q, Xiao L, Haziyev S, Fedak V,
Shapochka, A. A case study in locating the architectural roots
of technical debt. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering; 2015. vol. 2, p. 179–188.

	20.	 Letouzey JL. The sqale method for evaluating technical debt.
In: 2012 Third International Workshop on Managing Techni-
cal Debt (MTD). 2012; p. 31–36. IEEE. https​://doi.org/10.1109/
MTD.2012.62259​97

	21.	 Li W, Henry S. Object-oriented metrics that predict main-
tainability. J Syst Softw. 1993;23(2):111–22. https​://doi.
org/10.1016/0164-1212(93)90077​-B. http://www.scien​cedir​ect.
com/scien​ce/artic​le/pii/01641​21293​90077​B. Object-Oriented
Software.

	22.	 Li Z, Avgeriou P, Liang P. A systematic mapping study on techni-
cal debt and its management. J Syst Softw. 2015;101:193–220.

	23.	 Martin RC. Clean code: a handbook of agile software craftsman-
ship. London: Pearson Education; 2009.

	24.	 Ouni A, Kessentini M, Sahraoui H. Multiobjective optimization
for software refactoring and evolution. In: Advances in Comput-
ers, vol. 94. Elsevier; 2014. p. 103–167. https​://doi.org/10.1016/
B978-0-12-80016​1-5.00004​-9

	25.	 Papadopoulos L, Marantos C, Digkas G, Ampatzoglou A, Chatz-
igeorgiou A, Soudris D. Interrelations between software quality
metrics, performance and energy consumption in embedded appli-
cations. In: Proceedings of the 21st International Workshop on
Software and Compilers for Embedded Systems; 2018. p. 62–65.

	26.	 Riaz M, Mendes E, Tempero E. A systematic review of soft-
ware maintainability prediction and metrics. In: 2009 3rd Inter-
national Symposium on Empirical Software Engineering and
Measurement; 2009. p. 367–377. IEEE. https​://doi.org/10.1109/
ESEM.2009.53142​33

	27.	 Runeson P, Host M, Rainer A, Regnell B. Case study research in
software engineering: Guidelines and examples. Hoboken: Wiley;
2012.

	28.	 Seaman C, Guo Y. Chapter 2—measuring and monitoring techni-
cal debt. Elsevier; 2011. p. 25 – 46. https​://doi.org/10.1016/B978-
0-12-38551​2-1.00002​-5. http://www.scien​cedir​ect.com/scien​ce/
artic​le/pii/B9780​12385​51210​00025​

	29.	 Seaman C, Guo Y, Zazworka N, Shull F, Izurieta C, Cai Y, Vetrò
A. Using technical debt data in decision making: potential deci-
sion approaches. In: 2012 Third International Workshop on Man-
aging Technical Debt (MTD); 2012. pp. 45–48. IEEE. https​://doi.
org/10.1109/MTD.2012.62259​99

	30.	 Siavvas M, Gelenbe E. Optimum Checkpointing for Long-running
Programs. In: 15th China-Europe International Symposium on
Software Engineering Education; 2019.

	31.	 Siavvas M, Gelenbe E. Optimum interval for application-level
checkpoints. In: 2019 6th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE
International Conference on Edge Computing and Scalable Cloud
(EdgeCom); 2019. pp. 145–150. IEEE.

	32.	 Siavvas M, Gelenbe E, Kehagias D, Tzovaras D. Static analysis-
based approaches for secure software development. In: Inter-
national ISCIS Security Workshop. Springer, Cham; 2018. pp.
142–157.

	33.	 Siavvas M, Marantos C, Papadopoulos L, Kehagias D, Soudris
D, Tzovaras D. On the relationship between software security
and energy consumption. In: 15th China-Europe International
Symposium on Software Engineering Education; 2019.

	34.	 Siavvas M, Tsoukalas D, Jankovic M, Kehagias D, Chatzigeorgiou
A, Tzovaras D, Anicic N, Gelenbe E. An empirical evaluation of
the relationship between technical debt and software security. In:
9th International Conference on Information Society and Technol-
ogy (ICIST), vol. 2019; 2019.

	35.	 Society IC. 1061–1998: IEEE standard for a software quality met-
rics methodology. IEEE; 2009.

	36.	 Sommerville I. Software engineering. 9th ed. Boston: Addison-
Wesley Publishing Company; 2010.

	37.	 Tsimpourlas F, Papadopoulos L, Bartsokas A, Soudris D. A design
space exploration framework for convolutional neural networks
implemented on edge devices. IEEE Trans Comput Aided Des
Integr Circuits Syst. 2018;37(11):2212–21.

	38.	 Tsintzira A, Ampatzoglou A, Matei O, Ampatzoglou A, Chatz-
igeorgiou A, Heb R. Technical debt quantification through met-
rics: An industrial validation. In: 15th China-Europe International
Symposium on Software Engineering Education (CEISEE’ 19);
2019.

	39.	 Zabardast E, Gonzalez-Huerta J, Šmite D. Refactoring, bug fixing,
and new development effect on technical debt: An industrial case
study. In: 46th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications (SEAA 2020). IEEE; 2020.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2018.04.035
http://www.sciencedirect.com/science/article/pii/S0164121218300736
http://www.sciencedirect.com/science/article/pii/S0164121218300736
http://dblp.uni-trier.de/db/journals/oopsm/oopsm4.html#Cunningham93
http://dblp.uni-trier.de/db/journals/oopsm/oopsm4.html#Cunningham93
https://doi.org/10.1007/978-3-319-65831-5_4
https://doi.org/10.1007/978-3-319-65831-5_4
https://doi.org/10.1145/1985362.1985370
https://doi.org/10.1145/1985362.1985370
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1016/0164-1212(93)90077-B
https://doi.org/10.1016/0164-1212(93)90077-B
http://www.sciencedirect.com/science/article/pii/016412129390077B
http://www.sciencedirect.com/science/article/pii/016412129390077B
https://doi.org/10.1016/B978-0-12-800161-5.00004-9
https://doi.org/10.1016/B978-0-12-800161-5.00004-9
https://doi.org/10.1109/ESEM.2009.5314233
https://doi.org/10.1109/ESEM.2009.5314233
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
http://www.sciencedirect.com/science/article/pii/B9780123855121000025
http://www.sciencedirect.com/science/article/pii/B9780123855121000025
https://doi.org/10.1109/MTD.2012.6225999
https://doi.org/10.1109/MTD.2012.6225999

	The Risk of Generating Technical Debt Interest: A Case Study
	Abstract
	Introduction
	Related Work and Background Information
	Technical Debt Prioritization
	Software Risk Management

	Assessing the Risk of Generating Interest
	Technical Debt Interest
	Technical Debt Interest Probability

	Case Study Design
	Research Goals and Questions
	Cases and Units of Analysis
	Data Collection
	Data Analysis

	Results
	Ability of IGRI to Prioritize TD Artifacts
	Relation of IGRI and New Code

	Discussion
	Threats to Validity
	Conclusions
	Acknowledgements
	References

