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Abstract
Technical Debt (TD) interest refers to the extra maintenance costs incurred by the very existence of TD items in a system. The 
generation of TD interest can make or break a system: too little interest and the effect of TD is negligible; too much interest 
and the system becomes unsustainable. In this paper, we consider the generation of interest as a risk and present a metric to 
quantify this risk. Subsequently, we validate this metric in two ways. First, we explore whether the metric can be effectively 
used to prioritize TD remediation. Second, we investigate if adding new code reduces the risk of interest generation. The 
results of the study suggest that: (a) the proposed risk management metric is capable of efficiently prioritizing TD items; and 
(b) that the new code that is introduced in the system is usually less risky for producing interest, compared to legacy code.

Keywords  Technical debt · Maintainability · New code · Clean code

Introduction

Technical Debt is a software engineering metaphor that 
draws an analogy between shortcuts in development and 
taking out a loan [14]. In particular, the metaphor considers 

that a software development organization (intentionally 
or unintentionally) limits the development time/resources 
through shortcuts, and thus saves a specific amount of 
money (amount of loan–TD Principal) [1, 2]. This benefit 
comes with an associated cost, as the product is released 
with sub-optimal quality, leading to the occurrence of main-
tenance costs [18]; such costs are termed TD Interest and 
include bug fixing, understanding the existing code, adding 
new features, etc. [1, 2]. While TD Principal is deterministic, 
TD interest is probabilistic: we are not sure how frequently 
and to what extent a software artifact will change in the 
upcoming versions (thus generating interest). The probabil-
ity of an artifact to generate interest is termed TD Interest 
Probability [28].

The generation of interest plays a crucial role for the 
impact of TD on software maintenance. Modules that are 
rarely maintained do not cause real problems along software 
evolution even if they suffer from high TD; paying back the 
TD is in such cases unnecessary. On the contrary, modules 
with TD that are often maintained can cause severe over-
head when performing future changes. Thus, we consider 
the generation of interest as a risk that threatens software 
maintainability.

In this study, we propose a metric, namely Interest Gen-
eration Risk Importance (IGRI), to estimate the risk of 
interest generation. According to Barry Boehm [9], the 
importance of a risk can be calculated as the product of 
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its impact and likelihood to occur. In the case of IGRI, the 
likelihood of the risk corresponds to interest probability, 
whereas the impact to the amount of technical debt interest.

The proposed metric can be useful in a number of ways; 
in this study, we validate two of them. The first is to assist 
TD Prioritization, i.e., the priority to refactor a software 
artifact [22]. Artifacts that pose a higher risk to generate 
TD interest would be more urgent for refactoring to prevent 
excessive maintenance costs. The second is to assess the 
effect of writing clean new code on the technical debt evo-
lution of the system. If new code is less risky to generate 
interest, the sustainability of the system can be improved by 
the addition of clean new code. The clean code paradigm is 
supported in the literature as an alternative to refactoring for 
the improvement of software quality [23], and it tends to be 
preferable from the developers’ side, as a means to control 
the amount of technical debt in the system [5].

The research work reported in this study has been con-
ducted in the context of the SDK4ED1 project, funded by 
the European Union’s Horizon 2020 research and innovation 
programme. The goal of the project is to investigate trade-
offs between optimizations applied to improve Technical 
Debt, Security, and Energy dissipation in software inten-
sive systems. Furthermore, the SDK4ED platform aims at 
assisting decision-making with respect to investments on 
software improvements. The assessment of artifacts which 
pose a high risk of generating TD interest outlined in this 
study is aligned with the overall goal of the project to nar-
row down the recommended refactoring opportunities. 
Choosing among optimizations to mitigate software vulner-
abilities detected through static analysis [32], to improve 
performance [30, 31] and energy consumption [37], and to 
improve software maintainability [3, 11] is a non-trivial task. 
Research has proved the existence of interrelations between 
these qualities [25, 33, 34] rendering the extraction of the 
best possible sequence of software refactoring subject to a 
Multi-Criteria Decision-Making (MCDM) analysis which 
has been implemented in the SDK4ED platform.

The rest of the paper is organized as follows. In “Related 
Work and Background Information”, we present: (a) related 
work on technical debt prioritization; (b) background work 
on software risk management. The framework that we use 
for calculating Technical Debt Interest and Interest Prob-
ability, as well as the proposed metric are introduced in 
“Assessing the Risk of Generating Interest”. In “Case Study 
Design”, we present the empirical design through which we 
explore the two aforementioned usage scenarios of the met-
ric. In “Results”, we answer the research questions. In “Dis-
cussion”, we discuss the main findings, whereas in “Threats 

to Validity”, the main threats to validity. Finally, in “Conclu-
sions”, we conclude the paper.

Related Work and Background Information

In this section, we present related work and background 
information necessary for understanding this study. In 
particular, in  “Technical Debt Prioritization”, we present 
related work: i.e., studies on technical debt prioritization; 
whereas in “Software Risk Management”, we discuss 
background concepts from the software risk management 
literature.

Technical Debt Prioritization

The process of TD prioritization ranks identified TD items, 
according to certain predefined rules to support deciding 
which TD items should be repaid first and which TD items 
can be tolerated until later releases [22]. According to Li 
et al. [22], TD Prioritization has been studied in 18% of the 
TD research corpus.

TD prioritization methods can be discussed under two 
perspectives: based on the concepts used as inputs, as well 
as, based on the approach used for prioritization per se. With 
respect to inputs, according to Seaman and Guo [28], TD 
prioritization can be performed, either based on Technical 
Debt principal, Technical Debt interest, or Technical Debt 
interest probability. With respect to approach, existing meth-
ods for TD prioritization can be categorized into four main 
classes.

–	 The first class uses cost/benefit analysis, suggesting that 
if resolving a TD item can yield a higher benefit than 
cost, then this TD item should be repaid. TD items with 
higher cost/benefit ratios of repayment should be repaid 
first [29].

–	 The second class suggests that TD items that are more 
costly to resolve should be repaid first [20].

–	 The third class uses portfolio management. In these 
approaches, TD items along with other new function-
alities and bugs are considered as risks and investment 
opportunities (i.e., assets). “The goal of portfolio man-
agement is to select the asset set that can maximize the 
return on investment or minimize the investment risk 
[17]”

–	 The final class suggests that TD items incurring the 
higher interest should be repaid first [28].

Software Risk Management

Risk management is a software engineering practice 
(involving processes, methods, and tools) that: (a) assesses 1  https​://sdk4e​d.eu/.

https://sdk4ed.eu/
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continuously what can go wrong (risks); (b) determines what 
risks are important to deal with; and (c) implements strate-
gies to deal with those risks [7]. According to Boehm, there 
are three main categories of risks: project risks, product 
risks, and business risks [10]. Among these categories, the 
generation of Technical Debt Interest falls in the product risk 
category: i.e., “risks that affect the quality or performance 
of the software being developed”. In this paper, we focus on 
Risk Analysis (see Sommerville [36]): risk analysis aims 
at assessing the likelihood and consequences of all risks 
identified in a system. Therefore, the rest of this sub-section 
focuses on how risks can be assessed. In the literature, there 
are two main schools for risk assessment: categorical risk 
assessment and continuous risk assessment.

Categorical risk assessment. According to Sommerville 
[36], risk analysis relies on judgement and experience to 
find the probability of a risk (rare, unlikely, possible, likely, 
or almost certain) and the effects of the risk (catastrophic, 
major, moderate, minor, or negligible). Based on this, the 
project managers generate a table according to seriousness 
of risk and update it during each iteration of the risk process, 
as shown in Fig. 1.

Continuous risk assessment. In a seminal work of 
software project management, Boehm [10] introduced the 

basic principles of software risk management. As part of 
risk analysis, he suggests that risk exposure (also termed 
as risk impact) can be calculated as the product of the 
probability of unsatisfactory outcome and the loss caused 
by the unsatisfactory outcome.

Assessing the Risk of Generating Interest

This section focuses on tailoring the concepts covered 
in “Software Risk Management” to fit the technical debt 
metaphor. IGRI is meant to quantify the impact of a possi-
ble change in a specific artifact that suffers from technical 
debt, by assessing the probability of this artifact to change 
and the amount of interest that is going to be generated, 
upon such a tentative change. The rationale of the met-
ric relies on the risk importance formula, as proposed by 
Boehm [8], which can be formulated as:

The rest of this section describes the way that TD Interest 
and TD Interest Probability are calculated.

(1)IGRI = Interest × Interest Probability.

Fig. 1   Risk assessment matrix
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Technical Debt Interest

In this study, we calculate Technical Debt Interest based on 
the FITTED framework [2]. The estimation of Technical 
Debt Interest is a challenging endeavor as interest refers to the 
“additional” maintenance costs, incurred by inefficiencies in 
software. The nominal software maintenance effort, i.e., the 
effort that would have been required in case the system had 
zero technical debt, is unknown. The FITTED methodology, 
which has been proposed [2] and empirically validated in our 
previous work [4, 38], attempts to calculate interest by estimat-
ing the “sub-optimality” of any given software artifact. FIT-
TED assumes that any software artifact (or an entire system) 
has an actual implementation, and a hypothetical optimal one 
(in terms of maintainability). Maintaining the optimal system 
would require less effort than maintaining the actual system 
(see Fig. 2).

Despite the fact that a system can by no means be charac-
terized as globally optimal, based solely on the optimization 
of some structural characteristics, several studies in the area 
of multi-objective software optimization aim at extracting 
an optimal sequence of refactoring operations that improve 
the software quality [24]. As shown in Fig. 2, adding a new 
feature A to the optimal system would need a certain effort, 
noted as Effort(optimum), whereas adding the same feature to 
the actual system necessitates a larger effort, noted as Effort 
(actual). The difference between these two efforts represents 
the Technical Debt Interest that is accumulated during this 
maintenance activity. The overarching assumption of FITTED 
is that maintenance effort is inversely proportional to the main-
tainability of the system (or of an individual artifact)—see 
Eq. 2:

(2)Effort = � × (1∕maintainability).

Given Eq. 2, the ratio of the maintenance effort for the 
optimal system (which is unknown) over the effort for the 
actual system can be expressed as:

For convenience, we call the ratio in the right-hand side 
of Eq. 3 Maintainability Level of the actual artifact, as it 
expressed its relative quality compared to its hypothetical 
optimal implementation. Thus, the effort for maintaining the 
optimal system can be expressed as:

Finally, based on its definition, Technical Debt Interest can 
be calculated using the difference between the actual and the 
optimal effort, as follows:

Maintainability. Although no single function can capture 
all aspects of quality, for the sake of simplicity, we assume 
that the hypothetical ’optimal’ system is the one that opti-
mizes a certain fitness function assessing the quality of soft-
ware (e.g., in terms of complexity, cohesion, coupling, etc. 
or any aggregate form of selected qualities). To enable the 
calculation of the aforementioned maintainability level, we 
first identify a set of artifacts (e.g., classes, packages, and 
systems [4]) that can be considered (structurally) similar, 
i.e., in terms of lines of code, number of methods, cogni-
tive complexity, etc. Next, we calculate the optimal value 
of selected metrics among the set of similar artifacts. These 
best metric scores are assumed to characterize the hypotheti-
cal ‘optimal’ which the artifact under study could potentially 
reach. A simplified example is outlined in Fig. 3.

Then, we calculate the average ratio of the metric score 
of the artifact under study, compared to the optimal value, 
yielding its maintainability level. The metrics that we have 
selected to use in our study for quantifying maintainability 
(see Table 1) belong to well-known metric suites [12, 21]. 
The metric selection was based on a secondary study by Riaz 
et al. [26], which reported on a systematic literature review 
(SLR) aimed at summarizing software metrics that can be 
used as maintainability predictors.

Maintenance Effort. Since the evolution of software 
cannot be predicted under normal circumstances, it is not 
possible to foresee what kind of modifications (e.g., bug 
fixes, introduction of new features, refactoring, etc.) will be 
made in a system during future releases. Hence, we follow 
a simple, yet relatively reasonable approach, and base our 
assessment of future maintenance effort on historical data. 
In particular, to consider past effort spent on maintenance 

(3)
Effortopt

Effortact
=

maintainabilityact

maintainabilityopt
.

(4)Effortopt = Effortact ×MaintainabilityLevelact.

(5)
TD Interest = Effortact × (1 −MaintainabilityLevelact).

Fig. 2   Increased maintenance effort for technical debt items [3]
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activities for each artifact, we record the average lines of 
code added/deleted/modified between all pairs of successive 
versions of a system (code churn). Consequently, we project 
this average maintenance effort per version to future releases 
of the analyzed artifact. This strategy has been used in a 
variety of studies on software evolution [13, 19].

Technical Debt Interest Probability

Interest probability is calculated based on past maintenance 
data. To this end, we use the Percentage of Commits in which 
a Class has Changed (PCCC) metric [6]. Despite the fact that 

there is a relation between Maintenance Effort and PCCC, the 
two measures correspond to different views of the same phe-
nomenon, in the sense that Maintenance Effort captures lines 
of code (i.e., the average extent of change), whereas PCCC a 
number of commits (frequency of changes). Thus, we con-
sider them independent and suitable for being used in the same 
calculation.

Fig. 3   Notion of hypothetical 
optimal among similar artifacts

Table 1   Maintainability proxy metrics

Property Metric Description

Inheritance (Inh) DIT Depth of Inheritance Tree: Inheritance level number, 0 for the root class.
NOCC Number of Children Classes: Number of direct sub-classes that the class has.

Coupling (Cpl) MPC Message Passing Coupling: Number of send statements defined in the class.
RFC Response for a Class: Number of local methods plus the number of methods 

called by class methods.
DAC Data Abstraction Coupling: Number of abstract types defined in the class.

Cohesion (Coh) LCOM Lack of Cohesion of Methods: Number of disjoint sets of methods in the class.
Complexity (Com) CC Cyclomatic Complexity: Average cyclomatic complexity of methods in the class.

WMPC Weighted MethoWeighted
Size (Size) SIZE1 Lines of Code: Number of semicolons in the class.

SIZE2 Number of Properties: Number of attributes and methods in the class.
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Case Study Design

The case study is designed and reported based on the linear-
analytic structure as described by Runeson et al. [27]. This 
section presents the study design in detail.

Research Goals and Questions

The goal of this study, as mentioned in the Introduction sec-
tion, is twofold: (a) to assess whether the proposed metric 
can perform effective prioritization of TD items; and (b) to 
examine the risk of interest generation posed by new code. 
Based on the above, we have set two research questions that 
correspond to these two goals:

RQ1: Is IGRI able to prioritize TD items similarly to 
an expert? To answer this research question, we calculate 
IGRI for all classes of a project and we record the urgency 
to fix TD (specifically to improve the quality of individual 
classes), based on the expert opinion of software engineers. 
A correlation analysis between the IGRI values and the 
expert opinions could validate or invalidate IGRI as a suit-
able prioritization indicator. In case IGRI is able to resemble 
the expert opinion with a strong correlation, we would be 
able to resolve an important scalability problem in TDM, 
since experts cannot afford to assess hundreds or even thou-
sands of artifacts manually. Using IGRI, they would instead 
get automated suggestions on which TD items to check first 
for refactoring opportunities.

RQ2: Does new code pose a lower risk (in terms of 
IGRI) for generating TD interest? This question is refined 
through two sub-questions to distinguish between the quan-
tity and quality of new code:(RQ2.1) Is IGRI of a compo-
nent related to the amount of new code introduced to that 
component over time? and (RQ2.2) Is IGRI of a component 
related to the average quality of new code introduced to that 
component over time?

This research question focuses on new code introduced 
over time, which, as explained in “Introduction”, can be a 
promising technical debt reduction approach, if the new code 
is of high quality. To answer this research question, we need 
to first separate new from modified code in each commit, 
and then capture the extent as well as the quality of the new 
code. As a second step, we need to perform the FITTED 
analysis, and calculate IGRI. Finally, a correlation analysis 
will be performed to answer this research question. The out-
come of the analysis can inform researchers and practitioners 
whether the introduction of (clean) new code can lead to 
a more sustainable evolution, that generates less technical 
debt interest. We conjecture that the more and the cleaner 
the new code that is added in a component, the less the risk 
for that component to produce interest. Subsequently, one 
could advocate the writing of clean new code as a way to 

decrease the risk of generating interest, effectively reversing 
the negative effect of TD.

Cases and Units of Analysis

This study is an embedded multiple case study, in which 
the case is an existing software system (written in Java), 
and the units of analysis are its classes. The system that 
we have analyzed is MaQuali that is developed by Holisun 
SRL. MaQuali is a a quality management system (ISO 9001) 
supporting the handling of business processes. It consists 
of approx. 100 classes (more than 150,000 lines of code) 
and has been maintained for more than a decade. The sys-
tem consists of six main modules, managing the following 
entities: (a) fiches of progress, (b) actions to be taken, (c) 
documents involved in ISO quality control, (d) planning, (e) 
useful information, and (f) milestones.

Data Collection

To answer the aforementioned research questions, we have 
performed the following process. In the first step, we ini-
tially analyzed the MaQuali source code with the SDK4ED 
toolkit2 and quantified IGRI (Interest Generation Risk 
Importance) for every class of the software. Then, we 
aggregated the results at the level of packages. Next, we ran-
domly picked3 10 packages and asked Holisun’s engineers 
to provide a ranking of these packages in terms of mainte-
nance risk. This process has led us to the dataset outlined 
in Table 2. The first column corresponds to the name of the 

Table 2   TD interest assessment of MaQuali packages

Package Interest Interest prob-
ability

IGRI

fr.icms.db 57.67 $ 0.50 28.83
fr.icms.sorters 0.12 $ 0.00 0.00
fr.icms.models 16.22 $ 0.25 4.05
fr.icms streams 0.17 $ 0.12 0.02
fr.icms.mail 16.50 $ 0.50 8.25
fr.icms.renderers 0.46 $ 0.25 0.11
fr.icms.printing 1.71 $ 0.12 0.21
fr.icms.graph 0.70 $ 0.25 0.17
fr.icms.ui 9.97 $ 0.25 2.49
fr.icms.os 4.55 $ 0.25 1.13

2  https​://sdk4e​d.eu.
3  The selection process was as follows. First, we sorted the packages 
by IGRI, and then, we have demarcated 10 areas (bins), each one con-
taining 10% of the packages. Finally, we selected 10 software pack-
ages, randomly picked from each one of the 10% bins.

https://sdk4ed.eu
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class, the second column to interest (per commit), the third 
to interest probability, and the fourth to IGRI.

As a second step, we asked the software engineers of 
Holisun that focus on MaQuali maintenance to rank the 
aforementioned packages, based on the following question: 
“Please rank the aforementioned packages (ties are accept-
able—however, not preferable) in terms of the risk that their 
maintenance might lead to extreme delays. As maintenance, 
please consider the time that you spend for adding a new 
requirement, for fixing a bug, etc. In this question, consider 
not only the time required for one maintenance action, but 
also how frequently you need to maintain them. Assign 1 to 
the package that is the least risky and 20 to the most risky 
packages”. Packages have been shuffled for each respond-
ent, while the assessments of each package, based on the 
SDK4ED platform was hidden from the engineers. The anal-
ysis of the respondents’ answers (five software engineers) 
have been aggregated.

As a third step, we have performed the analysis of new 
code technical debt, similarly to our earlier work [15]. For a 
software system evolving through a number of revisions, we 
track new methods introduced either in entirely new pack-
ages or in existing classes. We then compute the quality of 
these new methods in terms of their technical debt by map-
ping identified technical debt issues to the line range of these 
methods. Note that we use the concept of ��density , which 
is the technical debt of these methods normalized over their 
size in lines of code. TDdensity enables the comparison of 
technical debt between artifacts of different sizes (such as 
new methods vs. the already existing system).

The process for analyzing git repositories (such as the 
repository of MaQuali) is briefly outlined in the following 
phases and individual steps:

Phase 1: Retrieval of commits 

1.	 First, the git history for the project under study is 
retrieved from its master branch.

2.	 All commits are sorted to form a time-series of revisions 
that have been performed on the source code. In case of 
commits with more than one parent, we have extracted 
the nodes leading to the longest path between the com-
mit node under examination and the start node (i.e., 
the only node with no parent). This choice avoids any 
(chronological) inconsistencies among revisions, and at 
the same time, the longest path yields the largest number 
of commits to be analyzed yielding a higher granularity 
for the analysis.

3.	 To reduce the computation time, a filtering step is 
applied by ignoring transitions between successive com-
mits that do not involve any changes to Java files.

Phase 2: Mapping of technical debt issues to methods

To map the identified technical debt issues to the class 
methods of each revision, we perform the following steps: 

1.	 First, for each revision, we retrieve all technical debt 
issues by performing the corresponding query to the 
SonarQube database.

2.	 Next, we map the identified technical debt issues to 
the methods of the corresponding revision. This is per-
formed by matching the line in which each technical 
debt issue is reported by SonarQube with the method 
containing that line.

Phase 3: Tracking new methods
We identify the introduction of new methods and the 

associated TDdensity as follows: 

1.	 For the new files of each revision (obtained from git 
history), we obtain their representation in the form of 
an Abstract Syntax Tree (AST)4. For each new file, we 
extract all its methods from the AST representation and 
then tag all these methods as new.

2.	 For the modified files of each revision, we track new 
methods in each transition with the help of the Gumtree 
Spoon AST Diff tool5.

Phase 4: Calculating the contribution of new methods to the 
change in the system’s TDdensity

Finally, we need to calculate, for each revision in the sys-
tem’s history, the contribution of new methods to the change 
of the system’s TDdensity . Let us consider a transition from 
revision t-1 to revision t. The contribution of new methods 
to the change in the TDdensity of the system is obtained with 
the following formula:

Contribution of new methods

Based on the aforementioned process, the following dataset 
has been developed: each row represented a class, whereas 
the columns held the following information: 

[V1]	� Package Name
[V2]	� IGRI
[V3]	� Expert opinion of Holisun Software Engineers on the 

Risk of the Class

(6)

ΔTDdensity(new)

=
TDt−1 + TDnew(t)

LOCt−1 + LOCnew(t)

− TDdensity(t − 1).

4  The AST is obtained through the Eclipse Java Development Tools 
(JDT).
5  https​://githu​b.com/Spoon​Labs/gumtr​ee-spoon​-ast-diff.

https://github.com/SpoonLabs/gumtree-spoon-ast-diff


	 SN Computer Science            (2021) 2:12    12   Page 8 of 12

SN Computer Science

[V4]	� Average LoC added as new code in the history of the 
package

[V5]	� Average contribution of new code in the TDdensity of 
the package.

Data Analysis

The aforementioned data have been analyzed using descrip-
tive statistics and by Spearman Correlation in pairs. To 
answer RQ1, we use the pair [V2]–[V3], and for RQ2.1, 
we use the pair [V2]–[V4], whereas for RQ2.2, the pair 
[V2]–[V5]. Especially, for RQ2.2, we have transformed [V5] 
variable to a categorical one (positive or negative contribu-
tions) and provided additional analysis.

Results

In this section, we present the results of the case study, 
organized by research question. In particular, in “Ability of 
IGRI to Prioritize TD Artifacts”, we present the results on 
the ability of IGRI to predict the risk of software packages 
to produce high interest. Subsequently, in “Relation of IGRI 
and New Code”, we use the newly proposed index to assess 
the contribution of new code to the risk of producing techni-
cal debt interest.

Ability of IGRI to Prioritize TD Artifacts

As a means for validating the ability of IGRI to estimate of 
the risk of a package to generate Technical Debt Interest, 
we contrast the metric to the perception of stakeholders on 
the risk of package maintenance to lead to extreme risks. To 
achieve this goal, since: (a) the two variables have a different 
value range; and (b) we focus on prioritization instead of 
prediction, we preferred to treat the two variables as ordi-
nal ones. Thus, we transformed them to the rank that corre-
sponds to a specific value (i.e., the highest IGRI is assigned 
the value 1; whereas the lowest IGRI is assigned the value 
10). To visualize the ability of IGRI to consistently rank 
packages, based on their risk to produce interest (metric 
property: consistency, according to the 1061–1998 IEEE 
Standard for Software Metrics [35]), in Fig. 4, we present 
a scatter plot.

As it can be observed from Fig. 4, the ranking is almost 
consistent (the dots are close to the main diagonal line), 
with only some exceptions. The majority of deviations is by 
one rank, with only one exception (package: fr.icms.
printing). The specific package is ranked as high risk 
according to stakeholders, but as low risk, based on IGRI. 
According to a lead developer of the MaQuali software: “the 
printing package was difficult to maintain and keep sustain-
able, because of the lack of strong printing support for java 

programs (especially custom HTML printing).” The fact that 
the interest probability of this package is quite low, we can 
infer that the opinion of stakeholders on risk is more related 
to Technical Debt Interest (i.e., maintenance difficulty) 
rather than maintenance frequency.

Regarding the extreme cases (highest or lowest IGRI), 
the packages fr.icms.db and fr.icms.sorters 
are correctly characterized as high and low risks by both 
stakeholders and IGRI (the dot on lower left is ranked with 
1 from both IGRI and practitioners, as well as the dot on the 
upper right is ranked with 10 from both IGRI and practi-
tioners). Quoting a practitioner: “On the one hand, the fr.
icms.sorters package is rarely maintained, because the 
code is pretty basic (no complex logic inside) and classes 
inside are used as basic components in lots of other parts of 
the application, so most of maintenance was made on the 
beginning of development phase of the project. On the other 
hand, the difficulty in maintaining the fr.icms.db pack-
age comes from the fact that new requested features implied 
the modification of the underlying database structure.” This 
confirms that both ease of maintenance and maintenance 
load are deemed as important by the practitioners.

To explore if the aforementioned results are statistically 
significant, we performed a Spearman Rank correlation 
analysis. The results (correlation coefficient: 0.827 and 
sig: 0.003) of the test suggest that the two ranks are very 
strongly correlated (and statistically significant). Thus, an 
IGRI-based prioritization can safely subsume [35] the rank-
ing that an experienced practitioner would provide to pack-
ages in terms of risk to generate Technical Debt Interest. 

Fig. 4   Risk ranking consistency of IGRI and perception of stakehold-
ers
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This outcome is significant, in the sense that IGRI calcula-
tion is automated; therefore, it can easily scale at large code-
bases, and is unbiased from stakeholders experience. Thus, 
inexperienced developers can use the ranking and identify 
maintainability challenges similarly to more experienced 
developers.

Relation of IGRI and New Code

In this section, we use the IGRI metric, so as to explore the 
relation between new code and the risk of generating TD 
Interest. New code has been discussed in the literature as an 
alternative to refactoring, for reducing the amount of techni-
cal debt [16, 39]. To this end, we explore: (a) if the average 
percentage of new code that is accumulated in a package 
along evolution is associated with a decrease or increase of 
IGRI–RQ2.1; and (b) if there is a relation between IGRI and 
the quality of the new code–RQ2.2.

Regarding RQ2.1, we first explore if the average percent-
age of new code (in all versions) against all lines of code of 
the package is correlated to IGRI of the package (calculated 
as the average value of the IGRI score of its classes). The 
results suggest that there exists a very strong (correlation 
coefficient: –0.745 and sig: 0.012) negative relation, that 
is statistically significant. The negative sign of the relation 
suggests that the less new code is introduced in a package, 
the higher the risk of the corresponding package generat-
ing interest. To visualize the aforementioned relationship, in 

Fig. 5, we present the boxplots of IGRI for each percentile 
(quartile) of new code density. For instance, the first per-
centile corresponds to packages that 0–25% of their code 
in each version (on average) is new. Based on Fig. 5, the 
median IGRI for the packages of this group is approx. 8 
(mean value: 13.84), whereas the median IGRI for packages 
in which new code accounts for 26–50% of their codebase 
the median is almost zero (mean value: 1.09).

Regarding RQ2.2, rather than focusing on the amount 
of new code that is added, we focus on the quality of the 
new code. Thus, we correlated the TDdensity of the new code 
with IGRI. The results of the Spearman correlation suggest 
a moderate negative correlation (correlation coefficient: 
–0.547 and sig: 0.100); which, however, is not statistically 
significant. This result also suggests that new code of better 
quality tends to reduce the risk of generating interest, but 
this result cannot be generalized. To visualize the difference, 
we split the dataset into two groups (poor quality—TDdensity 
> 1.0 and good quality—TDdensity < 1.0 ) and provide the 
boxplots of IGRI—see Fig. 6. Despite the difference in the 
mean values (2.55 for Good Quality Code vs. 7.49 for Poor 
Quality Code), the two samples do not differ statistically 
significantly. However, this could be due to the small sample 
size of our case study.

By synthesizing the results of RQ2.1 and RQ2.2, we can 
claim that new code is related to the risk of generating inter-
est. In the general case, the more new code is inserted along 
evolution, the lower the risk, and if this new code is “clean”, 

Fig. 5   Percentage of new code 
and risk of producing interest
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the impact of the Technical Debt Interest Risk is further 
reduced. This result complies with the literature, suggest-
ing that clean new code reduces the amount of Technical 
Debt Principal along evolution [16, 39]. Additionally, we 
emphasize that the amount of new code appears to be a more 
important factor for reducing the risk of producing Technical 
Debt Interest, compared to the quality of the code. This find-
ing is surprising as code of better quality would be expected 
to decrease the risk of heavy maintenance; thus, it deserves 
further investigation.

Discussion

Interpretation of Results. The findings of this study (RQ1) 
confirm that the proposed metric captures with sufficient accu-
racy and the urgency of fixing problems, as it is perceived by 
software engineers. This result is reasonable: technical debt 
items with limited probability to undergo changes in the future 
are naturally deemed as less urgent to fix. The same holds 
for items with reduced interest; software engineers are less 
concerned about the maintenance of artifacts that exhibit low 
interest (because they are simple or well designed). The second 
research question of the study revealed that the risk of code 
packages to generate interest is negatively associated with the 
amount (frequency and extent) of new code introduced into 
them along evolution. New code is often of better quality than 
the existing code base; thus, the more new code is added in 

each revision, the lower the risk of incurring technical debt 
interest.

Implications for Researchers and Software Practition-
ers. Prioritizing preventive maintenance tasks is a key activity 
in Technical Debt Management, especially for large codebases 
with numerous opportunities for improvement. The proposed 
Interest Generation Risk Importance (IGRI) captures accu-
rately the perception of software engineers as to whether a 
software package should be ’refactored’ to address its technical 
debt. We conjecture that IGRI can efficiently prioritize soft-
ware artifacts at other levels of granularity, as well, but this is 
a subject of future work. A development team can systemati-
cally obtain IGRI by tracking technical debt interest (though a 
framework such as SDK4ED) and the frequency of changes to 
software artifacts. Furthermore, the preliminary evidence that 
new code (and especially ‘better’ new code) is associated with 
lower risk of incurring interest highlights the importance of 
tracking the quality of new code. Imposing the use of Quality 
Gates as a means of controlling the quality of new code can 
naturally lower the risk of maintainability issues in the future.

Threats to Validity

In this section, we discuss threats to the validity of the study, 
including threats to construct, external validity, and reliabil-
ity. The study does not aim at establishing cause-and-effect 
relations, and is thus not concerned with internal validity.

Fig. 6   Quality of new code and 
risk of producing interest
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Construct Validity reflects how far the examined phe-
nomenon is connected to the intended objectives. As primary 
construct validity threat in technical debt analysis, we should 
acknowledge the inherent difficulties in assessing technical 
debt interest. Interest is defined as the additional (future) 
maintenance effort because of code, design or architectural 
inefficiencies. By definition, future maintenance cannot be 
anticipated neither the additional effort compared to an ideal 
TD-free implementation.

Reliability reflects whether the study has been conducted 
and reported in a way that others can replicate it and reach 
the same results. To mitigate any reliability threats, we 
report all steps followed to obtain the dataset for the investi-
gated research questions and provide links to the employed 
tools. Moreover, the employed dataset along with the vari-
able values for the statistical analysis is available in a repli-
cation package6.

External Validity is related to the ability of generalizing 
the findings to other settings, e.g., other software projects, 
other programming languages, and possibly other technical 
debt tools. The current study suffers from such threats as 
only one software system, written in a particular language, 
has been analyzed. Given the importance of technical debt 
prioritization, we plan to conduct further studies on the 
validity of IGRI in other settings.

Conclusions

Acknowledging that efficient prioritization of technical debt 
repayment is key for software sustainability, we have intro-
duced a simple, yet effective way to estimate risk importance 
of technical debt items. By considering both the amount of 
technical debt interest as well as the probability of artifacts 
to undergo changes, we have proposed the Interest Genera-
tion Risk Importance (IGRI) measure. IGRI quantifies the 
impact of a possible change in a specific artifact that suffers 
from technical debt.

The empirical validation in an industrial setting revealed 
that IGRI captures accurately the notion of urgency to fix 
issues, as perceived by software engineers. Moreover, the 
more new code is added to a software system, the lower the 
risk to generate interest, compared to already existing code. 
Future work can shed light into the particular characteristics 
of software artifacts and development practices that lead to 
increased risk of technical debt interest generation.
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