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1.4 Approach

We explored the following avenues of research:

• Data Augmentation

• Generative Adversarial Networks (Pix2Pix) [1, 2]

• Self Organizing Maps [3]

• Discriminative Loss [4]

• UNET [5]

• Mask RCNN [6]

1.5 Limitations

The key limitations of each of our experiments are as follows:

• Pre-processing: The transformed data may produce shapes that no longer
look like cells. This could potentially make the segmentation even harder.

• Generative Adversarial Network (Pix2Pix): Common caveats of deep learn-
ing approaches such as a lack of interpretability and long training times.

• Discriminative Loss: The feature dimension size requires tuning but in-
creasing it incurs a large computational cost.

• Self Organizing Maps: There was too much noise present in the images
for clustering.

• UNET: The network is designed for semantic segmentation so another step
is required to achieve instance segmentation.

• Mask RCNN: Results were limited by the model architecture, which is de-
signed for high contrast RGB images and commonly predicts low instance
numbers.

1.6 Future work

The key pieces of future work are as follows:

• Generative Adversarial Network (Pix2Pix): Change the architecture so
that it doesn’t down-scale the prediction images.

• Discriminative Loss: Perform hyper-parameter tuning of the number of
feature dimensions.

• Self Organizing Maps: Use dynamic re-organizing of the SOM units.
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• UNET: Use the network for border prediction and then use an algorithm
to fill in the bordered regions e.g. watershed algorithm.

• Mask RCNN: Fine-tune all the layers and lower the object detection
threshold.

• Post-processing: Fine tune the threshholding algorithm and/or use mor-
phological analysis to make decisions about when to split cells.

1.7 Conclusion

The group tested several different machine learning based approaches aiming to
perform either semantic, or full instance segmentation, of cells within bright-
field images. Two of these methods (self organising maps and descriminative
loss) were unsupervised which is highly desirable for this challenge where the
training set is very small. However although these methods showed some promise
we consider it unlikely that they will compete with the tested supervised
techniques even accounting for the small training set. With regards to semantic
segmentation preliminary results showed UNET to be a powerful framework
and this could be further improved by training to recognise boundary regions
in addition to signal and background. Mask RCNN is a popular framework for
instance segmentation and variations on this architecture showed some promise
for this challenge but additional hyperparamter tuning and testing is needed
to realise its full potential. Deep generative architectures, specially CGANs,
gave promising results particularly when trained to produce distance maps.
Future work improving the post-processing of these distance map outputs could
potentially lead to robust instance segmentation of bright-field images.

2 Background

Confocal microscopy is a tool many bio-medical researchers use to gather data
about their field of interest, including study of disease and infection. DSTL
uses confocal microscopy to identify novel targets for anti-microbial therapies
and to understand the effect of medical countermeasures. Confocal microscopy
is a form of light microscopy which scans a laser point by point to build up an
image. This is combined with a pinhole in the light path to remove out-of-focus
light. DSTL uses a range of assays where cells are grown in-vitro (outside of the
body) and imaged with a confocal microscope to study the effects of infection, or
chemicals, on host cells such as macrophages. Macrophages are a type of white-
blood-cell which fight infection by engulfing and digesting pathogens (bacteria,
virus, fungi etc). Fluorescent bacteria are used to infect the cells which allows
us to see where the bacteria go within the cell and what they do to the cell
during infection. Fluorescent labels have the special property that they absorb
the excitation light, here a laser beam, and then emit light at a lower frequency.
By using a selective emission filter we can then produce high contrast images
of the bacteria. However florescent labelling and imaging of the macrophages
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Dish No. Images No. Cells
1 35 1092
2 16 886
3 49 835
Total 100 2813

Table 1: Number of images and cells from images where manual annotations
were available.

can dramatically change the behaviour of these sensitive cells and should be
avoided if possible. Therefore to identify the location of the cells a transmitted
light image is captured. This simply captures the light which passes through
the sample and produces a low contrast image of the cells which is much harder
to process than florescent data.

Automated analysis of these images typically starts with cellular segmen-
tation (the process of identifying individual cells within images). This is rou-
tinely done using high contrast fluorescent labels for either the cytoplasm or
plasma membrane. Segmentation using label free modalities such as transmit-
ted light/bright-field microscopy is advantageous because it is less phototoxic
than fluorescent imaging and removes the need for labels which may affect the
function of the cells. To the human eye cells are easy to identify on a trans-
mitted light image, however due to the similarities in pixel values between the
background and cell events segmentation by computational analysis is still a real
challenge. This DSG (Data Study Group) challenge aimed to utilise the power
of AI to design methods to segment cells from confocal microscopy datasets of
human/murine immune cells infected with various pathogens.

3 Data overview

3.1 Dataset description

The image data used in the DSG was generated specifically for this challenge.
The images are of a macrophage cell line (RAW 264.7) grown on 35mm tis-
sue culture dishes, seeded at different densities and imaged with confocal mi-
croscopy (transmitted light). Macrophages are a type of immune cell which
engulf pathogens and were used because they are of interest to DSTL for study-
ing infection. The methods developed in this project could be applied to other
cell lines and biomedical applications. The data was generated to take the chal-
lenge back to the very basics of segmentation; find and outline the cells within
the images.

A subset of the data was manually annotated to provide ground truth seg-
mentations. These images were taken from three experimental dishes and are
detailed in Table 1. An example image and corresponding segmentation is shown
in Figure 1.
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Figure 1: Example transmitted light confocal microscopy image and ground
truth instance segmentation. The ground truth was produced by manual anno-
tation. Image dimensions are 1152 × 1152 and are in grey-scale 8-bit format.
Each cell in the ground truth image has a unique integer pixel value, background
pixels have value zero.

3.2 Data challenges

The primary challenges with the data is that it is low contrast, which makes
the segmentation problem significantly harder. In addition to this the cell mor-
phologies can differ greatly, particularly in terms of size and circularity. A final
issue is that cells can be touching which makes dissociating between distinct
cells significantly harder.

4 Quantitative problem formulation

In this section we break the challenge down into quantitative objectives and
propose metrics to evaluate performance.

1. Can we use machine learning to semantically segment bright-
field images? As a first step we wanted to assess how accurately we
could perform semantic segmentation on bright-field images. Semantic
segmentation involves classifying each pixel in the image as either be-
longing to a cell or the background. Importantly this approach does not
separate touching cells and treats all cells as belonging to the same class.

To assess the accuracy of our approaches on the semantic segmentation
problem we used the Jaccard index (intersection over Union), J , which is
calculated as follows:

J =
| S ∩R |
| S ∪R |
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where R are the pixels belonging to cells in the ground truth reference
masks and S are the pixels belonging to cells according to the recon-
structed masks.

2. Can we use machine learning to accurately segment individual
cells? Our second goal was to accurately count the number of individual
cells present in a given image. To achieve this we need to perform instance
segmentation, which not only identifies cells but also distinguishes between
different cells by assigning them different values. Calculating cell counts
then reduces to a count of the number of unique values in the image.

To assess the accuracy of our approaches on the instance segmentation
problem we used the Jaccard index again but at the cell level as proposed
for the Cell Tracking Challenge [7]. For each reference cell, Ri, we calculate
the union between reconstructed cells, Si, and the corresponding matched
reference cell, Ri. Cell Si is said to match reference cell Ri if

| Si ∩Ri |>
| Ri |

2

such that for each Ri at most one Si can be matched. The calculation of
the averaged cell level Jaccard index is as follows:

JC =
1

Nref

Nref∑
i=1

| Si ∩Ri |
| Si ∪Ri |

where Nref is the number of reference cells in the image. We also report
the accuracy of our cell counts by taking the absolute different between
predicted and reference cell counts and normalise by the number of refer-
ence cells,

Ac = 1− | Npred −Nref |
Nref

where Npred is the predicted number of cells in the image.

3. Can we use machine learning to describe the morphology of in-
dividual cells? The final research question is whether we can use in-
stance segmentation to describe the morphology of the cells within the
images. This involves outputting descriptive statistics on attributes such
as cell height, width, size and circularity. The results of this research ques-
tion are critically dependent on the accuracy of the instance segmentation
methods.
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5 Experiment: Data augmentation

5.1 Description

Creating a Python class that facilitates data augmentation through the imple-
mentation of the following geometric transformations: rotation, zoom, shear,
crop and flip. Images of cells allow for all these transformations since no ref-
erential is required for them to make sense. Data augmentation is useful for
both training and validation of the methods developed. The idea is to use the
augmented images to increase the size of the training set.

5.2 Outcomes

We created a class (BFImageAugmentator) which creates a DataGenerator from
Keras1 with inputs for rotation range, shear range, zoom range, horizontal flip-
ping (boolean) and vertical flipping (boolean). The class contains methods for
coupled transformation of the raw image data and ground truth mask. Aug-mented
data is automatically saved in a user defined directory. To use the class, one can run 
the following code;

from DataAugmentation import BFImageAugmentator

n ew g e n e r a t o r = BFImageAugmentator ( )
n ew g e n e r a t o r . runAugmentation ( dish number =3, number new=5)

6 Experiment: Image Segmentation using Pix2Pix

6.1 Description

GANs are generative models based on deep learning. Generative modelling
is a task where the model discovers patterns in the input data in order to
generate new samples that could have been drawn from the original dataset.
GANs are based on a min-max game between two networks, the generator and
the discriminator, which try to fool each others. The generator learns how to
generate fake samples while the discriminator learns how to distinguish fake
samples from the samples drawn from the input data distribution. The input
of the generator is just random noise while the output is a sample which should
look like an example drawn from the employed dataset.

CGANs is a variation of GAN where instead of using random noise as input,
the generator uses a sample from a different distribution. In the image-to-
image translation scenario the generator takes as input the image that we want
to translate and generates its translated version.

We tested a Pix2Pix model for segmenting cells in bright-field images. Pix2Pix
is a model developed for image-to-image translation of paired images. It is based

1https://keras.io/preprocessing/image/
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on conditional generative adversarial networks (CGAN) [1, 2]. We have pairs
of images representing edges and objects. The edges represent the shape of the
object. The model takes edges as input and produces the corresponding objects
or vice-versa. In our scenario we used bright-field images as input and produce
the segmented images as the output.

6.2 Rationale

Our task is based on finding cells in a bright-field image. From an image process-
ing perspective this means assigning a different label to each cell in the image i.e.,
assigning different grey-scale values. Indeed, our ground truth images (known
as masks) have a different grey-scale values for each cell. We decided to treat
our task as an image-to-image translation as we want to map the bright-field
image onto the annotated mask. Therefore, we decided to explore the Pix2Pix
model for the bright-field image segmentation task given its success in other
image-to-image translation scenarios.

6.3 Experimental setup

The dataset includes 80 paired images for training and 21 for testing. Each pair
includes the bright-field image and its corresponding segmented annotation. The
Pix2Pix repository was used in this experiment2. We considered three different
representations of the segmented masks for the output;

1. A grey-scale value is assigned to each cell randomly. It means that ev-
ery image has grey-scale values in random positions. We noticed some
difficulties when training with this annotation. The reason is that there
is no actual mapping between each cell in the bright-field image and the
corresponding grey-scale value in the mask.

2. Grey-scale values are assigned to each cell in order from left to right. The
leftmost cell is annotated with the lowest value, i.e., the darkest, while the
rightmost cell is annotated with the highest value i.e., the brightest.

3. A Distance Transform means that we interpret the mask as a topographic
map, and each point represents their height, in this case, their distance to
the background or the cell-cell boundary. There is also a ridge, a line that
separates two different parts, in our case, cells that will be close together.
See Section 11 for post-processing of this representation to recover the
original mask representation.

6.4 Outcomes

We trained the pix2pix model with different CGAN flavours, specifically with
vanilla, mean square and Weisstein loss functions. Taking into account the three

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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different methodologies for generating the mask annotations as ground truth,
the model has been been able to reproduce very good predictions even for those
images where the complexity of the fragmentation was very high. The predictive
power of the model is particularly promising when the Distance Transformation
output is used as shown for an example in Figure 2 for the CGAN model with
a Weisstein loss function.

(a) Input image (b) Target mask (c) Output image

Figure 2: Example CGAN prediction after a training cycle of 100 epochs. The
generator was trained to output (output image) a Distance Transform represen-
tation of the ground truth annotation (target Mask).

7 Experiment: Self-Organizing Maps

7.1 Description

The Self-Organizing Map (SOM) is a simple network of neurons that takes values
from an array and maps them onto output responses such that they are of the
same topological order as the original array [3]. It is an unsupervised Artificial
Neural Network that uses competitive learning as opposed to error-correcting
learning to generate low-dimensional maps of real data. Competitive learning is
an unsupervised leaning approach similar to statistical clustering whereas error
correction is the conventional supervised learning approach where an error func-
tion between the system output and labelled training data is minimised. The
rationale behind this approach was to generate a network capable of produc-
ing instance segmentation of cells from bright-field microscopy images without
the need for any manual segmentation. The advantage of this method comes
from the fact that the SOM does not need any manually labelled ground truth
masks for training. Usually, the availability of manually segmented images in
microscopy is the limiting factor for supervised learning methods. This is es-
pecially limiting in research applications as different cell types, experimental
setups and microscopes all produce slightly different outputs that may affect
the performance of a previously trained network.
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Figure 3: Self-Organising map structural illustration (from
https://medium.com/@abhinavr8/self-organizing-maps-ff5853a118d4).

7.2 Experimental setup

The SOM is a neural network with input data X ∈ Rj , t = 1, 2, ..., n. Initially,
all the weights wij are small random numbers where each wij is associated
with each neuron i. Each neuron i has position ri on the grid of neurons and
at the first iteration k = 1, we calculate the winning neuron vk by using vk =
argmin||xk−wik||. Then update the weights with ∆wik = λkη(v, i, k)[xk−wvk].
For this project, the learning rate λk = a/(1 + k/K) where a is a constant
and K is the maximum number of iterations and the neighbourhood function

is η(v, i, k) = exp(− ||rv−rk||
2

2σ2 ). Figure 3 demonstrates the structure of this
network. Since the SOM is an unsupervised machine learning technique, no
supervised training was needed and the clustering was applied directly to test
images.

7.3 Outcomes

When an SOM with 9 feature neurons was trained and applied to the data, we
obtain the result shown in Figure 4. From this, we can see that the lowest value
feature value has mapped to the cell boundaries in the original image. However,
due to the low contrast of the original image, much of the cell interior has been
mapped onto the same feature value as the background.

In order to segment this mask into instances, we can take the result from
the SOM and class every distinct, separate region of the mask and label them
as shown in Figure 5a. When comparing with the ground truth results, the
labelling of the pixels is not unreasonable. However, this is still not a full mask
of the cells. From here we decided to test a variety of image segmentation
methods within the skimage.segmentation module. Of the tested methods the
Felzenszwalb efficient graph based image segmentation [8] worked the best and
and an example is shown in Figure 5b. The segmentation step of this process
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Figure 4: Self-Organising map result for 9 feature neurons.

still needs to be improved since we can see that although the SOM is able to
detect most of the cell boundaries the segmentation of these boundaries into
separate regions is not as effective. In order to reduce the amount of noise in
the detection of boundaries, two SOMs were put in series to detect boundaries
and then the segmentation protocol was applied (Figure 5c).

7.4 Conclusion

With relatively simple and fast neural network structures, we can detect the
boundaries of the cells quite effectively. This provides a platform on which we
can explore different methods for instance segmentation of cells in bright-field
images. Deep learning methods could potentially be used in post-processing to
determine which boundaries belong to each cell.

8 Experiment: Discriminative Loss

8.1 Description

We can also treat the problem of segmenting cells as a vector embedding prob-
lem. For this we used a discriminative loss function that assigns pixels in an ob-
ject to the corresponding vector in embedding space to identify objects with un-
supervised clustering [4]. Recently, this approach has been successfully applied
for accurate instance segmentation including with overlapping objects [9, 10].
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(a) Each distinct component from the SOM output is labelled with a unique pixel
value.

(b) Post-processing with the Felzenszwalb efficient graph based image segmentation
from the skimage.segmentation module.

(c) Example results from two SOMs in series followed by graph based image segmen-
tation.

Figure 5: Example results from Self Organizing Map experiments.
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The task was to use the labelled images to train the neural network to seman-
tically segment the images of bright-field microscopy. Then to segment these
into separate features in an unsupervised clustering using a discriminative loss
function.

8.2 Experimental setup

Note we used a TensorFlow implentation3 with our own modifications. The
images are transformed into dots, or embeddings, in a n-dimensional feature
space, where n can be adjusted through hyperparameters. Intuitively, instances
(cells) should clustered together as they are close in the feature space. The
discriminative loss function can be defined as follows:

Lvar =
1

C

∑ 1

Nc

∑
[||µc − xi|| − δv]2+

Ldist =
1

C(C − 1)

C∑
CA=1

C∑
CB=1

[2δd − ||µcA − µcB ||]2+ where µcA 6= µcB

Lreg =
1

C

C∑
C=1

||µc||

L = α · Lvar + β · Ldist + γ · Lreg
There are two repelling forces in the function, Lvar and Ldist, which are the

intra-cluster pulling force from a cluster of similar instances and the inter-cluster
pushing force to separate different instances in the image (Figure 6). C is the
number of clusters in the ground truth and NC is the number of elements in the
cluster, xi is the pixel embedding in the n-dimensional space, µC is the mean
embedding of cluster c, ||a− b|| stands for the distance between a and b, and δv
and δd are the margins for the variance and distance loss. The loss function is
weighted by α, β and γ, where in default α = β = 1 and γ = 0.001. See Figure
6 for an illustration.

The images are read in and resized to 512×512, different batch size, feature
dimensions were tested during the experiment. The learning rate was set to
10−4. All training images and testing images were selected and randomly sam-
pled with different batch size. Here we improved the sampling method which
allowed us to process multiple data in a single batch, although later we found
out a single image performs better than larger batch size. This is probably be-
cause of the differences in background signal between images. Different feature
dimensions were tested during the experiment and may affect the number of
steps needed for convergence (Figure 7).

3https://github.com/hq-jiang/instance-segmentation-with-discriminative-loss-tensorflow
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Figure 6: There are two repelling forces in the function which are the intra-
cluster pulling force from a cluster of similar instances and the inter-cluster
pushing force to separate different instances in the image. Figure adapted from
[10].

Figure 7: 2D and 3D feature spaces illustration.
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Figure 8: Example prediction for 2D feature space (4000 iterations, loss 0.4).

Figure 9: Example prediction for 3D feature space (700 iterations, not con-
verged).

8.3 Outcomes

A feature dimension of 2 was used in the first setup, the network was well trained
with loss reduced to 0.4 after 4000 iterations. However it failed to cluster the
embeddings in the 2D feature space, with cells only partly recognized (Figure
8).

We then increased feature space to 3, as this gives more space for the clusters
to be separated from each other (Figure 7). Unfortunately the training was
interrupted by out of space error but even with limited training time (700 steps,
not converged) this method yielded a better result (Figure 9).

The results in Figure 9 show that the increase in feature dimension can
greatly increase the accuracy of the model, however given limited time we cannot
try the model with larger dimension. Figure 10 shows the preliminary result for
feature space set to 15 after 800 steps.

From the results in Figure 10 we can see that increase the space dimension
has a great impact on model accuracy but significantly increased the time needed
for training. It is also noteworthy to say that the model can be optimized in
many ways, such as a better data feeding approach and/or validation pipeline.
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Figure 10: Preliminary result for feature space set to 15 after 800 steps.

8.4 Conclusion

The discriminative loss function provides an unsupervised way to do semantic
segmentation. The image can be transferred into embeddings in n-dimensional
feature space which facilitates use on more complicated problem. The advan-
tages are that this method is unbiased, label free and treats the image holis-
tically. However the training time can be demanding if the user chooses high
feature dimension.

9 Experiment: Enc-Dec to U-Net

Starting with the common encoder-decoder architecture, we moved towards the
structurally similar U-Net Artificial Neural Network [5]. The aim was to seman-
tically segment the cells in the dataset as a precursor to instance segmentation.

The initial Enc-Dec network attempts to reproduce the mask from the input
image using a per-pixel L1 loss. U-Net, on the other hand, attempts to predict
what class a particular pixel belongs to (in our case one of only two classes)
and uses a set of concatenation operations (skip connections) between the levels
of convolution. In many cases it has been shown that U-Net performed much
better than the naive Enc-Dec network.

9.1 PyTorch implementation

Task descriptions

The first task is to determine what is and what is not a cell. From this basic
binary, semantic segmentation, one hopes to determine what is one cell and
what is another. To begin with, we started by finding a suitable dataset with
which to test my code. We chose the cell tracking challenge HeLA Cell set as a
starting point [7]. Data need to be correctly paired, sized and processed before
being used for training. We wrote a number of python classes to find the pairs
of input image and output mask, resizing all to 512×512 grayscale images.
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(a) Input image (b) Target mask (c) Output image

Figure 11: Example result from 4 block U-NET after 15 epochs.

In order to increase the dataset size, we performed basic augmentation by
rotating each pair of images by 90, 180 and 270 degrees, thus tripling the amount
of data available. With a clean dataset in place, we wrote both a basic Enc-Dec
network and a U-Net network in PyTorch using code from an online repository4.
All the code is written in Python, using PyTorch, Pillow, Python-OpenCV and
related libraries.

Experimental set-up

The experiment starts by generating the datasets. A number of images have
been specifically set aside as a test set. The remainder are augmented and added
to the training set. We have found that around 60 epochs results in acceptable
results. The architecture follows the standard U-Net patter, with 4 convolution
layers and 4 upscale layers with concatenation between them. The number of
channels at each level are 64,128,256 and 512. ReLU activation, maxpool and
batch normalisation are also used.

Results

Our network implemented in PyTorch shows mostly good results with a few
interesting failure modes. After 15 epochs the output begins to resemble the
input masks quite closely (Figure 11). Failure modes are occasionally seen in
the output as shown in Figure 12.

9.2 Keras implementation

U-NET Architecture

U-NET is a popular convolutional neural network architecture for biomedical
image segmentation [5]. In particular, is has been successfully applied for nu-
merous cell segmentation tasks in microscopy data. The implemented network
is constructed of four down blocks and four up blocks. Each down-block consists

4https://github.com/milesial/Pytorch-UNet
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(a) Input image (b) Target mask (c) Output image

Figure 12: Example result from 4 block U-NET after 15 epochs. Note the
network has failed to produce a reasonable segmentation for this example.

of two convolution layers of filter size 3 with instance normalisation, followed by
max pooling with a stride of 2 and and a ReLu activation function. The num-
ber of channels in the network is doubled at each downsampling step, ranging
from 64 to 1024. Up-blocks are composed similarly, replacing max pooling by
an upsampling step, and with filter size halving at each step up to size 64. The
final convolution layer contains a filter of size 2 and the output layer employs a
sigmoid activation function Figure 13.

Experimental set-up

Same padding and He normal kernal initialisers are employed. The Adam opti-
mizer is used with a learning rate of 10−4 and binary cross-entropy is chosen as
the loss function since we are dealing with a binary classification problem. Im-
ages were compressed to size 256x256 using the PIL.Image package. In order to
reduce GPU memory the masks were transformed to binary form. The network
was trained with 50 epochs and a batch size of 1. Due to the large size and
complexity of the network and the limited training set size (81 images), a data
augmentation step is crucial to facilitate generalisation to unseen data. This
step was performed using the Keras preprocessing.image.Image.DataGenerator.
The following transformations were performed: horizontal flips, zooming, shear
intensity variations, rotations and shifts in width and height.

The code was adapted from a Keras implementation of U-NET5 and is based
on the architecture in [5]. A few modifications were made, such as including
instance normalisation after the convolution layers.

Results

The U-Net was able to successfully identify cells in areas of low cell density.
Examples are given in Figure 14 for some of the images in our test set. Images
with a higher cell density were harder to predict. In some cases the network

5https:/github.com/zhixuhao/unet
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Figure 13: U-Net architecture for Keras implementation. Figure from [5].

performed badly at identifying cell masks (Figure 15). Averaged over the whole
test dataset the network achieved a Jaccard index (Intersection over Union) of
0.556 with standard deviation 0.180.

Conclusions

U-NET seems to be capable of providing a semantic segmentation on the DSTL
data-set though further experimentation is required in order to understand why
the failures occur and how to avoid them. Accuracy measurements should be
taken in order to measure further improvements.

Whilst this does not segment individual cells it should be possible to use U-
Net to reproduce cell borders by changing the input data. With borders defined
it might be possible to segment the image using some kind of flood fill to detect
closed areas. A potential solution to provide instance segmentation would be to
modify the network to output three classes (cell, boundary and background) that
would allow to separate overlapping objects. Alternatively, a second network
could be trained to identify cell centres using annotated centroids for training,
followed by watershed segmentation on the recreated binary image using these
centroids as a mask. The network would also benefit by initialising weights
using a pre-trained model such as ImageNet or ResNet.

10 Experiment: Mask R-CNN

Mask R-CNN is an architecture for classifying, locating and segmenting visual
objects. It can be trained end-to-end on all three tasks simultaneously. In
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Figure 14: Example U-NET results where the segmentation has worked well.
Each row corresponds to a single sample. Left to right: original microscopy
image, ground truth binary label, and prediction.

Figure 15: Example U-NET results where the segmentation has not worked well.
Each row corresponds to a single sample. Left to right: original microscopy
image, ground truth binary label, and prediction.
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Mask R-CNN, we first take an image and extract features using the ResNet101
architecture. Next, we take the feature maps from the previous step and apply a
region proposal network (RPN). RPN is predicting if an object is present in that
region or not. Then these regions are passed through a couple of layers to predict
the class label and bounding boxes. After we can compute the Intersection of
Union (IoU) with the ground truth. If we have IoU greater than 0.5 we will
consider this region as a region of interest. After we get all regions of interest
we can get the segmentation mask for each region of interest and get the masks
for all objects in the image.

10.1 Strategy

Two possible strategies involved:

• Train the model on external datasets and then check the performance on
our data without any additional training step.

• Fine-tuning pre-trained weights from these models with our data and com-
pare performance with the previous method.

10.2 Mask-RCNN 1

10.2.1 Description

In this experiment we used the Mask R-CNN implementation by Waleed Abdulla
[6]6. This is a Tensorflow and Keras based implementation of the Mask R-CNN
model, based on FPN and ResNet101.

This repository provides a number of Jupyter notebooks to run the code
using weights pre-trained on the MS COCO dataset [11], which is why we chose
it. One of the notebooks provides a straightforward way of fine-tuning such a
pre-trained model on the our data, which is particularly useful given the small
number of annotated images that were provided for this challenge.

10.2.2 Experimental setup

Feature extractions: 10 epochs/100 steps with initial learning rate applied only
to the last layer.

10.2.3 Outcomes

Averaged over all the testing images, we obtain the following results: J = 0.7,
JC = 0.64, AC = 0.9 (Section 4) (Figure 16).

6https://github.com/matterport/Mask RCNN
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(a) (b) (c)

Figure 16: Three examples of cell R-CNN recognition, where masks are super-
imposed on the bright-field original image.

10.3 Usiigaci network

10.3.1 Description

In the work of Tai et al. [12] Mask R-CNN was applied to bright-field cell
segmentation. They called their network Usiigaci. It is is based on the Keras
implementation of Mask R-CNN7.

10.3.2 Experimental setup

Usiigaci is pre-trained on the COCO image dataset [11], and then fine-tuned on
a dataset of 50 cell images. Both the COCO dataset and the fine-tuning dataset
are annotated with bounding boxes and masks for each cell. The plan was to
load the weights from their model, apply a further fine-tuning step on our own
training (and validation) dataset, and then apply inference to our test set.

10.3.3 Outcomes

On our test set, our mean and standard deviation for the 3 specified metrics,
are J = 0.57± 0.08, JC = 0.57± 0.10 and AC = 0.85± 0.10 (Section 4) (Figure
17).

10.4 Conclusion

We have noticed a lot of false negatives, i.e. where the model fails to detect
cells. It seems that the difference in appearance between the training data used
by Usiigaci and our data have a very big influence and the pre-trained Usiigaci
model fails in transferring its learning to our case.

Moreover, the Usiigaci code can be improved in terms of usability. For ex-
ample, the authors could increase the number of comments to aid understanding

7https://github.com/oist/usiigaci
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(a) (b) (c)

Figure 17: Example output from the Usiigaci network. From left to right: orig-
inal microscope image, predicted segmentation and ground truth segmentation,
respectively.

and improve the utility tools such that paths to the data or models do not needs
to be manually specified.

11 Experiment: Post Processing of CGAN with
Distance Transform as Input

11.1 Description

Most of the experiments thus far have been with the numeric masks, where each
cell is represented as a value (all pixels of one cell share the same, unique to
the cell, value). We hypothesised that if we feed a distance transform to the
CGAN, we can achieve better instance segmentation after postprocessing of the
output (Section 6 and Figure 2).

11.2 Experimental setup

We used the skimage package for the processing.

• Resizing the distance maps to the original 1152x1152 size.

• High threshold of the distance maps to obtain the centre of the cells.

• Low threshold of the distance maps to obtain the edges.

• Remove artefacts (cells below a certain number of pixels, generally are
protrusions that get lost in the generative model).

• Watershed transform on the ’low threshold image’ using the ’High thresh-
old’ image as the markers/seeds
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11.3 Outcomes

While we were only able to carry out preliminary experiments due to time
constraints, we believe it constitutes an interesting and potentially promising
avenue for future investigation.”

12 Future work and research avenues

12.1 Post-Processing the CGAN output

One of the limitations that we found as we tested the results with the CGAN
models is that the generated images were in a different scale to the ground
truth. Although this is not necessarily a problem, we have realised that instead
of having sharp, clean boundaries around each cell, we have a gradient which
can be limiting.

12.2 U-Net Borders

Rather than use U-NET to detect areas that are cell or not-cell, it might be
advantageous to introduce a third class, specifically the borders of the cells.
Converting the input masks to borders is a trivial task but in so doing, the net-
work would create distinct areas, resulting in images similar to those produced
by a watershed algorithm. More traditional image processing techniques could
then be used.

12.3 Mask R-CNN

We had a look at another repository8, which was produced by the BIOMAG
GROUP. They worked on a similar problem in Kaggle’s Data Science Bowl com-
petition. Comparing to other participants they applied the image style transfer
method. It is useful when one has a diverse range of microscopy images. This in-
volved the generation augmented training samples using the image style transfer
model. They combined this with Mask RCNN, which they used for segmenta-
tion, with U-NET for boundary correction and mathematical morphology for
post-processing. Their method first rescales the image in order to make nuclear
size approximately uniform, since they found out that doing that increase the
performance of the model. Then they apply style models and finally they used
the mask R-CNN segmentation model trained on rescaled and on augmented
data. To get high-pixel accuracy on edges they used a U-NET based model.
Details can be found in the paper of Hollandi and co-workers [13] and on the
website www.nucleAIzer.org. Future work could be based on a similar approach.

8https://github.com/spreka/biomagdsb
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• Natalia Garcia Martin: Natalia is a second year PhD student at the
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tion on the test data set on the GPU environment provided by the Alan
Turing Institute.

• Bekzhan Kerimkulov: Bekzhan is a second year PhD student at Uni-
versity of Edinburgh. He studies stochastic optimal control problems and
related numerics. He contributed to this report by providing a review on
solutions to Kaggle’s Data Science Bowl 2018 competition and an intro-
duction to the Mask R-CNN.

• Jeremy Pike: Jeremy is a postdoctoral researcher and staff scientist at
the University of Birmingham where he specialises in image processing
and analysis for applications in light microscopy. Jeremy acted as PI for
this DSG but all credit should go to the participants who drove the project
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