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† University of Padova, Dept. of Information Engineering, via Gradenigo 6B, 35131 Padova, Italy
‡ Imperial College London, Dept. of Electrical and Electronic Engineering, London SW7 2AZ, U.K.

email: {elvina.gindullina, leonardo.badia}@dei.unipd.it, d.gunduz@imperial.ac.uk

Abstract—Data collected and transmitted by Internet of
things (IoT) devices are typically used for control and
monitoring purposes; and hence, their timely delivery
is of utmost importance for the underlying applications.
However, IoT devices operate with very limited energy
sources, severely reducing their ability for timely collection
and processing of status updates. IoT systems make up
for these limitations by employing multiple low-power
low-complexity devices that can monitor the same signal,
possibly with different quality observations and different
energy costs, to create diversity against the limitations of
individual nodes. We investigate policies to minimize the
average age of information (AoI) in a monitoring system
that collects data from two sources of information denoted
as primary and backup sources, respectively. We assume
that each source offers a different trade-off between the
AoI and the energy cost. The monitoring node is equipped
with a finite size battery and harvests ambient energy. For
this setup, we formulate the scheduling of status updates
from the two sources as a Markov decision process (MDP),
and obtain a policy that decides on the optimal action to
take (i.e., which source to query or remain idle) depending
on the current energy level and AoI. The performance of
the obtained policy is compared with an aggressive policy
for different system parameters. We identify few types
of optimal solution structures and discuss the benefits of
having a backup source of information in the system.

Index Terms—Energy harvesting; age of information;
Internet of things; Markov decision process.

I. INTRODUCTION

Internet of things (IoT) is increasingly being de-
ployed for critical operations such as factory and process
automation, intelligent transportation and smart cities
[1]. Differently from other networks that are generally
characterized in terms of throughput and delay, a key
performance indicator for such applications is the age of
information (AoI), which quantifies the freshness of the
destination’s knowledge about the status of the system
being monitored [2], [3]. Another distinct aspect of these
systems is that IoT devices are typically limited in avail-
able energy. One way to increase the sustainability of
such a system is to exploit energy harvesting capabilities
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Curie grant agreement No. 675891 (SCAVENGE). D. Gündüz also
received funding from the European Research Council (ERC) through
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from ambient sources [4]. However, harvested energy
is characterized by irregular energy arrivals randomly
distributed over time; requiring a rechargeable battery as
an energy buffer, and some form of intelligent control
to avoid outages at critical instances [5]. In particular,
if AoI is to be taken into account, status updates must
be acquired sparingly depending on the level of energy
available in the battery.

A growing number of papers investigate the evolu-
tion and control of AoI in energy-harvesting systems
[6]–[10]. The scenario of reference involves a device
making optimal decisions about acquiring status updates
depending on the energy cost and the available battery
level. In this paper, we consider instead an IoT system
that can exploit multiple sources of information, each
providing a different energy-age trade-off. For example,
an IoT device may exploit multiple sensors with different
reliabilities and costs. Alternatively, we may think of a
terminal that can update the system status through either
a cellular technology, which guarantees reliability and
high coverage, but is very expensive in terms of energy,
or a low-range energy-aware technology.

For the purpose of the analysis we refer to the
following model. We consider two sources providing
information with different costs and qualities (freshness
and/or reliability) to a monitoring node that tries to
optimize the resulting AoI over time within a constrained
energy budget. The information source with higher cost
and quality is called the primary source of information,
while the other is referred to as the backup source.
These sources provide the monitoring node with the
most fresh status update in their buffer. Therefore, the
monitoring node does not know with certainty the AoI of
the packet that will be delivered from a source node. The
only assumption the monitoring node can make is the
reliability of a source, i.e., the probability of receiving a
fresh data packet from that source.

Minimization of AoI in a multi-source system is also
considered in [11], where multiple sensors communicate
with the monitoring system via orthogonal channels.
However, in [11] each sensor monitors a different pro-
cess, and the objective is a function of the ages of all the
processes. The proposed policy converts the scheduling
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problem into a bipartite matching problem between the
sets of channels and sensors. Similarly, in [12], [13]
multiple sources provide status updates to a monitoring
node about different processes, which results in a multi-
objective problem, and the goal is to schedule transitions
in order to balance the AoI of these different processes.
In contrast with the aforementioned contributions, we
consider a system with energy harvesting capabilities,
where the monitoring node selectively requests status
updates of the same underlying process from different
nodes. We justify having more than one information
source in the system to obtain diversity by balancing
across different combinations of energy cost and AoI.
This contribution can be considered as a first step to-
wards developing policies for a multi-source IoT-system
that can achieve efficient management without any prior
knowledge of the cost or quality of the information
sources, which have to be learned over time.

The rest of this paper is organized as follows. In
Section II, the system model description, problem formu-
lation and solution approaches are introduced. Numerical
results are presented in Section III, providing a perfor-
mance comparison between the proposed solution and a
reference approach, namely, the aggressive policy. The
paper is concluded in Section IV, where possible further
developments are also outlined.

II. SYSTEM OVERVIEW

We consider a system consisting of a single energy-
harvesting monitoring node and two sources of informa-
tion, where each source takes measurements of the same
underlying process that is of interest to the monitoring
node. Time is discretized into time slots with a unit
slot length of arbitrary duration. At each time slot, the
monitoring node can receive a status update from only
one of the sources. The status update from the chosen
source becomes available to the monitoring node at the
beginning of the time slot.

The monitoring node consumes different amounts of
energy to receive a status update from the two sources.
We assume that the status updates provided by the two
sensors are of age either α or β, referred to as fresh and
stale, respectively, with α<β. For the sake simplicity, we
consider only two possible age values α and β, in this
paper, which can model, for example, useful and useless
data packets. We assume that source i can provide a
fresh status update at each time slot with probability γi,
i = 1, 2, and a stale packet with probability 1−γi, such
that γ1>γ2 for primary and backup sources, respectively.
The AoI at the monitoring node increases by 1 if no new
update is received.

The energy costs of requesting a status update from
source i is denoted by ci, i = 1, 2, where we assume
c1>c2. Here c1, c2 ∈ Z+ correspond to integer multiples
of a unit of energy.

Battery level b(t) is updated at each time slot depend-
ing on the energy harvested in the previous time slot and
the energy cost of receiving a data packet from one of
the sources:

b(t) = min{b(t− 1)−
2∑
i=1

ci · 1(a(t) = ai) + e(t), B}, (1)

where e(t) ∈ {0, ē} denotes the harvested energy avail-
able to be used in time slot t, B is the battery capacity,
and 1(x) is an indicator function: 1(x) = 1 when x
holds, and 1(x) = 0 otherwise. We assume {e(t)}∞t=1 is
an independent and identically distributed (i.i.d.) binary
random process with P (e(t) = ē) = λ.

The monitoring node makes a decision at the begin-
ning of each time slot whether to request a new status
update or not, and if so, which source to request it from.
We seek the policy that minimizes the average AoI at
the monitoring node by optimally choosing the action to
take at each time slot, accounting for the battery level
and the current age of information. We first formulate
the problem as an MDP.

A. MDP formulation

An MDP consists of a tuple <S,A, P,R> of state
space S, action space A, probability transition function
P , and a reward or cost function R. In our problem,
finite space of actions A includes requesting an update
from either of the two sources (primary/backup) and
remaining idle. We set A = {a0, a1, a2}, where a0
corresponds to remaining idle, a1 updating from the
primary source, and a2 updating from the backup source.

Action ai is not allowed if b(t)<ci. This can be
incorporated into the framework with the same action
space by imposing very high energy costs for action ai
when b(t) < ci, i = 1, 2.

Let δ(t) ∈ {1, 2, ..., δmax} denote the AoI at the mon-
itoring node at time slot t, where δmax is the maximum
age in the system. Equivalently, we assume that having
a status information of age δmax, or any δ > δmax
have the same utility. Depending on action a(t), δ(t)
can take one of the following values {δ(t−1)+1, α, β}
. The system state is described by the pair of variables
s(t) = (b(t), δ(t)). Note that we have a finite state space
of dimension (δmax + 1)(B + 1). In this paper, we set
β as the maximum AoI, i.e., β = δmax, beyond which
increase in age becomes irrelevant. Accordingly, receiv-
ing a stale status update is equivalent to not receiving a
useful update.
P denotes the transition probabilities of the MDP,

where P (s′|s, a) = Pr(s(t + 1) = s′|s(t) = s, a(t) =
a); that is, the probability that taking action a at state
s will lead to a transition to state s′ in the following
time slot. The transition probabilities for our problem
are given as follows for ai ∈ {a1, a2}:




P ((min{b+ē−ci, B},min{α, δ+1})|(b, δ), ai) = λγi
P ((min{b+ē−ci, B},min{β, δ+1})|(b, δ), ai) = λ(1−γi)
P ((b−ci,min{α, δ+1})|(b, δ), ai) = (1−λ)γi
P ((b−ci,min{β, δ+1})|(b, δ), ai) = (1−λ)(1−γi)

(2)
Note that, if the received status update is older than the

currently available one, then the monitoring node drops
the new packet and keeps the previous status update. We
can conclude that if δt<α, then the optimal action is to
remain idle, i.e., at = a0.

When the node remains idle, i.e., at = a0, the
transition probabilities are given as follows:

P ((b, δ + 1)|(b, δ), a0) = 1− λ b<B

P ((min{b+ ē, B}, δ + 1)|(b, δ), a0) = λ b<B

P ((B, δ + 1)|(B, δ), a0) = 1

(3)

The policy π defines an action a(t) at each time slot
depending on the current state. The infinite-horizon time
average AoI, when policy π is employed, starting from
initial state s0, is defined as [14]:

V π(s0) = lim sup
T→∞

1

T
E

[
T∑
t=0

δπ(t)|s(0) = s0

]
. (4)

A policy is optimal if it minimizes the average AoI -
V π(s0). The optimal infinite-horizon average AoI for a
starting state s0 is found by solving:

V (s0) = min
π
V π(s0). (5)

To solve this optimization problem, we can use the
offline dynamic programming approach adopting the
relative value iteration (RVI) algorithm described in [15].
In the offline approach we model the state transition
function based on the statistical prior knowledge of
the information sources’ reliability and environmental
characteristics. The RVI differs from VI by the value
function of some state V (s∗) in each update. In this
case, the Bellman equation is defined as:

V n(s) = min
a∈A

(
δ(s, a)−V n−1(s∗)+

∑
s′∈S

P (s′|s, a)V n−1(s′)
)
,

(6)
where V n is the value function, and s∗ is a fixed state
chosen arbitrarily.

The optimal stationary deterministic policy, obtained
by Algorithm 1, specifies the decision rule that maps the
current energy level and AoI to actions taken with prob-
ability one. In Algorithm 1, sp(V n − V n−1)<ε stands
for the stopping criteria, where sp(V ) = maxs∈S V (s)−
mins∈S V (s). We run the RVI algorithm until the stop-
ping criteria holds. At that moment the policy π achieves
an average-cost AoI that is within ε · 100% of optimal.

III. NUMERICAL RESULTS

In this section, we analyze the optimal policies for dif-
ferent settings, in particular, we consider the cost ratios
between the primary and backup information sources,
reliability of the sources, and the parameters of the
energy harvesting process (λ, ē). We study the structure

Algorithm 1 Relative Value Iteration Algorithm

set v0(s) = 0, ∀s ∈ S
set n = 1, ε>0
repeat

n← n+ 1
for all s ∈ S do

vn(s) = min
a∈A

∑
s′∈S

P (s′|s, a)
[
δ(s′|s, a) + V n−1(s′)

]
V n(s) = vn(s)− vn(s0)

where s0 is a fixed state chosen arbitrary
end for

until sp(V n − V n−1)<ε
return argminV (s)

of the optimal policy, and try to identify the added value
in average AoI from employing an extra information
source in the system.

A. Simulation parameters

System parameters that remain constant for all the
numerical simulations are presented in Table I. The
efficiency of the optimal policy is verified via simulations
run over T = 5000 time slots, and compared with
a so-called aggressive policy. The aggressive policy
(Algorithm 2) tries to always receive a status update
whenever it has sufficient energy in its battery, and goes
for the expensive source whenever it can afford it.

Algorithm 2 Aggressive Policy

set b(0) = 0, δ(0) = 0
for t = 1 : T do

if b(t)≥c1 then
b(t) = min{b(t− 1) + e(t)− c1, B}
if p≤γ1 then

δ(t)=α
else

δ(t)={β:δ(t−1)≥β; δ(t−1)+1:δ(t−1)<β}
end if

else if c2 ≤ b(t)<c1 then
b(t) = min{b(t− 1) + e(t)− c2, B}
if p≤γ2 then

δ(t)=α
else

δ(t)={β:δ(t−1)≥β; δ(t−1)+1:δ(t−1)<β}
end if

else
δ(t) = δ(t−1)+1,
b(t) = min{b(t−1)+e(t), B}

end if
end for

Denoting by δ̄mT the time-average AoI over T time
slots at the m-th run of the simulations, we consider the
mean AoI δ̄T = 1

M

∑M
m=1 δ̄

m
T and its standard deviation:

st =∆

√∑M
m=1(δ̄mT − δ̄T )2

M − 1
, (7)

over M = 1000 runs of the simulations for each settings.



TABLE I – Default parameters.

Parameters Values
Battery capacity, B 20
Maximum age in the system, δmax 30
AoI states, [α, β] [1, 20]
Amount of harvested energy per time slot, {0, ē} {0, 3}
Reliability of the primary source, γ1 0.9
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(a) Cost ratio = 0.0,
λ = 0.2, γ2 = 0.2
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(b) Cost ratio = 0.4,
λ = 0.2, γ2 = 0.2
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(c) Cost ratio = 0.8,
λ = 0.2, γ2 = 0.2
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(d) Cost ratio = 0.0,
λ = 0.2, γ2 = 0.8
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(e) Cost ratio = 0.4,
λ = 0.2, γ2 = 0.8
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(f) Cost ratio = 0.8,
λ = 0.2, γ2 = 0.8
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(g) Cost ratio = 0.0,
λ = 0.8, γ2 = 0.2
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(h) Cost ratio = 0.4,
λ = 0.8, γ2 = 0.2
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(i) Cost ratio = 0.8,
λ = 0.8, γ2 = 0.2

��� ��� ��� ��� ���� ���� ���� ���� ����

������������

�

�

��

��

��

��

��

�
��

γ1�����
��γ2�����	��c1�������c2������λ�����	��ē����
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(j) Cost ratio = 0.0,
λ = 0.8, γ2 = 0.8
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(k) Cost ratio = 0.4,
λ = 0.8, γ2 = 0.8
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(l) Cost ratio = 0.8,
λ = 0.8, γ2 = 0.8

Fig. 1 – Illustration of the optimal policy for different energy cost ratios c2/c1.

B. Cost ratio

The relative value of an information source can be
measured by the portion of the states, in which the
monitoring node chooses to exploit this source. To
demonstrate this, we vary the cost ratio among the
sources, c2/c1, and study the optimal policy obtained
through RVI. We see in Fig. 1 that, when the cost ratio
increases, the number of states at which the backup
source is utilized shrinks, and the monitoring node opts
to remain idle in most of the states. The disappearance of
the backup source from the optimal action set is more
rapid, if it is characterized by low reliability, γ2 (see
Figs. 1(a) - 1(c), 1(g) - 1(i)).

The relation between the average AoI and cost ratio
is shown in Figs. 2 - 3. Predictably, the optimal average
AoI grows when the cost ratio increases, but it saturates
at a certain value, beyond which the backup source
is not utilized at all. On the other hand, the average
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Fig. 2 – Dependency of average AoI and energy cost ratio for γ2 = 0.2.
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Fig. 3 – Dependency of average AoI and energy cost ratio for γ2 = 0.8.
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Fig. 4 – Dependency of average AoI and energy cost ratio for γ1 = 0.4.

AoI increases quite rapidly at low values of the cost
ratio. Moreover, for low values of λ, i.e., low energy
generation rate, the saturation of the optimal average
AoI happens at lower values of the cost ratio (see
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(c) λ = 0.8, cost
ratio = 0.8, γ2 = 0.2
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(d) λ = 0.2, cost
ratio = 0.4, γ2 = 0.2
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tio = 0.4, γ2 = 0.2

Fig. 5 – Illustration of the optimal policy for different energy harvesting rates
λ.

Fig. 2). At lower values of source reliability, γ2, the
average AoI achieved by the aggressive policy does
not have an intuitive behavior (see Fig. 2). Up to a
certain point (when c1 − c2>ē), increasing usage of the
backup source causes the average AoI to grow. After
some point (when c1 − c2≤ē), the system starts to be
more energy conserving, i.e., starts to reserve energy for
getting updates from the more reliable primary source,
and the average AoI starts decreasing. If we set γ1 = 0.4,
a similar behaviour in average AoI is observed; however,
the average AoI saturates at higher values of the cost
ratio compared to the case when γ1 = 0.9 (Fig. 2).

C. Energy harvesting

Another important parameter that impacts the optimal
solution is the energy harvesting rate, λ. With increasing
λ the monitoring node has tendency to request an up-
date rather than staying idle (see Fig. 5). Furthermore,
increasing energy harvesting capabilities enables the
monitoring node to request updates more often from the
primary information source, and reduces the utility of
the backup source, which gradually disappears from the
optimal solution.

Some system configurations are characterized by hav-
ing a ‘pocket’ region, e.g., see Fig. 5(e) and 5(f). This
situation is observed when the reliability of the backup
source is quite low and the energy harvesting rate is
sufficiently high. In this case, the energy buffer can
recover in a short amount of time, which enables the
monitoring node to request an update from a primary
source, instead of an extremely unreliable backup source.

The dependence of the average AoI on λ is demon-
strated in Fig. 6. As expected, the increase in the energy
harvesting rate leads to a decrease in the achievable AoI.

D. Reliability of information sources

In Fig. 1 we can also observe the evolution of the
optimal solution as the reliability of the backup source,
γ2, increases. The increase in γ2 leads to an increase
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Fig. 6 – Average AoI as a function of the energy harvesting rate, λ.

in the number of states in which the backup source is
queried. In other words, the utility of the backup source
also increases.

The dependence of average AoI on γ2 is shown in
Fig. 7. As expected, the increase in the energy harvesting
rate decreases the achievable average AoI. However, if
c2/c1 is high, then the increase in γ2 does not severely
affect the average AoI. As the backup source has a high
cost, then the primary source prevails in the optimal
solution, and the reliability of the backup source does
not affect the average AoI significantly. If both the cost
ratio and the energy harvesting rate are low, then the
backup source becomes more preferable as its reliability
increases. Therefore, in this case we observe a significant
drop in average AoI (see Fig. 7).

E. Efficiency evaluation
Finally, in Fig. 8 we compare the performance of the

optimal and aggressive policies in terms of the average
AoI. The convergence time for both policies are similar,
and does not exceed 200 time slots.

We observe that the gap between the average AoI
achieved by the aggressive and optimal policies gets
higher as the energy harvesting rate increases (Fig. 6),
i.e., if the energy arrivals to the system are relatively
stable, then the aggressive policy can be as effective as
the optimal one. Similarly, there is no gain in average
AoI if c2/c1 = 0. c2/c1 does not significantly influence
the relative performance of the optimal policy over the
aggressive one, since the gap remains relatively constant
as a function of c2/c1 (Fig. 2-3). Generally speaking,
since the backup source is less expensive but also less
reliable than the primary one, the optimal policy tends to
preserve energy when convenient in order to use the pri-
mary source, while the aggressive policy would always
use the backup source whenever possible. Thus, the gap
between the two policies shrinks as the backup source
improves its reliability. However, if c2/c1 increases, the
gap remains larger.
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F. Discussion

We observe that the structure of the optimal solution
varies depending on the characteristics of the environ-
ment and system parameters. In particular, we consider
the energy harvesting rate as an environmental charac-
teristic; the reliability of the information sources and
the associated costs as system parameters. Two types of
solution structure (behavior) can be distinguished: pocket
region, or appearance of the buffer (or accumulating)
region in the optimal action set, where the monitoring
node chooses to stay idle in order to gain extra energy,
and monotonic disappearance of a source from the
optimal action set.

Results reported above answer the question when em-
ploying a backup source is beneficial in reducing average
AoI. Low values of cost ratio, as well as high reliability
of the backup source are key requirements to be met
in order to integrate a backup source to the system.
Improving environmental characteristics can reduce the
need for the backup source, but also the benefits from
employing the optimal policy. Sometimes improving
the environmental characteristics (for instance, device
relocation) can be a solution, instead of increasing the
complexity of the system by adding extra backup de-
vices.

IV. CONCLUSIONS

We have investigated a monitoring node that can query
two distinct sources of information, a primary and a
backup source, to receive status updates of an underlying
process of interest. We formulated this problem as an
MDP, and derived the optimal policy that minimizes
the average AoI. We compared the performance of the
optimal policy with that of the aggressive policy, which
tries to query the most expensive source it can afford,
and demonstrated that the gain from the optimal policy
increases as the energy harvesting rate decreases or
the backup source characteristics become worse (i.e.,
decreasing reliability or increasing cost).
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Fig. 8 – Average AoI vs. time for the aggressive and optimal policies.

We have also shown that employing an alternative
source of information is justified when the energy cost
of requesting from the backup source is relatively low
and its reliability is high.

As a future work, the case with more than two sources
of information will be considered with more than two
possible AoI states that can be received from each of
the sources.
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