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This article explores the implementation of different sam-
pling strategies for a practical energy harvesting wireless
device (sensor node) powered by a rechargeable battery.
We look for a realistic yet effective sampling strategy that
prevents packet delivery failures, which is simple enough
to be implemented in low complexity hardware. The arti-
cle proposes methods that balance erratic energy arrivals
and include advantages of dynamic data-driven approaches
based on historical data. Due to the industrial requirements
in terms of minimum acceptable sampling frequency, we
also integrate sampling rate limits and verify the proposed
methods. To do so, we simulated the operation of an indus-
trial data-logger poweredwith a solar panel relying on the
enhanced state of the model for battery charging. Finally,
the proposedmethods are compared based on energy con-
sumption over a year and amount of packet delivery failures,
thus showing how somemodifications of available strategies
achieve satisfactory performance in this sense.
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1 | INTRODUCTION

Industrial wireless data-loggers are usually deployed in remote or outdoor areas and aremainly powered by batteries
with limited capacity. It is an actual issue for vendors to provide guarantees in terms of the overall operational time,
considering different sampling possibilities.

A widely used approach to increase the autonomy of the devices is the usage of renewable sources of energy.
However, such sources are too erratic to provide complete system reliability unless over-dimensioned. In reality, energy
supply is often limited, which causes the need for adaption of the node operational strategy to ensure the functional
reliability of the system.

Solar, wind, heat, and other renewable sources of energy can be used to power the devices. One of the most
widespread solutions for wireless sensor nodes is the use of solar panels, which can provide reasonable power input.
Their efficiency is determined by the panel’s material that defines the conversion efficiency [1].

One of the possible ways to adapt the energy consumption of a wireless sensor device to a harvesting pattern
and build an energy-sustainable system is to adjust its sampling rate. The sampling frequency or sampling rate is the
average number of samples collected in one second. Sampling rate significantly affects the energy consumption of a
sensing device. If a device goes out of charge, then it fails to deliver a data packet. This might be evenmore significant if
data-driven sampling approaches are adopted. This happens, for example, when a sample is gathered if the difference in
data values are high enough, and/or a packet failed delivery, so that a gap is present in the collected data.

However, the erratic nature of the ambient energy requires to adopt a sampling strategy that, on one hand, tailors
the sampling rate to the underlying energy arrival process, while on the other hand being implementable on simple
hardware. Therefore, we seek a strategy that takes advantage of data-driven approaches, is readily implementable to
the state-of-the-art devices, and balances volatile energy arrivals.

For these reasons, this work investigates possible extensions to improve the performance of the data-driven
adaptive sampling algorithm (DDASA) [2] in terms of energy awareness, taking advantage of other ideas presented
in the literature. Also, we complement the algorithm with sampling rate limitations, regarded as constraints to the
adaptive sampling policy, which are realistically present in industrial applications.

The proposed algorithms aim at balancing the performance of the sensor device considering energy harvesting
capabilities as well as its current battery status. We compared the proposed solutions with DDASA and a strategy with
constant sampling rate and energy arrivals.

To perform a realistic assessment of the resulting performance, we tried to realistically simulate all operational
aspects, including an accuratemodel of the environment, energy harvesting, and battery behaviors, so as to derive a
correct quantification of the state of charge (SoC) as well as the energy consumption of the device. As we found out,
most of the evaluations in the literature do not take all these aspects into account. For instance, most of the SoCmodels
do not consider battery deterioration due to continuous usage or environmental factors.

Therefore, we considered an extension of thosemodels to a practical setup to derive a realistic SoC estimation. For
our validation, we used a LoadSensing commercial data-logger (further - LS) [3] powered by the commercial solar panel
SOLEM10/150/100 TD.We forecast the operation of the industrial data-logger for a period of one year and compared
the performance under different sampling rate strategies.

The article is organized as follows. The state of the art and background information in adaptive sampling for
wireless sensing devices is given in Section 2. In Section 3, we introduce our sampling policies dealing with sampling
rate limitations. In the following section, we present the simulator systemmodel (Section 4). In particular, the solar
irradiationmodel is discussed in subsection 4.1, the photovoltaic (PV) power output model is presented in subsection
4.2, the improvements of SoC estimation is demonstrated in subsection 4.3. Numerical results are discussed in Section
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5. Finally, conclusions are outlined in Section 6.

2 | BACKGROUND IN ADAPTIVE SAMPLING FOR SENSING DEVICES

According to [4], energymanagement inWSN is defined as a set of instructions to efficiently handle power consumption
and energy provision in a constrained sensor node. In the literature, papers dealing with energymanagement try to
either enhance their provisioning, or minimize the energy consumption.

For the latter goal, i.e., to reduce (or adapt) the energy consumption, duty-cycling, data-driven andmobility based
approaches are considered. Duty cycles is one of themost effective way to improve the network energy sustainability.
In [5], the authors propose to adjust the nodes duty cycles, or, in other words, the wake/sleep phases. The volatility
of the energy arrivals is accounted by energy prediction. The authors of [6] proposed amethod to reduce the energy
consumption by adjusting the sensing duty cycles according to the available energy levels. Mobility based approaches
consider themobile nodes in the network [4], [7].

Finally, data-driven approaches are based on spatial correlation of data, and aim to reduce the amount of the
sampled data keeping the sensing accuracy within an acceptable range. These approaches are subdivided on data
prediction schemes and data acquisition approaches. Data acquisition schemes try to reduce the energy consumption
in the node sensing subsystems, and can be implemented using three different approaches [4]: hierarchical sensing,
adaptive sampling, andmodel-based active sensing. In hierarchical sensing, multiple sensors are installed on the sensor
nodes and observe the same event with a different resolution and power consumption. Hierarchical sensing can be
divided into two types:

• triggered sensing - when more accurate and power-consuming sensors are activated after the low-resolution
sensors to detect some activity within the sensed area;

• multi-scale sensing - identifies areas within a region that require more accuratemonitoring.
Adaptive sampling techniques provide online sampling frequencies for sensing nodes and change the sampling

rate by evaluating correlations between the sensed data and the available energy [8]. If the subsequent samples do not
differ verymuch, then it is possible to reduce the sampling rate based on this temporal correlation. Another possibility
to decrease the overall energy consumption by adapting the sampling rate frequency is to apply harvesting aware
optimization of the power consumption using the known remaining battery level and forecast harvested energy.

Model-based active sensing is a forecasting model of the sensing phenomena based on an initial set of sampled
data. As underlined in [9], some sensors may even consume significantly more energy than the transmission component.
The authors propose a general approach that leverages two complementarymechanisms at the sensor level: 1) duty
cycling (i.e., the sensor board is switched off between two consecutive samples) and 2) adaptive sampling (i.e., the
optimal sampling frequency is estimated on-line). The proposed adaptive sampling algorithm (ASA) in [9] is tested on a
snow-monitoring applications sensor. It is demonstrated that ASA performs 79%more efficiently in terms of energy
consumption in comparisonwith the constant sampling rate. Nevertheless, the algorithm has room for enhancement
regarding the residual energy level.

Srbinovski et al. [10] introduce the energy aware adaptive sampling algorithm (EASA), that modifies the ASA
algorithm by taking into account the current energy level of a sensor. That is, ASA is combinedwith an energy aware
function, assuming that each node in the network is able tomonitor its own energy level. The sampling rate of EASA is
consecutively decreased under certain energy level without limitation since the sampling rate of EASA is proportional
to the remaining energy of nodes. EASA is evaluated on two testbeds powered by two sources of energy - wind and
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solar, and is demonstrated that EASA outperforms ASA.
Other energy-aware adaptive sampling algorithms are proposed in [11]: ResuscitationAdaptive SamplingAlgorithm

(RASA) and Compensation Adaptive Sampling Algorithm (CASA). The purpose of RASA is to set low sampling rate and
guarantee self-sustainability when energy state of sensors is extremely low. Sensor nodes in CASA can be recharged
by saving the consumption energy when the harvesting quality is good. The algorithms are compared with ASA and
demonstrated a better performance in terms of energy consumption.

An optimal scheduling sensing policy for an energy harvesting system equippedwith a finite battery is considered
in [12]. The objective is to select the sensing epochs such that the long-term average sensing performance is opti-
mized. Finding the optimal solution can be a computationally intensive task and requires a device to have sufficient
computational capabilities.

The data-driven approach is adopted to developASA for powermanagement in automatedmonitoring of the quality
of water. Data-driven adaptive sampling algorithm (DDASA) is proposed in [2]. DDASA can save 30.66% of energy for
threemonths in comparisonwith the fixed rate strategy. DDASA changes the sampling frequency based on the nature
of the sampled ratio compared with ASA. A sigmoid function is proposed to dynamically set the sampling frequency.
DDASA is tested on a device, powered by a non-rechargeable battery, thus, it does not take into account the harvesting
capabilities as well as battery level.

From the described algorithms only CASA takes into account energy harvesting potential of a sensing device, even
though the benefits of using a data-driven approach such as including the data accuracy in the optimization are not
incorporated. Therefore, one of the objective of this work is to adjust the data driven approach to calculate the sampling
rate of a battery and harvester equipped device. Yet, we integrate sampling rate limitations as a mechanism to adapt to
the industrial requirements.

In the literature, further adaptive sampling algorithms for more specific applications in WSN are proposed. In
particular, in [13] optimality criteria for mobile robotic wireless sensor network is suggested to themost informative
location of interest. The adaptive sampling strategy for mobile sensors in the environment monitoring context was
proposed in [14], where the sequential Bayesian prediction algorithm minimizes the prediction error variance. An
adaptive sampling system for sensor network is considered in [15], that is, the analog method for signal dependent
ADC clocking. Another adaptive sampling algorithmwas proposed in [16] for target tracking in underwater wireless
sensor networks, that simultaneously balance the energy consumption and maximizes the energy efficiency. All of
these proposals are specific to their applications and leverage some further aspects of their scenarios. Even thoughwe
considered a definite use case related to the geotechnical industry, our proposal is insteadmore general and we believe
that we can extend our same rationale to all these contributions to improve their results.

3 | ADAPTIVE SAMPLING ALGORITHMS WITH SAMPLING RATE LIMITATIONS

Adaptive sampling algorithms estimate at runtime the expedient sampling frequencies for sensor devices.
Sampling algorithms can be extended by including sensing frequency limitations. This is motivated by the industrial

requirement of guaranteeing a certain amount of data per unit of time. In particular, it might be desirable to limit
theminimum sensing frequency, while maximum sampling rate can be as high as possible. In this case, themaximum
frequency can be only bound by a duration of a cycle, in which a sensor performs warming up, measurement and
transmissions:

Fmax [H z ] =
1

twarm + tmeas + t t r ans
, (1)
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F IGURE 1 Revised sigmoid function [2]

where twarm , tmeas and t t r ans are the time required forwarming up of the sensor, taking ameasurement and transmitting
themeasurement, respectively.

In this section, we propose 4methods taking into account energy harvesting capabilities and battery level informa-
tion, in order to improve the DDASA performance. Differently fromDDASA, the proposedmethods include sampling
rate limitations, energy capabilities as well as the capability to sectorize the battery level and apply different rules to
the different sectors.

Sampling rate limits Fmax and Fmin serve as boundaries for the proposed adaptive sampling algorithms.
The originalDDASA changes the sampling frequency based on the nature of sampled data (Algorithm 1). Specifically,

DDASA updates the sampling frequency based on the sigmoid function y (D ) (0 < y (D ) < 2), where D is calculated
as a difference between two measurements xi and xi+1 over the average value of the N recent data. D rises if the
environment suddenly changes (Fig. 1).

The sigmoid function represents a deterministic growth pattern. The simple way to represent the sigmoid function
is [17]: w =

wmax

1 + e−k (t−tm )
, (2)

wherew is the weight to be calculated,wmax is themaximum value ofw , tm is the period of timewhen themaximum
value ofw was observed, and k defines the curvature of the pattern.

Ourfirst proposal is threshold-basedASAorT-ASA, which is basedon theenergy level andharvesting rate thresholds,
and corrects the sampling rate when the energy level or energy arrival rate go beyond a threshold. T-ASA utilizes the
mechanisms proposed in [10] and [11]. Based on their approach, we propose themapping between different battery
and energy arrival levels (thresholds) and equations that adjust the sampling rate. This method considers four states:

1. High energy arrivals (H /Hmax > k ) and high battery level (Ebat t > Et h ): fnew = fcur r ;
2. High energy arrivals (H /Hmax > k ) and low battery level (Ebat t < Et h ): fnew = fcur r · (

Et h−Ebat t
100 )m ;

3. Low energy arrivals (H /Hmax < k ) and high battery level (Ebat t > Et h ): fnew = fcur r · (1 +
H

Hmax
) · N ;

4. Low energy arrivals (H /Hmax < k ) and low battery level ((Ebat t < Et h ): fnew = fcur r · (
Et h−Ebat t

100 )m · (1 + H
Hmax

) · N ,

Parameter k is an energy arrivals threshold, m and N denote the parameters of the algorithm, H and Hmax are
current solar radiation and maximum possible solar energy arrival, correspondingly, Ebat t and Et h are the current
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Algorithm 1DDASA
1: Initialize a constant sampling rate denoted as fconst , sample a number of N for later use;
2: Predetermine a threshold according to the characteristics of themonitored parameters;
3: DefineD = |Xi+1 − Xi |/

1
N

∑i
i−N+1 Xi ;

4: Define fcur r = fconst , where fcur r is the current sampling frequency;
5: for i = N ; i + + do
6: SampleXi+1 based on fcur r (or f ′cur r );
7: D = |Xi+1 − Xi |/

1
N

∑i
i−N+1 Xi ;

8: y (D ) = 2
1+e−(D−t )

;
9: fnew = fcur r · y (D ), where fnew denotes the new (updated) sampling frequency.;
10: f ′cur r = fnew ;
11: S (i + 1) = Xi+1;
12: end for
13: return S;

battery level (%) and battery threshold (%). Coefficient (Et h − Ebat t )/100 ∈ [0, 1] represents the deviation of the energy
level from its threshold. The parameterm adjusts the granularity of the algorithm. Higher values ofm decrease the value
of the sampling frequencymore significant. In other words,m is adjusted depending on the strength of the required
intervention. Coefficient (1 + H /Hmax ) ∈ [1, 2] increases the value of the sampling frequency in the case of more
frequent energy arrivals. Parameter N ∈ (0, 1] similarly withm defines the granularity of themethod.

The second method, analogously to T-ASA, uses fmax and thresholds. However, instead of correcting the current
sampling rate as done in the previousmethod, the calculation is based on the sampling rate limit fmax and current energy
capabilities. Themethod is defined as L-ASA, or limits-based ASA:

1. High energy arrivals (H /Hmax > k ) and high battery level (Ebat t > Et h ): fnew = fmax ;
2. High energy arrivals (H /Hmax > k ) and low battery level (Ebat t < Et h ): fnew = fmax · (

Et h−Ebat t
100 )m ;

3. Low energy arrivals (H /Hmax < k ) and high battery level (Ebat t > Et h ): fnew = fmax · (1 +
H

Hmax
) · N ;

4. Low energy arrivals (H /Hmax < k ) and low battery level ((Ebat t < Et h ): fnew = fmax · (
Et h−Ebat t

100 )m · (1 + H
Hmax

) · N ,

In the thirdmethod called LT-DDASA (limits and thresholds based DDASA), we propose to adjust the sampling rate to
its limits if the following conditions are satisfied:

1. High battery level (Ebat t > E upth ): fnew = fmax ;
2. Low battery level (Ebat t > E l owth

): fnew = fmin

If E l ow
th
< Ebat t < E

up
th
then sampling rate is determined by DDASA. To take into account the harvesting capabilities

of a sensor node, we introduce the calculation of derivatives, that determines the period of time when the energy
arrivals have a tendency to grow or decrease over time.

3. if dfd t > 0: fnew = fcur r ∗ α , where α (0 < α ≤ 1) is a coefficient increasing the sampling frequency;
4. if dfd t < 0: fnew = fcur r ∗ β , where β (0 < β ≤ 1) is a coefficient decreasing the sampling frequency.



GINDULLINA ET AL. 7

Finally, EA-DDASA (energy-aware DDASA) is based on the calculation of the sigmoid function presented inDDASA. In
contrast with DDASA, we include the calculation of the sigmoid function not only for collected data, but also for energy
arrivals and battery level:

y (D ) =
2

1 + e−(D−t )

x (SoC ) =
2

1 + e−(SoC−k )

z (H ) =
2

1 + e
−(k− H

Hmax
)

fnew = fcur r · y (D ) · x (SoC ) · z (H )

(3)

All three components in (3) are combined to define the value of sampling rate, so that, for instance, low values of
battery level can be compensated by high energy arrivals.

In order to validate the proposedmethods, we simulate the operation of an industrial sensor node powered by a
solar panel. Simulations are based on the systemmodel presented in the following section.

4 | SYSTEM MODEL

To test the proposed adaptive sampling algorithmswe introduce the energymodel for the energy-harvesting wireless
sensor, specifically, for a tiltmeter powered by a solar panel.

To analyze the sustainability of the solar-powered sensor device with integrated adaptive sampling algorithm, we
first describe ourmodel for the node SoC. This can be divided into four stages:

1. Model of the solar irradiation taking into account meteorological conditions, location, reflection, solar panel
inclination, soiling effects, etc.

2. Model of the power output based on the inner characteristics of the solar panel, such as cell temperature, area,
losses, solar radiation on the tilted surface etc.

3. The actual loadmodel based on the battery effects, such as battery degradation and duty cycling
4. The energy consumptionmodel based on the expenditure for one sensing cycle and the adopted adaptive sampling

algorithm

4.1 | Solar irradiationmodeling

Solar irradiation represents the amount of solar power (or instantaneous energy) per unit area [W /m2]. Few parameters
that determine the solar irradiation on the surface of Earth are discussed in [18]: the Earth’s geometry and location
(declination, latitude, solar hour angle); terrain (elevation, surface inclination and orientation, shadows); atmospheric
attenuation (scattering, absorption) by gases, solid and liquid particles and clouds.

Different combinations of these parameters are included in the solar irradiationmodels. Global solar energymodels
are considered in [19], divided into two components: extraterrestrial and global solar energy, i.e. above or below the
atmosphere, respectively. Global energy models may be further categorized into computation of direct beams and
diffuse solar energy. These parameters are usually measured, but the installation of measurement devices is costly.
Therefore, predictionmodels are widely used tomeasure the global solar radiation [19].

We tested and compared two models to obtain an input solar radiation, namely an astronomical model and a
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F IGURE 2 Comparison of average daily irradiation for 0◦

clear-skymodel (see description in Appendix A), that do not demand the real data sheets, although the knowledge of
the reflection characteristics of the location and ground are needed. We set the reflection parameters that correspond
to the concrete surroundings since we consider the urban scenario.

The models were implemented and compared with real data, provided by IREC (Institut de Recerca en Energia
de Catalunya) for Barcelona, Spain, andwith the database of NASA for a tilted solar panel: 0◦ (Fig.2) , 37◦ (Fig.3) and
90◦ (Fig.4). For this purpose we aggregated hourly data over one year, obtained as an output of these twomodels. The
incident solar power data for the input of an astronomical model was derived from [20].

For the performance evaluation of themodels, we consider themean square error E of the average daily irradiation
y . That is, if yi is a data point and ŷi is its estimate, we compute E as:

E =
N∑
i=1

(yi − ŷ )
2, (4)

A comparison of the results for twomodels is presented in Table 1. Clear-sky model showed higher accuracy in
comparison with the astronomical model.

TABLE 1 Error values
Astronomical model Clear skymodel

Data source 0° 37° 90° 0° 37° 90°

IREC 6.421 7.654 2.462 0.738 0.871 1.507
NASA 12.064 - 2.196 3.839 - 2.005
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F IGURE 3 Comparison of average daily irradiation for 37◦
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4.2 | PV power outputmodeling

In general, the power output depends on the active area of the solar panel and the technology [21]:

E = Apv · r · GT · P R , (5)
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whereA is the total solar panel area (m2), r is a solar panel yield of efficiency (%),GT is an annual average solar radiation
on a tilted panel (shading is not included) that depends to solar position, cloud cover, atmospheric transmittance, and
power orientation; moreover, P R is a performance ratio, i.e. a corrective coefficient for losses (in the range between 0.5
and 0.9, with a default value of 0.75), and finally r is the effective power, derived from standard test conditions (STC),
that corresponds to 1000W /m2, at a cell temperature of 25 °C, wind speed 1m/s ,AM = 1.5.

Alternatively, solar power output depends to global solar irradiation, area of the solar panel, efficiency of the solar
panel, average losses, and temperature, as per [22]:

Ppv = η · Apv · GT · [1 − 0.005(Tc − 25)], (6)

where η is the photoelectric conversion efficiency (%),Tc is the panel operation temperature (°C ). Temperature of the
cell can be obtained from the following equation:Tair[i ] + 0.035 ∗GT [i ], whereTair is an hourly temperature [23].

In practice, a correct definition ofGT is required to obtain a proper estimate of the AC power output. Alternative
power output formula does not take into account the temperature, which leads to ignoring the effect of the temperature
raising on the effectiveness of the solar panel.

One of the main correction factors for the solar panel output model is power losses. In particular, the main
parameter derived from the clear-sky model is a global solar radiation [W /m2]. The value of this parameter significantly
changes according to themeteorological factors, shading etc., andmoreover, other losses occur in the solar panel itself.
In general, other loss parameters can be included, for example: annual losses due to the soil, inverter losses, DC cable
losses, AC cable losses, shading, losses at weak radiation, losses due to the dust, snow, and so on [24].

4.3 | State of the chargemodeling

SoC can be defined as a rate of available capacity (in Ah) against its nominal capacity [25]. In the literature, we can find
commonmethods to estimate SoC, however thesemethods are just general representation and lackmany details, as
they usually do not consider a realistic battery behavior, but rather define SoC based on energy consumption, arrivals of
energy, and battery capacity.

In addition, complex calculations and high computational cost are other concerns that make the estimation process
very difficult. Exhaustive classification of SoC estimation methods are presented in [26] and [27]. Few general SoC
definitions are presented below.

SoC can be defined as a relation between current capacity (Q (t )) and nominal capacity(Qn ): SoC (t ) = Q (t )
Qn
[27].

Themost commonway to estimate SoC is current integration: SoC = 1 −

∫
i d t

Cn
, where i is a battery current and

Cn is a nominal capacity.
Another commonway todefine SoC is throughCoulombefficiency: SoC = 1−

∫
ηi d t

Cn
, where i is a positive/negative

current, η is Coulomb efficiency, i.e. the ratio of the energy required for charging to the discharging energy needed to
regain the original capacity. Thismethod requires the knowledge of initial SoC and precisemeasurements of the battery
current. Coulombmethod is not precise and does not include duty cycle and temperature. Apart from it, additional
equipment is necessary for SoC calculation.

Another general model for defining SoC of a battery was presented in [28]:
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F IGURE 5 SoC estimationmodel

SoCt =
St−1 + ∆St
Smax

(7)

∆St = ∆Ct − ∆Dt − ∆Lt , (8)

where∆Ct is the charging energy,∆Dt is a demand parameter and∆Lt is energy losses.
Demand∆Dt is defined as:

∆Dt = ∆t Pe,t = ∆t · It ·Udc,t , (9)

where Pe,t is the electric power consumption, It is the discharging current,Udc,t is a voltage output of the battery.
Smax is defined as follows:

Smax = C ·Un = ∆Pc,t · t , (10)

whereUn is the nominal voltage, Pc,t is the charging power at time t .
Due to the non-linear time-varying characteristics and electrochemical reactions, battery SoC cannot be defined

directly. Furthermore, the performance of the battery is highly affected by aging, temperature variation, charge-
discharge cycle, which make the task of accurately estimating the SoC very challenging. We consider an SoCmodel
based on the reasonings above, but we should also include additional parameters such as battery age and temperature
coefficient. The general scheme of themodel is reported in Fig. 5.

The current SoC depends on the SoC on the previous time interval, capacity, and nominal voltage of the energy
storage, degradation of the battery, and energy charges and consumption of the device.
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F IGURE 6 Example of tiltmeter installation for Courtesy of SixenseOceania

5 | NUMERICAL RESULTS

In this section, we report the numerical experiments we conducted to compare different sampling strategies: constant
sampling rate,DDASAwith andwithout limits andmethods, presented in Section 3.

All algorithms were tested on the tiltmeter data extracted from LS, that is a part of the Auckland City Rail Link
Extension project [29]. Tiltmeters can be used tomeasure the surfaces’ inclination of construction objects. An example of
LS tiltmeter installation is presented in Fig. 6. Replacing the batteries in such objects is problematic and not economically
profitable. Powering of tiltmeters by solar panels can be considered as a valid solution for the outdoor construction
objects (bridges, buildings etc.).

5.1 | LS description and energy consumption

LS is a wireless data logger powered by batteries. It performs periodic sensing and sends the measures via radio
transmission to a gatewayor concentrator. It hasmultiple possible configurations,which affect thebattery life drastically.
LS can be configured to employ different duty cycles of measurements, from one measure every 30 seconds to one
measure per day. The product is designed for the geotechnical industry and usually installed at locations that are
difficult to reach, therefore where battery replacement to be avoided. In order to create an accurate estimationmodel
of the battery discharge, it is necessary to outline the application scenario. In this paper, we consider worst case energy
consumption scenario, determined by:

1. warming up - 3 seconds (60mA, 12 V)
2. measurement - 3 seconds (60mA, 12 V)
3. transmission - 3 pulses (900ms, 120mA, 3.6 V each) and time between pulses (2s, 15mA, 3.6 V)
4. background consumption between cycles is 30 µAh, 3.6 V.

After ameasure is taken, it is sent by radio. The systemhas about 5minutes to send the radiomessage. Themessage
transmission has alsomultiple variables but for the sake of simplification we consider the worst case.
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F IGURE 7 Radio consumption profile of LS device

When LS performs a complete cycle once per hour, then the hourly consumption is about 2.844W. The radio
transmission consumption is presented in Fig. 7.

5.2 | Solar panel characteristics

Weobtained the power output for the solar panel SOLEM10/150/100 TDwith size 138.8mm × 90mmoriented on the
south with inclination 37°. The theoretical efficiency of the amorphous silicon PVmodule is 12.7%, plus average losses
due to the shading, dust, wiring etc. are includedwith a loss coefficient of 0.75, see Fig. 8.

The temperature dataset for solar panel power output estimation (Fig. 9) is extracted for Barcelona, Spain for
01.01.2017 - 31.12.2017 from [20].

5.3 | Battery characteristics

The battery present in the simulator is an LG18650B4with nominal capacity of 2600mAh and nominal voltage of 3.6V.
The coefficient of aging was obtained from data, provided by IREC. The capacity of the battery depends on the

number of cycles performed: after 300 cycles the battery loses capacity from 2600 to about 2500mAh. In addition,
battery capacity depends on the air temperature and varies from 59%of total capacity if the air temperature is below
−20 °C to 104% if the temperature exceeds 40 °C.

5.4 | Evaluation of simulation results

The proposed algorithms are aimed to balance irregular energy arrivals. In linewith this, we set the benchmark case, that
corresponds to the ideal scenario of regular energy arrivals. To do so, we averaged the energy arrival profile presented
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F IGURE 8 Theoretical power output of solar panel SOLEM10/150/100 (south, 37°) located in Barcelona, Spain
throughout a year.

0 2000 4000 6000 8000
Time [hour]

0

5

10

15

20

25

30

Te
m

pe
ra

tu
re

 °C

Temperature of Barcelona for 2017

F IGURE 9 Hourly air temperature profile of Barcelona, Spain for 2017 year

in Fig. 10(a) over time.
We compare the performance of DDASA and all other proposed algorithmswith the sensor performance under

ideal conditions. Simulation settings are presented in Table 2. The duration of a time slot is one hour.
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(a) realistic solar irradiation profile for Barcelona, 2017 (b) Idealistic energy arrivals

F IGURE 10 Comparison of energy arrival profiles.

TABLE 2 Simulation parameters
Parameter Value

Minimal sampling rate, Fmin 1.157 · 10−5H z (24h)
Maximum sampling rate, Fmax 4.639 · 10−5H z (6h)
Algorithm parameter,m 1

Algorithm parameter, N 0.5

Initial number of samples, NDDASA 50

Inclination data threshold, t 0.001

Harvested energy threshold, k 0.1

Battery level threshold, Et h 0.2SoC

Upper battery level threshold 0.4SoC

Lower battery level threshold 0.1SoC

Coefficient, α 1.2

Coefficient, β 0.8

The failure rate is chosen as a comparison performance metric. A device fails when the battery does not have
enough energy to transmit a data packet. If the significant gain in decreasing of failure rate by adapting the algorithm is
achieved, then we will have simple and effective lightweight solution, which can be implemented on the real sensor
devices.

The implementation of DDASA algorithm in LS demonstrated that the algorithm needs to be improved in terms
of energy awareness and robustness, that have to be more balanced and adapted to the available energy level and
harvesting capabilities.
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F IGURE 11 Comparison of initial dataset obtained under constant sampling rate of 1 hour with a dataset obtained
under DDASA (here initial tiltmeter data and sampled data respectively)

DDASA leads LS device to frequent failures to transmit a data packet (Table 3). Sampling rate obtained withDDASA
depends to the data variation only. And it can lead to the situation when the energy arrivals are poor, but data variation
is high. It causes more aggressive battery drain and termination of LS operation. Therefore, the original version of
DDASA is not able to ensure the robust operation of LS that is powered by a solar panel over a whole year.

The sampling rate during data collection phase (or transition phase) is adjusted to 1 hour, which is the duration
of a time slot. All device failures of the proposed strategies (T-ASA, L-ASA, LT-DDASA, EA-DDASA) are accounted for
this transition period. If we compare the similar throughput results presented in Table 2, then EA-DDASA provides the
closest performance results to the ideal conditions case. The failure rate is 0 during all months except January, that
includes the transition phase 12(a). EA-DDASA demonstrates balanced energy consumption 12(b): during winter it
consumes less energy, while during summer months it consumes more energy, except July, that can be explained by
the power output pattern, shown in Fig. 8. DDASA energy consumption is guided by data variations and therefore the
energy consumption is unbalanced, and during somewinter months we observemuch higher energy consumption, than
during summermonths, which causes the device to operate on the edge of its capabilities.

In general, the choice of the algorithm can be dictated by different circumstances. In particular, if the environmental
conditions have a stable pattern over the span of the year (i.e., energy provision has little volatility), then L-ASA can be
adopted, since it provides a higher throughput, but the average SoC is lower, comparing to other proposed algorithms.
If the environmental characteristics are highly unstable, then T-ASA can be implemented, that provides the highest
average SoC. Themost balancedmethods are LT-DDASA and EA-DDASA. In addition, if the Li-ion battery is attached to
the device, then the recommended energy level holds. For some batteries chemistry, it is preferable to keep the average
battery level low to preserve the battery life [30]. As the battery level stays around 100%SoC, the battery degrades
faster, since Keeping charging the battery leads to micro-charges and discharges, thus negatively affecting the battery’s
life. Therefore, the average SoCmay be also worth considering.

In order to improve robustness of the proposed schemes, the energy arrivals learningmodels can be implemented,
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TABLE 3 Comparison of algorithms

Algorithm Throughput,
[packets]

Failure rate (with/
without transition

phase)

Total energy
consumption,

[W]

Average
SoC, %

Constant energy arrivals, sampling rate (24h) 364 0.00 1036 99.5
Constant energy arrivals, sampling rate (9h) 970 0.00 2759 98.1
Constant energy arrivals, sampling rate (6h) 1028 0.05 2919 5.8
Realistic energy arrivals, sampling rate (24h) 364 0.00 1036 98.5
Realistic energy arrivals, sampling rate (6h) 938 0.06 2668 5.3
DDASA 1336 0.58/0.56 7603 3.0
DDASAwith limits 951 0.04/0.02 5414 5.6
T-ASA 407 0.02/0.00 2319 92.8
L-ASA 945 0.02/0.00 5379 19.9
LT-DDASA 709 0.02/0.00 4037 75.7
EA-DDASA 915 0.02/0.00 5209 68.9
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F IGURE 12 Comparison of DDASA, ideal conditions strategy and EA-DDASA.

that will exclude the usage of the predefined environmental characteristic evaluations. This method is more effective,
but at the same time computationally heavy and requires to install additional hardware, that measures the solar
radiation information (pyranometers). This will lead to the overall cost increase of a sampling device.
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6 | CONCLUSIONS

One of the effectiveway to provide the robustness to a sensor node operation is to adapt the sampling rate. The efficient
adaptive sampling strategy adopted in an energy harvesting sensor node is required to provide a failsafe operation under
unstable environmental conditions, and be implementable in the existing hardware. In linewith this, we proposed energy
aware strategies applied to the data driven adaptive sampling approach, that balance the energy consumption and
decrease the number of packet delivery failures. To validate the performance of the proposed schemes, we simulated
the operation of the industrial data-logger poweredwith a solar panel located in Barcelona, Spain.

We observed that with prior knowledge of the environmental characteristics it is reasonable to set threshold based
rules and sampling rate limits that significantly increase the performance of the existing data-driven approach without
increasing the complexity of the algorithm.

Improving sensor operation strategies is needed to provide the full autonomy of a device with energy harvesting
capabilities, which is a key to design successful and self-sustainable IoT systems.

Appendices
A | SOLAR IRRADIATION MODELS

The following groups of solar irradiationmodels canbeoutlined: linear andnon-linear. Linearmodels give the correlation
between solar energy on a horizontal surface and some meteorological variables, such as shining hours, ambient
temperature and relative humidity. Due to themodel simplicity, linear models aremore commonly used. Diffuse solar
energy models describe the relationship between the average daily diffuse and global solar radiations incident on a
horizontal surface and the sky clearness index.

Other more sophisticated types of models are based on the artificial neural networks (ANN). The commonly used
input variables in ANN-basedmodels are the sunshine ratio, ambient temperature, and relative humidity to predict
global solar energy at different locations, but also following inputs can be used: latitude, longitude, altitude, month,
time, wind speed, relative humidity, and rainfall. The results of the study showed that the ANN-basedmodels are more
accurate in predicting the diffuse radiation compared to the linear regressionmodels, but are muchmore demanding in
terms of data and complexity.

In [31], the astronomical solar model is presented, which is used to translate the instantaneous solar radiation (Isun )
into effective radiation. The effective (or available) solar radiation (Ief f = Isun · cosΘ) is dependent on factors such as:
location, inclination of a solar module, time of the year and hour of the day, whereΘ is the angle between the sunlight
and the normal to the solar module surface.

In [32], a clear-sky radiation model is introduced. The total radiation GT is divided on 3 components: beam
(GbT ),diffuse (GdT ), and reflection (GrT ), which can be calculated as:

GbT = Gonτbcosθs (11)

GdT = Goncosθzτd

(
1 + cosβ

2

)
(12)

GrT = ρGoncosθzτr

(
1 + cosβ

2

)
(13)
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whereGon is the solar radiation outside of the atmosphere, τb , τd and τr are the atmospheric transmittance for a beam,
diffuse and reflected solar radiation, respectively. θz , θs , β and ρ are the solar zenith angle (rad), the incident angle on
the surface, the inclination angle of the surface (deg) and the average reflection on the ground.

The clear-skymodel is suitable for meteorological conditions without clouds, mist or haze, but in comparison with
the astronomical model, it includes the diffusion and reflection components.

Astronomical and clear-skymodels do not include atmospheric attenuation and are not as accurate as ANNmodels.
However, thesemodels do not require meteorological data and solar radiationmeasurements, therefore themodel is
easily applicable and can be adapted to any location. Clear-sky solar radiation model is a wider model that includes
parameters such as diffusion and reflection solar energy. Therefore, this model can be used as a foundation to compute
the solar radiation in a particular location for a solar panel with known inclination angle and direction.
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