
Practical Functional Regenerating Codes for
Broadcast Repair of Multiple Nodes

Nitish Mital∗, Katina Kralevska†, Cong Ling∗, and Deniz Gündüz∗
∗Department of Electrical Electronics Engineering, Imperial College London

†Dep. of Information Security and Communication Technology, NTNU, Norwegian University of Science and Technology
Email: {n.mital,d.gunduz,c.ling}@imperial.ac.uk, katinak@ntnu.no

Abstract—A code construction and repair scheme for optimal
functional regeneration of multiple node failures is presented,
which is based on stitching together short MDS codes on carefully
chosen sets of points lying on a linearized polynomial. The
nodes are connected wirelessly, hence all transmissions by helper
nodes during a repair round are available to all the nodes
being repaired. The scheme is simple and practical because of
low subpacketization, low I/O cost and low computational cost.
Achievability of the minimum-bandwidth regenerating (MBR)
point, as well as an interior point, on the optimal storage-repair
bandwidth tradeoff curve is shown. The subspace properties
derived in the paper provide insight into the general properties
of functional regenerating codes.

I. INTRODUCTION

The content of a file is typically distributed among multiple
access points such that accessing any k distinct access points is
sufficient to recover the original file. MDS codes provide high
storage efficiency while satisfying the above property. When
some nodes fail, their cache contents need to be regenerated
to be able to continue serving users. An important objective of
edge caching in wireless networks is to reduce the backhaul
link loads; therefore, we will consider cache recovery at the
edge; that is, rather than updating the failed cache contents
from a central server through backhaul links, the failed cache
contents are regenerated with the help of surviving cache
nodes. The total amount of data transferred from the surviving
nodes to repair the failed nodes is called the repair bandwidth.
Traditional MDS codes have high storage efficiency, but their
repair bandwidth is large [1]. The data of one node is repaired
by accessing and transferring data from k nodes, i.e., by
recovering the whole content library.

Dimakis et al. showed in [1] that there is a fundamen-
tal trade-off between the storage and repair bandwidth by
mapping the repair problem in a distributed storage system
to a multicasting problem over an information flow graph.
The analysis focuses on a single node repair; that is, losing
one of the nodes triggers the repair process. Regenerating
codes achieve any point on the optimal trade-off curve, while
minimum-storage regenerating (MSR) codes and minimum-
bandwidth regenerating (MBR) codes operate on the two
extremes of this trade-off curve.
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It was observed in [2] that multiple node repair; that is, the
repair process starts only after r nodes fail, is more efficient in
terms of the repair bandwidth per node, compared to repairing
each node as it fails. In [3] and [4], the authors introduce
cooperative regenerating codes, which repair multiple failures
cooperatively by allowing each of the r nodes being repaired
to collect data from d non-failed nodes, called helper nodes,
and then to cooperate with the other r − 1 nodes being
repaired, called newcomers. Cooperative repair allows each
newcomer to contact any set of helper nodes independently.
An explicit construction of regenerating codes that achieve
minimum repair bandwidth under cooperative repair is given
in [5].

Another model studied in the literature is the centralized
repair model [6], [7], in which all the helper nodes transmit
the repairing symbols to a centralized node, which then repairs
the failed nodes. There being a centralized entity repairing
the failed nodes, there is no need for the newcomers to
exchange data between themselves like in cooperative repair,
thus making the system simpler.

Instead, similarly to [8], we will consider broadcast repair;
that is, transmissions from each helper node are received in an
error-free manner by all the newcomers. In summary, we will
study the broadcast repair of multiple failed cache nodes. The
storage-repair bandwidth trade-off for the repair of multiple
fully failed nodes is investigated in [9], [10].

The broadcast repair model is theoretically equivalent to
the centralized multi-node repair model studied in [6], [7].
Hence, the results that we derive, and codes that we construct
for broadcast repair are directly applicable to the centralized
repair model. The broadcast repair is different from centralized
repair in that, while centralized repair involves a centralized
entity which then repairs the failed nodes, thus involving two
rounds, broadcast repair involves only one round, and thus, is
simpler and faster.

In [7], it is shown that the functional MBR point for
repair of multiple nodes is not achievable under exact repair.
Similarly, it is shown that under exact repair, the functional
repair tradeoff interior points are also not achievable. In [6],
[11], it is shown that cooperative repair achieves the minimum
bandwidth of centralized repair (and broadcast repair), under
exact repair, albeit at a slightly higher storage cost.

In this paper, our contribution is to give an explicit code
construction to achieve the optimal storage-repair bandwidth



tradeoff under functional repair, first for the MBR point for
all admissible parameters, and then for an interior point,
thus potentially providing us with a general framework to
construct functional repair codes to achieve any point on the
tradeoff curve. The broadcast nature of the system allows all
the newcomers to receive the same data, which simplifies
the coding scheme. Reference [12] studies the functional
repair problem from a projective geometry viewpoint. The
subspace/projective geometry view makes it hard to visualize
how a set of nodes look like, and how one might approach
the construction of a code. There have been attempts to derive
the conditions necessary for a functional repair code in [12],
[13]. Our code construction strives to address this problem by
proposing a simple scheme and simple conditions to guarantee
optimality.

Our code construction has the property that for most failure
patterns, the helper nodes do not have to perform computations
in a repair round; instead they just read and send the data to the
newcomers. This property is called repair-by-transfer, which
is desirable for a low I/O cost. Functional repair-by-transfer
MDS codes were constructed in [14] for some parameters.

Other than these, in our knowledge, there has not been much
progress in providing simple, explicit code constructions for
functional repair. The network coding literature usually em-
ploys random coding, which is not the most practically feasible
scheme for distributed storage because of large overheads.

II. SYSTEM MODEL

Consider a wireless caching system where n nodes, each
with storage capacity α bits, store a file of size M bits. We
index these storage nodes by the set N , {1, . . . , n}. The
nodes are fully connected by a wireless broadcast medium
and use orthogonal channels for data transmission.

We refer to the nodes that fail as the failed nodes and the
nodes that do not experience any losses as the surviving nodes.
We assume that the repair occurs in rounds, where a repair
round gets initiated when r nodes experience failures. Thus,
a single repair round repairs r failed nodes. There is no loss
during a repair round. During a repair round, the failed nodes
are repaired with the help of bits transmitted from d surviving
nodes, called the helper nodes.

A data collector (DC) corresponds to a request to reconstruct
the file. Data collectors connect to any subset of k active nodes
and retrieve all the stored data in these nodes. This is called the
reconstructability property. In general, the repair is functional,
i.e., the repaired content of the node may not be the same as the
original content, but it satisfies the reconstructability property.

Definition 1. The repair bandwidth γ = dβ is defined as the
total number of bits the helper nodes broadcast in a repair
round.

A. Subspace view

Consider a node storing α linearly independent elements
y1, . . . , yα from GF (qm) (possible only if α ≤ m), then
any linear operations performed on these finite field elements,
which can be viewed as m−dimensional vectors over GF (q),
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Fig. 1: An illustration of the data collection (reconstructability
property) and functional repair of r nodes where d nodes are
helpers.

lie in the same subspace. Hence, the node is said to store the
subspace of dimension α, denoted by Wi ≡ span{yi}, i =
1, . . . , α. For a set of nodes denoted by A, the subspace stored
by A is denoted by WA =

∑
i∈AWi, where the addition

operation on subspaces denotes the direct sum of subspaces.
By abuse of notation, Wi can also denote the random variables
of the stored information in the nodes. The Shannon entropic
measures on random variables can be redefined as a measure
“ dim(.)” (subspace dimension) on intersection, union and set
difference of subspaces. The following identities hold [15]:

H(WA) = dim(WA)

H(W1, . . . ,Wl) = dim

(
l∑
i=1

Wi

)
H(WA|WB) = dim(WA \WB)

I(WA;WB) = dim(WA ∩WB)

I(WA;WB ;WC) = dim(WA ∩WB ∩WC).

For each set of parameters, a (n, k, γ, d, α, r) tuple is
feasible, if a code with storage α and repair bandwidth γ
exists.

III. MBR POINT CONSTRUCTION FOR MULTIPLE NODE
FAILURES

Theorem 1. [16] For any α ≥ α∗(n, k, γ, d, r), the points
(n, k, γ, d, α, r) are feasible, and linear network codes suf-
fice to achieve them. If r divides k, the minimum repair
bandwidth point is achieved by the pair (αMBR, γ

∗
MBR) =

2M
k(2d−k+r) (d, rd).

We provide a construction of a functional repair code for
the broadcast setting using linearized polynomials, which were
first used by Gabidulin for the construction of rank-metric
codes [17].



A. Linearized Polynomials

An important component of our construction is linearized
polynomial and their special properties. A linearized polyno-
mial

f(x) =

P∑
i=1

aix
qi−1

, ai ∈ Fqm (1)

can be uniquely identified from evaluations at any P points
x = θi ∈ Fqm , i = 1, 2, . . . , P , that are linearly independent
over Fq . Another relevant property of linearized polynomials
is that they satisfy the following condition

f(ax+ by) = af(x) + bf(y), a, b ∈ Fq, x, y ∈ Fqm , (2)

that is, given a set of points on a linearized polynomial, any
linear combination of the points also lies on the polynomial.

B. Code construction

Consider a file of M bits. We split the file into k
2 (2d−k+r)

packets, denoted by {m1, . . . ,m k
2 (2d−k+r)

}. Thus each packet
is of size 2M

k(2d−k+r) bits. Define the linearized polynomial

f(x) =

k
2 (2d−k+r)∑

i=1

mix
qi−1

, mi ∈ Fqm (3)

in a field GF (qm). If a DC receives any k
2 (2d − k + r)

linearly independent points on the polynomial f(x), it can
reconstruct f(x) by interpolation, and thus reconstruct the file.

Pick d linearly independent points on f(x), denoted
by (x1, y1), . . . , (xd, yd), where yi = f(xi) for all
i = 1, . . . , d. Store these points at node 1. Pick another
d linearly independent points that are also linearly
independent from the points stored at node 1, denoted
by (xd+1, yd+1), . . . , (x2d, y2d), on f(x), and store them
at node 2, and so on, till d nodes are filled with linearly
independent points. For the remaining n− d nodes, fill them
as if they are being repaired by the d nodes already filled.
The scheme for repair is detailed in the Section III-C.

At each node, encode the points with a (n−1, d) systematic
MDS code to obtain n−1 coded symbols. The symbols at node
i are denoted by {wij}, where j ∈ [n] \ {i}.

C. Repair

Suppose the first repair round repairs the nodes n − r + 1
to n with the helper nodes 1, . . . , d. Each node i ∈ [d]
transmits the points wij , j ∈ [n − r + 1 : n]. The total
number of points broadcasted by d helper nodes is rd. The
broadcasted points must be linearly independent, which will
become evident that it holds as the repair scheme is explained.
Arrange these received points in a d × r matrix, where row
i contains the points transmitted by node i. In the following
matrix representation of the received points, we denote the
points with the node from which it was transmitted only. It

must be noted that all elements in the following matrix actually
represent distinct points.

Y =


1 1 · · · 1
2 2 · · · 2
...

. . . . . .
...

d d · · · d

 (4)

We then permute the columns of the above matrix in such a
way that no row has two points transmitted by the same node.
A circular permutation achieving this condition looks like the
following

Y =


1 2 · · · r
2 3 · · · r + 1
...

. . . . . .
...

d 1 · · · r − 1

 . (5)

Now, assume that each node is given a (2r, r) systematic
MDS code generator matrix G = [I M]. G has rank r,
implying that any r columns are linearly independent. Let
each newcomer multiply the permuted point-matrix Y with
the local r×r invertible encoding matrix M to get Y′ = YM.
The points in column i of Y′ are stored on the ith newcomer,
and encoded with the local (n− 1, d) systematic MDS code.
The above scheme ensures the following properties to hold:

L1: For i 6= j, dim(Wi ∩Wj) = 0, or, I(Wi;Wj) = 0.
L2: For any set of nodes A, |A| ≤ r, the following holds

: dim(
∑
i∈AWi) =

∑
i∈A dim(Wi).

This is equivalent to the condition - H(WA) =∑
i∈AH(Wi). This property is the consequence of

permuting the Y matrix so that packets from the
same node are not repeated in the same row. Encod-
ing each row with the full rank matrix M, extracted
from an MDS code, ensures the independence of any
r nodes.

L3: Given a node A, and a set of nodes denoted by
B, |B| ≤ d, partition B into two disjoint subsets
B1 and B2. Then the following holds - dim(WA ∩
WB1

∩WB2
) = 0, or, I(WA;WB1

;WB2
) = 0. This

is because each node transmits a distinct point to
repair any node, of which any d of them are linearly
independent because of the rank d MDS encoding in
each node. Since d ≥ k, this allows for all admissible
parameters.

L4: Given a node A, and a set of different r nodes
denoted by R, then I(WA;WR) ≤ r, where equality
holds iff 1) the set R were helper nodes while
repairing node A, and a particular row of Y consisted
of the nodes in R; or, 2) node A was a helper node
while repairing the set R which failed together.

D. Reconstruction

Suppose a DC accesses the nodes 1, . . . , k, denoted by Adc.
The points available at the k nodes should be enough to in-
terpolate the polynomial f(x); hence, the necessary and suffi-
cient condition for successful reconstruction is dim(WAdc

) ≥



k
2 (2d−k+r). The following lemma will be helpful in showing
that the reconstructability property is satisfied.

Lemma 1. Consider a node A, and a set of other l ≤ d
nodes. Partition the l nodes into sets of r nodes denoted by
R1, . . . ,Rbl/rc, and the remaining set of nodes denoted by R′.
Then,

dim(WA ∩
l∑
i=1

Wi) =

l/r∑
i=1

dim(WA ∩WRi
) (6)

Proof.

dim(WA ∩
l∑
i=1

Wi) = I(WA;W1, . . . ,Wl)

= I(WA;WR1
, . . . ,WRl/r

,WR′)

= I(WA;WR1
) + I(WA;WR2

. . . ,WR′ |WR1
)

(a)
= I(WA;WR1) + I(WA;WR2 . . . ,WR′)

where (a) holds due to L3, which applied to a well
known identity from multivariate mutual information, gives
I(WA;WR2

, . . . ,WR′ ;WR1
) = I(WA;WR2

, . . . ,WR′) −
I(WA;WR2 , . . . ,WR′ |WR1) = 0. Using this result induc-
tively, we get

I(WA;W1, . . . ,Wl) =

l/r∑
i=1

I(WA;WRi) + I(WA;WR′)

(b)
=

l/r∑
i=1

I(WA;WRi
) (7)

=

l/r∑
i=1

dim(WA ∩WRi
)

where (b) follows from L2.

Theorem 2. If a DC accesses k nodes, the dimension of the
space obtained from those nodes is k

2 (2d− k + r). Thus, the
DC can reconstruct the file.

Proof. Without loss of generality, assume that the DC accesses
nodes 1, . . . , k. We have

dim(

k∑
i=1

Wi) = H(W1, . . . ,Wk)

=

k∑
i=1

H(Wi|Wi−1, . . . ,W1)

=

k∑
i=1

[H(Wi)− I(Wi;Wi−1, . . . ,W1)]

(c)
=

k∑
i=1

H(Wi)−
k∑
i=1

(i − 1)/r∑
j=1

I(Wi;WRj
)

(d)

≥ kd− (r(r) + r(2r) + · · ·+ r(k − r))

=
k

2
(2d− k + r)

where (c) follows from Lemma 1, and (d) holds due to L4.

IV. CODE CONSTRUCTION FOR INTERIOR POINT, d = n− r
Theorem 3. [10] The pair (α, γ∗) =

2M
k(2(n−2r)−(k−r))+2r(k−r) ((n − 2r), r(n − r)) is an interior
point on the tradeoff curve, and is achievable with our coding
framework.

We consider d = n− r in this section. Each file is divided
into 1/2(k(2(n− 2r)− (k− r)) + 2r(k− r)) subpackets, and
the polynomial f(x) is constructed accordingly. The storage
and repair scheme is the same as in Section III-C, except that
the matrix Y is of dimensions (n − 2r) × 2r, and M is a
2r × r local encoding matrix, such that there is a (3r, 2r)
MDS systematic generator matrix of the form [I M]. Each
node stores n−2r linearly independent points, which are then
encoded with a local systematic (n−1, n−2r) MDS code. The
matrix Y is constructed by arranging the points received from
n − 2r helper nodes in the first r columns, like in Equation
(4), and the points received from the remaining r helper nodes
in the next r columns. The elements of Y are rearranged so
that no two points from a helper node lie in the same row,
similar to Equation (5), to obtain the following form,

Y =

 S(n−2r)×r

φr×r
...

φr×r


(n−2r)×2r

where the matrix φ consists of the r2 points from the last
r helper nodes. Then, the columns of Y′ = YM, which
is a (n−2r)×r matrix, are stored on the r nodes respectively.

The property L1 is satisfied. Properties L2,L3 and L4 are
modified as follows:

L2: For any set of nodes A, |A| ≤ 2r, the following
holds : dim(

∑
i∈AWi) =

∑
i∈A dim(Wi).

This is equivalent to the condition - H(WA) =∑
i∈AH(Wi).

L3: Given a node A, and a set of nodes denoted by B
such that |B| ≤ n− r. Partition B into three disjoint
sets B1.B2 and B3, such that |B3| = r, or in other
words, |B1∪B2| ≤ n−2r. Then the following holds -
I(WA;WB1 ;WB2 |WB3) = 0. This is a consequence
of the fact that each node encodes its stored symbols
with a rank n− 2r MDS code.

L4: Given a node A, and a set of different 2r nodes de-
noted by B, the following holds- I(WA;WB) ≤ 2r.

Modified Lemma 1: For any node A, and a set of different
nodes denoted by B, |B| ≤ n − r, which is partitioned into
sets R1, . . . ,R′, as in Lemma 1, the following holds due to
properties L2,L3 and L4:

I(WA;WB) =((((((I(WA;WR1
) + I(WA;WB\R1

|WR1
)

(e)
=
∑
j≥2

I(WA;WRj
|WR1

)



where (e) follows similarly to Equation (7) with the slight
difference of conditioning. Thus, the dimension of the space
obtained by a DC accessing any k nodes is

dim(

k∑
i=1

Wi) = H(W1, . . . ,Wk)

=

k∑
i=1

[H(Wi)− I(Wi;Wi−1, . . . ,W1)]

(f)
=

k∑
i=1

H(Wi)−
k∑
i=1

(i − 1)/r∑
j=2

I(Wi;WRj
|WR1

)

(g)

≥ k(n− 2r)− (r(r) + · · ·+ r(k − 2r))

=
k

2
(2(n− 2r)− (k − r)) + r(k − r)

where (f) follows from the modified Lemma 1 above, and (g)
holds due to L4.

A. Complexity analysis

Each node must store a local r × r encoding matrix, and
n− r domain points of the polynomial. The subpacketization
level of the scheme for the MBR point is k(2d−k+ r). Thus
functional MBR codes can have a reasonable subpacketization
while achieving the optimal repair bandwidth and low I/O cost.
The finite field operations are in GF (qm),m ≥ d2. This is
because while initially storing points in the nodes, the first d
nodes must be filled with d linearly independent points, while
the content of the remaining nodes can be generated as if they
were being repaired by the first d nodes.

The scheme in this paper is partially repair-by-transfer,
when the systematic symbols from the stored points are
transmitted. When the non-systematic symbols are transmitted,
more than one systematic symbol must be read to form the
required linear combination. Another advantage of the scheme
is that it stitches together short MDS codes to form a larger
code, thus each encoding operation can be done sequentially
on a small number of elements.

V. CONCLUSIONS

We presented a practical code construction and repair
scheme for functional repair of multiple node failures in a
broadcast setting, achieving the MBR point as well as an
interior point, as indicated in Fig. 2. We leave for future work
to use the construction in this paper for achieving other interior
points. The conditions on the stored subspaces provide an
insight into the general properties of functional regenerating
codes.
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