

IS-ENES3 Deliverable D10.2
First release of the ENES CDI software stack

Reporting period: 01/07/2020 – 31/12/2021

Authors: A. Spinuso (KNMI), W. Som de Cerff (KNMI), P. Nassisi (CMCC), C. Pagé
(CERFACS)

Reviewers: P. Kershaw (UKRI), S. Kindermann (DKRZ), M. Lautenschlager (DKRZ)

Release date: 19/01/2021

ABSTRACT

The deliverable illustrates the first release of the ENES CDI software stack (software repositories,
licensing information, change logs, links to technical documentation). We report about the implementation
of the core data distribution services, climate4impact, ES-DOC, compute services, data request schema
and tools for MIPs, and file metadata specifications. The deliverable reports on the realisation of the
technical requirements and provides an update of the software architecture.

Dissemination Level

PU Public X

CO Confidential, only for the partners of the IS-ENES3 project

1

Revision Table

Version Date Name Comments

Document Structure and Contributors 8/10/2020 Alessandro Spinuso Preliminary Structure and
Objectives discussed on
9/10/2020

Collection and review of first round of
contributions

13/10/2020 Alessandro Spinuso Edited section 7.1 on
Climate4Impact

Collection and review of second round of
contributions

27/11/2020 Alessandro Spinuso Updates on Tables and
first ENES-CDI Release,
overview

Completed Sections 4/12/2020 Paola Nassisi, Alessandro
Spinuso

Updates to the
Architecture, Executive
Summary and Conclusion

Finalised work on reviewers’ comments 11/01/2021 All Rephrasing and
reorganisation of a few
sections and references to
the architecture.

Table of contents

Executive Summary 5

1 Introduction 6

2 CDI Release Overview 6
2.1 Updates to the Architecture 6
2.2 Integrated Available Software and Services 10

3 Data Services 14
3.1 ESGF Data 14

3.1.1 esgf-prepare: 15
3.1.2 esg-publisher: 15
3.1.3 esg-search: 15

3.2 Data Citation 15
3.2.1 Brief reminder of Data Citation Service functionality 15
3.2.2 Accessing citation information 16

3.3 Persistent Identifiers 16
3.3.1 Current status 16
3.3.2 Next steps 17

3.4 IPCC Data Distribution Centre at DKRZ 17
3.4.1 Brief reminder of IPCC DDC core functionality 17
3.4.2 Long-Term Data Archival to build the IPCC AR6 Reference Data Archive 17
3.4.3 Long-Term Data Stewardship and Data Access 18

3.5 Errata 18
3.5.1 Brief reminder of system architecture 19
3.5.2 Authentication and authorization 19
3.5.3 Issue life-cycle 19
3.5.4 Issue body requirements 20
3.5.5 PID integration 20
3.5.6 API 20

3.6 ESGF Data Statistics 20
3.6.1 General architecture 21
3.6.2 First release details 21
3.6.3 Current status 23
3.6.4 Next steps 23

2

3.7 Data Replication 23

4 Metadata Schema and Services 24
4.1 Climate and Forecast Convention 24
4.2 CMIP Data Request 25

4.2.1 Current Status 26
4.2.2 Next Steps 26
4.2.3 Summary of resources 26

5 Dissemination and Computational Services 27
5.1 Climate4Impact 28

5.1.1 Current Status 29
5.1.2 Relation with the other components of the ENES-CDI 30
5.1.3 Next Steps 31

5.2 ES-DOC 31
5.3 Institutional compute service deployments at ENES CDI sites 33

5.3.1 Compute Service at CMCC 34
5.3.1.1 General architecture 35
5.3.1.2 AnalyticsHub GUI 35
5.3.1.3 AnalyticsHub front-end and back-end 36
5.3.1.4 AnalyticsHub data collector 37
5.3.1.5 Next steps 37

5.3.2 Compute Service at DKRZ 38
5.3.3 Compute Service at CNRS-IPSL 39
5.3.4 Compute Service at UKRI (CEDA) 39
5.3.5 Compute Service repositories 41

6 Identity Management and Access Entitlement 42
6.1 Current Status for Authentication and Authorisation with ENES CDI 42
6.2 Implementation status for Future Architecture Components 43

6.2.1 Authentication, single sign-on and user delegation 43
6.2.2 IdP Proxy and Federation Site IdP Implementations 43
6.2.3 Relying Party and Policy Enforcement Point Implementation 43
6.2.4 Federated Authorisation 45
6.2.5 Integration Status 45

7 Conclusions and main targets of the next release 47

8 References 48

3

List Of Images

List Of Tables

4

Figure 1. ENES CDI software stack architecture.
Figure 2. Detailed component diagram of the ENES CDI architecture.
Figure 3. Errata Service architecture.
Figure 4. The ESGF Data Statistics Architecture.
Figure 5. Synda software general view.
Figure 6. Updated Component Diagram of the new Climate4Impact
Figure 7. Integration of new C4I search interface with SWIRRL-API.
Figure 8. Compute service component diagram
Figure 9. Analytics-Hub architecture.
Figure 10. Overview of JASMIN services.
Figure 11. Data Node showing the integration of identity management and access.
entitlement components.

 7
9

18
21
24
28
29
33

 35
 40
 44

Table 1. First ENES-CDI Release, Software and Services overview.
Table 2. Software modules compliant to the Climate and Forecast Convention.
Table 3. Climate4Impact Software Components and Repositories.
Table 4. Software repositories related to the computing services.
Table 5. Software Repositories related to Identity and Access Entitlement Services.

14
25
30
41
46

Executive Summary

The ENES Climate Data Infrastructure (CDI) consists of a collection of services, software and
metadata specifications, which are functional to the sustained access, evaluation and analysis of
the data generated by CMIP and CORDEX simulations. In D10.1 [1] we have provided the
general architecture of the envisaged infrastructure, with technical expectations for the mid to
long term implementation. These are made concrete in this report, which provides the details on
the progress made in the realisation of the architectural principles, leading to the first release of
the CDI. For some of the components (ie. Climate4Impact), we motivate the need for redesign
and reimplementation, to better approach the challenges set by the requirements of the CDI. We
explain how these new developments are conducted, introducing recent software stacks and
tooling. After the general introduction, the document is organised into 5 main sections. Section 2
provides the overview of the first release, providing updates to the architecture and the complete
list of software and specifications. All the components are illustrated in the following four
sections, respectively addressing (i) core data services, (ii) metadata schemas and reference tools,
(iii) gateways for dissemination and access to computational facilities, (iv) solutions for
authentication and authorisation. In the final conclusions we particularly highlight commonalities
in the approaches pursued by some of the components. These involve technical choices,
especially addressing flexibility of computation, and the exploitation of cloud technologies, as
well as usability and exploitation challenges. The latter require the active participation and
engagement of the target communities to foster the delivery of FAIR1 derived products (PID,
Metadata Conventions and Data Request Standards), towards the improved quality of
user-centered services. Finally, we illustrate the most relevant future work, which we will
undertake for the second release of the CDI.

1 https://www.force11.org/group/fairgroup/fairprinciples

5

https://www.force11.org/group/fairgroup/fairprinciples

1 Introduction
This document provides a technical overview of the progress achieved with the implementation
of the requirements and architecture presented in D10.1 “Architectural document of the ENES
CDI software stack” [1] . The work presented in the report is packaged in a comprehensive
official release, which addresses the different capabilities of the ENES infrastructure, from Data
and Metadata, to Computation and Dissemination services. Each component will be described in
respect to the progress made, the issues encountered, how these have been solved and what is left
to be addressed. It will be clear what each component offers in the current release and how it
connects and exploits the other capabilities of the infrastructure. We specify the means of access
(eg. Available as a service / Software Package) and provide references to technical
documentation and official repositories. Where applicable, deviations from D10.1 [1] are
highlighted together with appropriate justification. In addition, any relevant upcoming
developments will be highlighted together with plans for incorporation in a future release of the
integrated ENES services.

2 CDI Release Overview

We provide here the updates of the ENES CDI Architecture and a summary of the software
components which are available in the release. Sections are broken down by component and
where appropriate details of the development of new software and services are also described. As
these are under development they may not at time of writing be available as public releases.

2.1 Updates to the Architecture
As widely described in the document D10.1 “Architectural document on the ENES CDI software
stack”[1], the ENES CDI is organized into multiple tiers and layers, through which the
distributed components of the architecture interact with each other to provide the ENES
community with a comprehensive set of services related to data and metadata access,
dissemination and computation capabilities.
The ENES CDI architecture will be continuously updated during the project lifetime, allowing
for the new requirements gathered in WP5/NA4 and coming from the IS-ENES community, also
including external initiatives at both European (e.g. EOSC, EGI/EUDAT, Copernicus, etc.) and
International level (e.g. ESGF). According to an agile approach, the next scheduled releases will
reflect such inputs with an updated architecture diagram, thus properly adapting the development
of individual components.

6

 Figure 1. ENES CDI software stack architecture.

As a recap, Figure 1 above highlights the following structure of the ENES CDI software stack:

● Platform Tier: it includes the ENES CDI stack, a suite of software components that can
be selectively deployed according to specific needs and goals. It consists of the following
layers :

○ Fabric (pink): it provides basic data, metadata and compute services;
○ Federation (cyan): it federates and integrates different services at the Fabric layer

across multiple collaborating organisations, thus providing federation-level
capabilities (unified view) as well as a single entry point to the user;

○ Application (yellow): it provides end-users applications to (i) perform data
analysis, (i) get access to documentation, (iii) run/visualize climate indicators, (iv)
report data usage/publication metrics, etc.

○ Security (purple): it is an orthogonal layer of the stack that goes across the Fabric,
Federation and Application layers. It includes, among others, firewall settings,
OS/applications/services security updates, etc.

○ Monitoring (purple): as in the case of Security, it represents a cross-architectural
layer that addresses monitoring aspects at different levels (e.g. from infrastructure
to services up to applications, with different sets of metrics).

The picture also highlights the main protocols by which each layer exposes its
services; they are very diverse on the Fabric layer and more convergent towards
Web Service API and HTTP respectively on the Federation and Application
layers.

7

The Platform Tier relates to any service of the ENES CDI that could be deployed
according to a PaaS or SaaS approach in a public or private virtualized
environment.

● Infrastructure Tier (green): it consists of compute, storage and network physical
resources and, on top of it, the Data. These resources relate to sensors and to the output of
numerical simulations.
The Infrastructure Tier could be virtualized, thus providing access to the resources
according to a IaaS approach either in a public or private cloud environment.

Finally, in grey, a set of ESGF services exploited in the ENES-CDI that are associated with
collaborative development efforts carried out with partners outside Europe.

Figure 2 below shows an updated version of the UML component diagram of the ENES CDI
software stack. There have been no major updates to the architecture with respect to the first
version presented in document D10.1; however, the new diagram puts more emphasis on the
authentication and authorisation aspects along with the interactions among components.

To make it easier to read it, only the arrows that connect different components have been left on
the diagram, while internal connections have been left out (e.g. between ES-DOC Web UI in the
Application layer and ES-DOC Service in the Fabric layer). Moreover, the different colours of
the arrows reflect the type of connections respectively related to:

● data access in red;
● metadata access, search and publishing in blue;
● data processing submission in green;
● authentication and authorisation aspects in black;
● logging information about data download in orange.

As regards authorisation and authentication, the Policy Enforcement Point (PEP), is represented
in full in the “Data Provider :Data Node” component. For simplicity, the PEP box, in dark grey,
has been added to all the ENES CDI modules that require identity management and access
control. In the future, more components could include a PEP to implement authorisation and
authentication control.

8

 Figure 2. Detailed component diagram of the ENES CDI architecture.

9

More specifically, two types of interactions are required with the identity and access entitlement
(IdEA) component, and two black arrows should start from all the components that include a
PEP, respectively connected to the Central Proxy OpenID Connect Provider and to the
Authorisation Service. For the sake of simplicity and to reduce the number of arrows represented,
only a few examples of modules have been connected to the central authentication/authorisation
service, the Data Node and the Climate4Impact portal. For more technical details, please refer to
section 6 of this document that describes the IdEA system in more depth.
Once the new system has been integrated into the ENES CDI architecture, each site requiring
access control will have one or more instances of a local authorisation service that will manage
access policies for the site’s secured applications. This type of implementation has been reported
in the Climate4Impact platform diagram, which hosts a local authorisation service that the PEP
points to. In this case, only the arrow pointing to the Central OpenID Connect Provider has been
highlighted in black. The other arrow is an internal interaction between the PEP and the local
authorisation service.

2.2 Integrated Available Software and Services
We present here an overview of the software available in the current release. We include access
URLs (where the component is deployed and available as a service), its source code repository (if
public) and the current version tags associated with the release, if these have been produced.

10

ENES CDI
Service

Software components/ Service access url /
Repositories

Release Tag/
Version/ Branch

ESGF Data esg-publisher
doc:
https://esgf.github.io/esg-publisher/index.ht
ml
repo:
https://github.com/ESGF/esg-publisher

4.0.0-beta2

esgf prepare
repo: https://github.com/ESGF/esgf-prepare

2.9.6

esgf-pyclient
repo:
https://github.com/ESGF/esgf-pyclient

0.2.2

11

CoG
repo:
https://github.com/EarthSystemCoG/COG

master branch

Data Citation doc: http://cmip6cite.wdc-climate.de
repo: internal gitlab software versioning at
DKRZ

(restricted access)

Persistent
Identifier (PID)

ESGF data publication pid library
repo:
https://github.com/IS-ENES-Data/esgf-pid

0.8.0

RabbitMQ federation
doc:
https://acme-climate.atlassian.net/wiki/spa
ces/ESGF/pages/107708573/PID+Service
s+Working+Team+esgf-pidwt

(restricted access)

PID consumer library
doc and repo:
https://gitlab.dkrz.de/esgf/handlequeuecons
umer

(restricted access)

IPCC Data
Distribution
Centre at DKRZ

IPCC Data Distribution Centre at DKRZ:
http://ipcc.wdc-climate.de
DDC web pages on server hosted at CEDA:
http://www.ipcc-data.org/sim/

Errata ESGF Errata Service:
https://errata.es-doc.org/
doc:
https://es-doc.github.io/esdoc-errata-client/

repos:

● Web-Service:
https://github.com/ES-DOC/esdo
c-errata-ws
● Front-end:
https://github.com/ES-DOC/esdo
c-errata-fe
● CLI:
https://github.com/ES-DOC/esdo
c-errata-client

Web-Service: master
branch

Front-end: master
branch

CLI: 2.3.1

12

Data Statistics ESGF Data Statistics UI:
http://esgf-ui.cmcc.it:8080/esgf-dashboard-
ui/
doc:

●https://acme-climate.atlassian.net/wiki/space
s/ESGF/pages/1043464194/Federated+da
ta+usage+statistics+ESGF+Dashboard
●https://acme-climate.atlassian.net/wiki/space
s/ESGF/pages/1054113816/Proposed+ES
GF+Usage+of+Filebeat+and+Logstash

repo:
https://github.com/ESGF/esgf-dashboard
https://github.com/ESGF/esgf-dashboard-ui

esgf-dashboard: 2.0.0
esgf-dashboard-ui:
1.0.0

 Data Replication Synda replication software package
doc: http://prodiguer.github.io/synda/
repo: https://github.com/Prodiguer/synda

3.15

Compute ECAS
service:
https://ecaslab.cmcc.it/jupyter/hub/login
doc: https://ecaslab.cmcc.it/web/home.html
repo: https://github.com/ECAS-Lab

Ophidia
doc: http://ophidia.cmcc.it/
repo: https://github.com/OphidiaBigData

Birdhouse WPS framework
doc:
https://birdhouse.readthedocs.io/en/latest/
repo: https://github.com/bird-house
security proxy:
https://github.com/bird-house/twitcher

twitcher: 0.5.4

ESGF-specific WPS framework
under development for C3S
prototype repos under
development at:
https://github.com/roocs
underlying library:
https://github.com/pydata/xarray

https://github.com/ESGF/esgf-dashboard

13

 Third party components:
- JupyterHub: https://jupyter.org/hub
- xarray:
http://xarray.pydata.org/en/stable/

Climate4Impact C4I front-end, C4I backend, C4I storybook,
C4I errorhandler, C4I front end content,
C4I search portal backend, C4I map
preview, C4I frontend dataset preview
service:
https://climate4impact.eu/impactpor
tal/general/index.jsp repo:
https://gitlab.com/is-enes-cdi-c4i

c4i-backend 0.1.0
c4i-frontend 0.2.3

ES-DOC ES-DOC service and documentation:
http://es-doc.org
CIM repo:
https://github.com/ES-DOC/esdoc-cim-v
2-schema pyesdoc repo:
https://github.com/ES-DOC/esdoc-py-cli
ent
pyessv repo:
https://github.com/ES-DOC/pyessv
CMIP6 content repos:
https://github.com/ES-DOC-INSTITUTI
ONAL cdf2cim repo:
https://github.com/ES-DOC/esdoc-cdf2ci
m

CIM v2.2,

pyesdoc: v0.14.2.0,
pyessv: v0.8.4.3

cdf2cim, v1.0.3.0

Climate Forecast
(CF)

service: http://cfconventions.org/
doc: http://cfconventions.org/
repo: https://github.com/cf-convention/

cfdm: a Python
reference
implementation of the
CF data model.

software: https://pypi.org/project/cfdm/ 1.8.7.0

https://gitlab.com/is-enes-cdi-c4i
https://github.com/ES-DOC/pyessv
https://pypi.org/project/cfdm/

 Table 1. First ENES-CDI Release, Software and Services overview.

3 Data Services
The core ENES-CDI data services provide the capabilities needed to meet the functional
requirements mentioned in Table 2 of D10.1 [1], Section 3.2.1. More specifically, those labelled
as [DATAFR#-], [CITFR#-], [PIDFR#-], [DDCFR#-], [ERRFR#-], [STATSFR#-],
[REPLICFR#-].

3.1 ESGF Data
The ESGF data service helps to publish data and make it available to users. The service consists
of several components, all are freely available on Github:

14

cfchecker: the NetCDF
Climate Forecast
Conventions
compliance checker

software: https://pypi.org/project/cfchecker/ 4.0

cf-python: a
CF-compliant earth
science data analysis
library

software: https://pypi.org/project/cf-python/ 3.7

Identity
Management and
Access
Entitlement

doc:
https://github.com/ESGF/esgf.github.io/wi
ki/Security%7CInterfaceCon
trolDocument
service: Attribute and Authorisation
Services
repo: https://github.com/ESGF/esgf-security
service: OAuth 2.0 and Short-lived
Credential Service
repo:
https://github.com/ESGF/esgf-slcs-server

esgf-security: v2.8.11
esgf-slsc-server: 0.1.0

https://pypi.org/project/cfchecker/
https://pypi.org/project/cf-python/

3.1.1 esgf-prepare:

The esgf-prepare module (https://github.com/ESGF/esgf-prepare) helps data providers to create a
project-related standardized directory structure for better organization of data files. It also
provides a command to iterate over all files and create mapfiles for the publication to the EGSF.

3.1.2 esg-publisher:

The esg-publisher (https://github.com/ESGF/esg-publisher) can be used to publish the data to all
data related components in the ESGF, ie. a Postgres database, a THREDDS2 data server and a
Solr Index. It takes the mapfiles from 5.2.1 as input and reads all related files to extract the
required metadata. The publisher component is also related to the PID server and creates the
dataset PIDs and sends all PID information to the RabbitMQ3 servers to register the PIDs.

3.1.3 esg-search:

The esg-search component (https://github.com/ESGF/esg-search) is integrated in the ESGF
frontend (CoG - https://github.com/ESGF/COG) so users can easily search and download data
using different search facets.

3.2 Data Citation
Data Citation has become an integral part of scholarly publications. Initiatives like COPDESS4,
ESIP5, FORCE116 or Scholix7 work on standardizations and guidelines for data citations. IPCC
WGI of the current IPCC cycle integrates data citations in the AR6 to improve the traceability
and transparency of the key findings of the climate assessment. In order to enable the citation of
CMIP6 data, the data has to be provided for humans as well as for machine-readable access.
Another key consideration is to disseminate the information about CMIP6 data references outside
the project context (http://cmip6cite.wdc-climate.de).

3.2.1 Brief reminder of Data Citation Service functionality

The service provides three functions:
1. Collection of information and support of the CMIP6 participants is provided. Data citation

information and further information on e.g. relevant paper reference or author details can
be maintained via a GUI and an API.

2 https://www.unidata.ucar.edu/software/tds/
3 https://www.rabbitmq.com/
4 https://copdess.org/
5 https://www.esipfed.org/
6 https://www.force11.org/
7 http://www.scholix.org/

15

https://github.com/ESGF/esgf-prepare
https://github.com/ESGF/esg-publisher
https://github.com/ESGF/esg-search
https://github.com/ESGF/COG
http://cmip6cite.wdc-climate.de/
https://www.unidata.ucar.edu/software/tds/
https://www.rabbitmq.com/
https://copdess.org/
https://www.esipfed.org/
https://www.force11.org/
http://www.scholix.org/

2. Automated processing of information checks metadata completeness and availability of

data for DOIs registration, adds data usage information of papers citing CMIP6 data, and
monitors and corrects information in a semi-automated fashion.

3. Citation information is provided for human and machine-readable access via
project-specific interfaces and via traditional ways such as XML serialisation of data on
an OAI8 server.

3.2.2 Accessing citation information

The existing tools for accessing citation information were consolidated, especially the OAI server
application was updated. The interface to Scholix to add information on data usage in scientific
papers was improved using actual cases. The citation search functionality was enhanced to
provide data license information and the documentation was extended with a user guide
(http://bit.ly/CMIP6_Citation_Search).

3.3 Persistent Identifiers
The persistent identifier (PID) service consists of multiple interacting independently deployed
components with clear APIs and interfaces which are integrated into the ESGF ENES CDI
infrastructure:

● A distributed message transport layer
● ENES CDI specific message server components deployed at DKRZ
● Handle system9 backend components for handling storage and generic PID CRUD (

Create, read, update and delete) operations.
● PID publication client tools (integrated into the ESGF publication software and

interacting with the distributed message transport layer)
● PID curation tools to correct missing or erroneous PID registrations

3.3.1 Current status

For the current release the following key activities were performed and related future work are
planned:

● The PID registration infrastructure layer based on a distributed RabbitMQ message queue
was updated for the current release to exclude erroneous message relay servers and
include new (e.g. updated) ones. This did not affect the overall APIs, integrations as well
as operations of the PID service, yet improved the resilience of the system.

8 https://www.openarchives.org/
9 http://www.handle.net/

16

http://bit.ly/CMIP6_Citation_Search
https://www.openarchives.org/
http://www.handle.net/

● To handle additional PID namespaces additional PID handle backends are deployed at

DKRZ, to e.g. manage CORDEX and Copernicus related PID registrations
● The PID publication client tools after migration to Python 3 stayed stable, only small

updates were required to handle specific error situations.

3.3.2 Next steps

The curation of the existing overall ESGF PID collection required an improvement to the existing
set of PID curation tools. There is a constant need to clean up PID metadata after PID ESGF
publication because of erroneous publication/depublication activities by some ESGF data nodes.
Currently this is centrally done at DKRZ by a data manager based on ad hoc developed curation
tools. Future work will integrate these tools into a consistently managed tool set managed on
Github. The growing demand for PIDs means that additional PID prefixes need to be allocated
and associated handle system backbones need to be deployed. Work will be needed to automate
the deployment and scaling of the handle system backends.

3.4 IPCC Data Distribution Centre at DKRZ
The IPCC WG110 is one of the early users of CMIP6 data. The IPCC DDC supports the authors in
the writing process, especially in the analysis of data to derive key findings by providing Virtual
Workspaces. The CMIP6 data subset underlying the AR6 will be long-term archived in the IPCC
DDC AR6 Reference Data Archive as part of the traceability of AR6 key findings and as well as
for data re-use. The quality requirements for the IPCC DDC data and metadata are high,
complying to the TRUST principles (Transparency, Responsibility, User Focus, Sustainability,
Technology) [8] as implemented in e.g. the Core Trust Seal.

3.4.1 Brief reminder of IPCC DDC core functionality

The main functions of the IPCC DDC at DKRZ are:
● Long-Term Archival of CMIP6 data subset at a snapshot date to build the IPCC AR6

Reference Data Archive including metadata enrichment from different documentation
services like ES-DOC and the Citation Service.

● Long-Term Data Stewardship and data access for users from all IPCC member states.

3.4.2 Long-Term Data Archival to build the IPCC AR6 Reference Data Archive

In discussions with the WG1 Technical Support Unit (TSU), the format for the CMIP6 dataset
list was defined and a timeline for metadata provision was agreed. Long-term data archival is
planned to start at the end of March 2021. CORDEX data from European domains used in AR6
WG1 will be added to AR6 Reference Data Archive as second priority using the workflow and
interfaces defined for the CMIP6 data archival.

10 https://www.ipcc.ch/working-group/wg1/

17

https://www.ipcc.ch/working-group/wg1/

The interface to the citation service to add mandatory metadata not available in the ESGF index
was coded. It is currently tested and improved in the long-term data archival of the input4MIPs11
data. The interface to ES-DOC to add ancillary documentation on experiments, models and
simulations is still under discussion.

3.4.3 Long-Term Data Stewardship and Data Access

There are no updates to report because of the timeline. A gap analysis among the DDC Partners
was carried out, which provides guidance and sets priorities for future developments for data
access and data discovery improvements.

3.5 Errata
The errata service is an answer to the problem raised by the inherent complexity of projects like
CMIP5 and CMIP6. It provides a platform to record and track the reasons motivating a dataset
version change. The quality of data increases, when the principles of proper handling of errata
information are clearly set and adhered to. This information is specified in the documentation and
within the ESGF publication workflow. Version changes should be documented and justified by
detailing what has been updated, retracted and/or removed. This chapter is a brief reminder of the
design and implementation of the Errata service as well as a change log for the different
components.

 Figure 3. Errata Service architecture.

11 https://esgf-node.llnl.gov/projects/input4mips/

18

https://esgf-node.llnl.gov/projects/input4mips/

3.5.1 Brief reminder of system architecture

As a part of the ES-DOC ecosystem, the Errata Service offers a user-friendly front-end and a
dedicated API to provide timely information about known issues affecting ESGF data (Figure 3).

ESGF users can query for modifications and/or corrections applied to the data in different ways:

● through the centralized and filtered list of ESGF known issues;
● through the “PID lookup” interface to get the version history of a (set of) file/dataset(s).

The Errata service provides support for every project hosted on ESGF. This is made possible
through pyessv (Python Earth Science Standard Vocabularies) integration, that automates the
interpretation of the controlled vocabulary, to extract the essential facet values as long as the
project’s vocabulary is described in the ini file that feeds pyessv. This mechanism enables the
Errata service to become somewhat project-agnostic, and able to host new project datasets with
no required codebase update.

Contributions to the Errata service are, for the time being, subject to access restrictions based on
users’ identity and affiliation. Entries to the service can be made through a lightweight CLI
(command line interface) or a web-form.
As shown in the architectural diagram (Figure 2), the Errata Service uses the Persistent IDentifier
(PID) attached to each dataset and file during the ESGF publication process to persist the errata
information. The documentation has been fully revised to guide users through the errata
procedure.

3.5.2 Authentication and authorization

In its current state, the errata service is only open in write mode for authenticated and authorized
users. This is however subject to change very soon as we work on a system evolution requested
by the community to open contributions to everyone. The process is still controlled through
Github OAuth service as detailed in the previous reports.

3.5.3 Issue life-cycle

The lifecycle of an issue will also be subject to change to reflect the development proposals
mentioned in the previous section. In the future, an issue can be a contribution from any member
of the community. In this case it will remain in a probation period waiting for moderation from
the specific data managing party. Once this period is over, the issue is published, whether it has
been approved or not. The original way of publishing issues by identified errata officers remains
supported and is possible through either the command line client or the webform as detailed in
the previous report.

19

3.5.4 Issue body requirements

This was detailed in previous reports and is available on-demand in the errata system
documentation here : https://es-doc.github.io/esdoc-errata-client/

3.5.5 PID integration

When a new issue is created/updated through either the command line errata client or the web
hosted form, the PID (Persistent Identifier) attached to every dataset declared with the issue is
subsequently updated reflecting the changes.
This mechanism has been implemented in an asynchronous fashion. This leads to a fluid
workflow for the errata creation/update, while the dirty work of making sure the errata
information is properly persisted in the designated PID handles is performed independently
through a sync cron job to ensure that it is failsafe. This however also means there will be a slight
delay between the errata information creation and when it will appear in the dataset and file
handles. However, given the information will immediately be present on the index of the errata
service, we deemed this trade-off is exactly what we need.
In the process of adding more resilience to this integration with the Errata system, a new node of
RabbitMQ has been deployed at IPSL. This enables the Errata system to have a choice of
messaging queues to use in order to update the contents of the dataset handles with the newly
discovered errata.

3.5.6 API

The errata service still exposes the same API endpoints that were detailed in D10.1 [1] the
previous report and in the user documentation. These endpoints facilitate the interaction with
third party software.

3.6 ESGF Data Statistics

The ESGF Data Statistics service provides a distributed and scalable framework responsible for
capturing, analyzing and providing data usage and data publication metrics at a single data node
level, for within ENES and at the scope of the whole of ESGF.
With respect to the ENES CDI Architecture diagram in Figure 2, the ESGF Data Statistics is
located under the Federation service layer and directly interacts with i) the connected data nodes
and ii) a dedicated local index node to retrieve all the metadata information about the data
downloaded by the nodes.
From a high level perspective, it i) collects and stores a high volume of heterogeneous metrics,
covering general and project-specific measures, ii) aggregates such metrics through an ad-hoc
ETL system, iii) stores them into a dedicated data warehouse iv) and provides a rich set of charts

20

https://es-doc.github.io/esdoc-errata-client/

and reports through a web interface, allowing users and system managers to visualize the status
of the IS-ENES/ESGF infrastructure through a set of smart and attractive web gadgets.

3.6.1 General architecture
The overall architecture (Figure 4) relies on a set of different components, ranging from the
logging system for the collection of basic logging information on downloads, to the Collector
module that is composed of the Dashboard Analyzer and the data warehouse/data marts
repository. The LTA (Long Term Archival) Agent manages archival of the log info and, at the
end of the chain, the user interface displays the metrics through graphical widgets (like charts,
maps, tables and so on), giving the user a comprehensive view of how services in the federation
are being used.

 Figure 4. The ESGF Data Statistics Architecture

3.6.2 First release details

The implementation of the first service release consisted of three main activities carried out in
parallel that can be grouped as follows:

1. setup of the logs transferring environment from the data nodes to the collector node;
2. implementation of the log analysis, storage chain and deployment of a local index node;

21

3. implementation and deployment of the graphical user interface.

With regard to the first activity, two industrial tools produced by Elastic, have been deployed, i.e.
Filebeat12 and Logstash13: the former on the data nodes and the latter on the collector node. Once
the Apache web server has been properly configured to produce the logs in a specific format,
Filebeat reports log events as they occur to the Logstash instance deployed at the CMCC
Supercomputing Center. Since sensitive information, such as IP addresses, can’t be transmitted to
the Logstash instance, an httpd module has been introduced to automatically translate IPs into
country codes.
The core of the log analysis occurs on the collector node. A specific operational chain has been
implemented to process every log related to a single download.
For each log entry, the process contacts the ESGF Solr module of a local Index Node deployed at
the collector side to gather additional information such as the file size and other metadata closely
related to data that the file refers to (variable, experiment, model, …) [STATSFR#2 and
STATSFR#3] (Milestone 10.1 “Technical requirements on the software stack”).
In addition, an appropriate backup mechanism has been implemented to protect against data loss.
An ad-hoc application has been implemented to periodically query the Solr APIs of the local
Index Node and get information about the data volume and the number of published datasets, for
both the whole federation and the top projects [STATSFR#1]. The Solr response is parsed by the
application and information is stored into specific tables of the collector database.
The considerable amount of data usage information produced at this stage is stored into a specific
data warehouse system, which collects an extended set of statistics not only about logging
information but also about project-specific download statistics and geolocation of clients.
The Data Statistics user interface represents the last step of the whole Data metrics architecture
and the main entry point for final users who want to get information about data usage and data
publication metrics, and also gauge the level of interest from the community in specific climate
datasets, projects, variables, etc.

In this first release, no particular issues have been noticed and the system is properly working;
indeed, data usage and data publication metrics have been provided for the first IS-ENES3
periodic report and for the mid-term review [STATSFR#5].

The code of the logs analyzer and the Data Statistics user interface are respectively available at
the following GitHub repositories: https://github.com/ESGF/esgf-dashboard and
https://github.com/ESGF/esgf-dashboard-ui.

12 https://www.elastic.co/beats/filebeat
13 https://www.elastic.co/logstash

22

https://github.com/ESGF/esgf-dashboard
https://github.com/ESGF/esgf-dashboard-ui
https://www.elastic.co/beats/filebeat
https://www.elastic.co/logstash

3.6.3 Current status

In its current state, the Data Statistics service regularly gathers logs from 23 data nodes in
Europe, United States and Australia and provides insights into the exploitation of the ESGF
federation through a web user interface at this link: esgf-ui.cmcc.it/esgf-dashboard-ui.

3.6.4 Next steps

The plan is to keep improving the user experience and enhance the visualization capabilities
offered by the current user interface. New project-specific views will be provided according to
users’ requirements. Interactions with the final users and the data node administrators will be
fundamental in order to continue to provide a useful tool for their studies and work.

3.7 Data Replication
Data replication involves the following architectural components:

● ESGF data nodes (“Tier 2”) providing access to the originally published data collections
from individual modelling centres;

● ESGF replica nodes (“Tier 1”) providing access to original data as well as replicated
datasets. These replica nodes are associated to larger data pools hosting replicated datasets
and also to high performance data transfer nodes supporting Globus-based data transfer;

● a replication management software component (“Synda”) hosted at replica nodes, which
triggers and manages parallel data replication streams involving different data nodes and
different transfer protocols;

● a site specific data ingest and publication workflow integrating the replica datasets in the
local data pools and publishing these datasets via ESGF.

The replication software “Synda“ currently sits at version 3.14, and is available for download
through conda, counting 288 total downloads since the migration from RPM style packaging. We
are currently increasing the number of releases per month in the hope of achieving an agile
workflow that best answers the ever increasing requirements of the community.

23

 Figure 5. Synda software general view.

4 Metadata Schema and Services

The capability of efficiently handling metadata and data request schema is at the foundation to
build the ENES CDI system in such a way to comply with the basic FAIR principles [4]. It
addresses functional and non-functional requirements of the infrastructure. The former [CFFR#-]
are mostly concerned with guaranteeing the provisioning of understandable standards to enable
findability (F) and access to the data (A), while the latter [NFR#11] enables those mechanisms
that, through interoperability (I) foster data reuse (R) and, to some extent, its reproducibility.
These efforts will be further reinforced in the coming release of the CDI, which will also include
the specification of the Metadata for Climate Indices.

4.1 Climate and Forecast Convention

Substantial efforts have been conducted to develop software that validates compliance with the
agreed CF standards14, which aim at providing a description of the physical meaning of data and
of their spatial and temporal properties. We list below the main contributions.

14 http://cfconventions.org/

24

http://cfconventions.org/

 Table 2. Software modules compliant to the Climate and Forecast Convention.

The tools have been developed by taking into account the official specification of the standards.
Documentation web pages and discussion repositories, which led to the current definition of the
vocabularies are listed below.

● Document: CF Convention Version 1.8 Document:
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html

● Document: CF Standard Names Version 76
http://cfconventions.org/Data/cf-standard-names/76/build/cf-standard-name-table.html

● Discussion: Conventions: https://github.com/cf-convention/cf-conventions/issues
● Discussion: Standard Names: https://github.com/cf-convention/discuss

4.2 CMIP Data Request

The Coupled Model Intercomparison Project Phase 6 (CMIP6) seeks to improve understanding of
climate and climate change by encouraging climate research centres to perform a series of
coordinated climate model experiments that produce a standardized set of output. Twenty-three
independently led model intercomparison projects (MIPs) have designed the experiments and
have been endorsed for inclusion in CMIP6 (Eyring et al., 2016). An essential requirement of
CMIP6 is that the thousands of diagnostics generated at each centre from hundreds of simulations
should be produced and documented in a consistent manner to facilitate meaningful comparisons
across models. Hence, for each experiment, the MIPs have requested specific output to be
archived and shared via the Earth System Grid Federation (ESGF), and the CMIP6 organizers
have imposed requirements on file format and metadata. The resulting collection of output
variables (usually in a gridded form covering the globe and evolving in time) and the associated
temporal and/or spatial constraints on them are referred to as the CMIP6 Data Request (DREQ).

25

Software Description Relevant Versions

cfdm: a Python reference implementation of the CF data model.
https://pypi.org/project/cfdm/

1.8.7.0

cfchecker: the NetCDF Climate Forecast Conventions compliance
checkerhttps://pypi.org/project/cfchecker/

4.0

cf-python: a CF-compliant earth science data analysis library
https://pypi.org/project/cf-python/

3.7

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html
http://cfconventions.org/Data/cf-standard-names/76/build/cf-standard-name-table.html
https://github.com/cf-convention/cf-conventions/issues
https://github.com/cf-convention/discuss
https://pypi.org/project/cfdm/
https://pypi.org/project/cfchecker/
https://pypi.org/project/cf-python/

The modelling centres participating in CMIP6 are now archiving the requested model output and
making it available for analysis. The DREQ is significantly more complicated than the data
requests from previous CMIP phases, complexity which arises from the size of CMIP6 and the
inter-relationships of MIPs. We describe the challenges, introduce the tools which were provided
to capture and communicate the DREQ, provide some headline statistics associated with the
DREQ and outline some of the problems encountered and potential solutions for future exercises.

4.2.1 Current Status

The 01.00.33 release of the CMIP6 data request incorporates 6 experiments which have been
added to the request at a late stage to look at the response of the atmosphere to sudden changes in
emissions resulting from the global response to the COVID-19 pandemic. There are also a small
number of minor corrections to variable descriptions.

In this release, the software and document are still coupled, though the software can work with
multiple releases. This is expected to change in the near future, allowing independent release
cycles for software and database content.

4.2.2 Next Steps

The IS-ENES3 Milestone M10.2 [9] sets out the high-level structure for the next generation of
the data request, including the data model and a discussion of the match to requirements. The
new schema is designed to support greater flexibility in dealing with expected evolving
requirements from the CMIP community.

The next steps will involve gradual implementation, starting with a separation between the
software and the database components.

4.2.3 Summary of resources

We provide here a comprehensive list of resources that can be examined to gain detailed
understanding of the process behind the specification of the standard. They highlight pending
issues and include the reference implementation of a programmatic tool and an interactive
browser of the schema.

Tools for contributing content to the CMIP Data Request

26

○ Forms: XLS Templates (https://w3id.org/cmip6dr)
○ Discussion: Github issues:

■ Variables
(https://github.com/cmip6dr/CMIP6_DataRequest_VariableDefinitions/iss
ues)

■ Request (https://github.com/cmip6dr/Request/issues)

● Tools for user-access
○ Software: dreqPy (https://pypi.org/search/?q=dreqPy)
○ Database: XML document within the dreqPy software package'
○ Service: Data Request browser (https://w3id.org/cmip6dr/browse.html)

5 Dissemination and Computational Services

In respect to the Requirements Overview (Table 2 of D10.1 [1]), in this section we address the
Compute & Analytics functional requirements [COMPFR#-]. Non functional aspects (Table 3 of
D10.1 [1]) will address mostly [NFR#8] and [NFR#11], concerning flexibility and
interoperability of the services, respectively.

The services illustrated in this section are improving the capabilities of the CDI for the provision
of datasets and documentation, and the allocation of computational workspaces. They will adopt
and further develop innovative technologies to better address the way researchers conduct their
work, with built in mechanisms for FAIRness [3] and reproducibility [4].

Thereby, interoperability standards, such as WPS15 will be complemented and sometimes
replaced by more flexible tools, where users benefit from enhanced freedom and control in
experimenting with the data. This justified the redesign efforts undertaken for some of the CDI
components (Climate4Impact) and the growing adoption of solutions based on workflow
management systems, digital notebooks [2] and domain-specific software libraries. These are
coupled with persistent, as well as disposable storage and computational resources, which are
deployed at the ENES CDI sites or on commercial cloud services.

15 WPS https://www.ogc.org/standards/wps

27

https://w3id.org/cmip6dr
https://github.com/cmip6dr/CMIP6_DataRequest_VariableDefinitions/issues
https://github.com/cmip6dr/CMIP6_DataRequest_VariableDefinitions/issues
https://github.com/cmip6dr/Request/issues
https://pypi.org/search/?q=dreqPy_
https://w3id.org/cmip6dr/browse.html
https://www.ogc.org/standards/wps

5.1 Climate4Impact

The IS-ENES Climate4Impact (C4I)16 is an integrated portal and analysis platform that provides
an easier and single access point to climate simulations for end users [C4IFR#1], especially the
climate change impact modelling community. The current release available to the public provides
a range of processing capabilities, from time and spatial subsetting [C4IFR#5] to simple statistics,
such as time average, to more complex calculations, such as climate indices and indicators
[C4IFR#7]. Its codebase has been refactored in order to migrate to a microservice based
deployment model. This facilitated the management of its operations in the current production
environment, which is now hosted on the Amazon Cloud Platform (AWS17).

 Figure 6. Updated Component Diagram of the new Climate4Impact.

16 C4I https://climate4impact.eu
17 Amazon Web Services. https://aws.amazon.com

28

https://climate4impact.eu/
https://aws.amazon.com/

As already mentioned in D10.1 [1], besides the improved quality of the production codebase, the
service is undergoing major redesign efforts with a new selection of components (Figure 6),
while keeping the original architectural principles and relationships with the rest of the CDI
(Figure 2). This is motivated by the need to improve the usability of the discovery functionality,
as well as offering users with new approaches to conduct data-analysis tasks. These should allow
them more control and flexibility, while automating those mechanisms necessary for
reproducibility. As means to achieve these targets, in D10.1 [1] we have explicitly included as
components the ICCLIM18 library and SWIRRL API19 combining requirements such as
[C4IFR#7] and [COMPFR#8], thereby adding more flexibility in the implementation and
analysis of Climate Indices and Indicators. Further pre-existing components, such as Adaguc20
and the connection to WPS services, will be integrated incrementally according to refined
requirements collected after the evaluation of these new developments.

 Figure 7. Integration of new C4I search interface with SWIRRL-API.

5.1.1 Current Status

Recent developments focussed on extending the new version of C4I with reproducible
computational tools. These tools are obtained via the SWIRRL API, which manages, in a
provenance-aware manner, working sessions offering notebooks and batch processes, consisting
in Jupyter Notebooks [2] and processing jobs implemented as a combination of containers and
workflow scripts (i.e. expressed in CWL21), respectively. At the moment the latter consist mainly
of staging operations that move the selected data onto the cloud resources hosting the notebooks.
This effort triggered new challenges in handling potentially large data-shipments. This is
addressed in two ways: a) increased granularity of the data-selection process, to enable users to

18 ICCLIM https://icclim.readthedocs.io/en/latest/
19 SWIRRL https://zenodo.org/record/4264852#.X60BkNv_q7p
20 Adaguc http://adaguc.knmi.nl/
21 https://www.commonwl.org/

29

https://icclim.readthedocs.io/en/latest/
https://zenodo.org/record/4264852#.X60BkNv_q7p
http://adaguc.knmi.nl/
https://www.commonwl.org/

choose at the level of a single data-file, as opposed to the whole dataset; b) implementation of a
new workflow with remote subsetting capabilities (OpenDAP22), which is activated and
parameterised by the users by specifying time and spatial components. Computations performed
in C4I/SWIRRL can be also packaged as snapshots. These are automatically stored in the user’s
GitHub account or in a shared repository that can be re-enacted in Binder (http://mybinder.com).
(Figure 7). The new C4I has been demonstrated in official IS-ENES training sessions and will
be open to alpha testers by early 2021. However, the current production version of C4I portal23 is
still available to users with its usual set of tools. In Table 3 we list the repositories and the
versions associated with the C4I developments.

5.1.2 Relation with the other components of the ENES-CDI

As expected by M7.3, we will produce a plan for the integration of the information available in
the ESMValTool portal24 to provide easy access to pre-computed Models Evaluation data.
Moreover, C4I will provide explicit links to the landing pages associated with the datasets’ DOI,
addressing the requirement [CITFR#3] on access to citation information, when this is available,
highlighting the overall FAIRness [4] of the IS-ENES infrastructure. As shown in Figure 2 and
Figure 6, Climate4Impact uses the federated search services offered by the ESGF and connects to
the ESGF Identity management and access control component of the CDI (Section 6). This is
needed to handle the identification of the users and their authorization to access the different data
repositories, especially CORDEX.

 Table 3. Climate4Impact Software Components and Repositories.

22 https://www.opendap.org/
23 https://climate4impact.eu
24 https://cmip-esmvaltool.dkrz.de/

30

Repository URL Description Relevant Versions

https://gitlab.com/is-enes-cdi-c4i Production C4I portal
available at
https://climate4impact.eu

c4i-backend 0.1.0
c4i-frontend 0.2.3

https://gitlab.com/is-enes-cdi-c4i/i
s-enes3

Alpha releases of the new
C4I portal

master branch

https://gitlab.com/KNMI-OSS/sw
irrl/swirrl-api
https://gitlab.com/KNMI-OSS/sw
irrl/jupyterswirrlui

SWIRRL API and
Jupyter-Lab extensions

master branch

https://github.com/cerfacs-globc/i
cclim

icclim (Index Calculation
CLIMate) library

4.2.14

http://mybinder.com/
https://www.opendap.org/
https://climate4impact.eu/
https://cmip-esmvaltool.dkrz.de/
https://gitlab.com/is-enes-cdi-c4i
http://climate4impact.eu/
https://gitlab.com/is-enes-cdi-c4i/is-enes3
https://gitlab.com/is-enes-cdi-c4i/is-enes3
https://gitlab.com/KNMI-OSS/swirrl/swirrl-api
https://gitlab.com/KNMI-OSS/swirrl/swirrl-api
https://gitlab.com/KNMI-OSS/swirrl/jupyterswirrlui
https://gitlab.com/KNMI-OSS/swirrl/jupyterswirrlui
https://github.com/cerfacs-globc/icclim
https://github.com/cerfacs-globc/icclim

5.1.3 Next Steps

The implementation is conducted according to the architectural directions specified in [1] and
updated in Section 2 of this document. We are incrementally addressing the fundamental
requirements associated with the service, including additional flexibility brought by combining
notebooks and reproducible analysis. In the next phase the work will continue improving the
usability and performance of the new computational tools and the search interfaces, enabling user
authentication in the new version of the service. These activities will be driven by the feedback
collected from the group of alpha testers and from the demands of scientific use cases that will be
developed in the form of reproducible notebooks.

5.2 ES-DOC
The ES-DOC (Earth System Documentation) software ecosystem facilitates both the provision
and the consumption of documentation of the CMIP6 workflow and, where possible, automates
the various and often complex stages involved.

The toolchain comprises an interrelated set of libraries, services and storage solutions. The core
user-facing asset is a website hosted with WordPress, supported by dedicated servers and
databases on the former WebFaction commercial Cloud hosting (now migrating to tsoHost25),
which consolidates the web applications and maps them onto domains. The software ecosystem
and archive contained in GitHub repositories under the ‘ES-DOC’ organisation enables content
pushed by modelling institutes to be processed into CIM documents (the canonical format for
representing aspects of the modelling workflow), stored, and displayed on the Wordpress website
for discovering, viewing and comparing.

The back-end software stack comprises several Python-based utility libraries to automate the
creation and publication of standardised documents and controlled vocabularies, and the storage
of documents in repositories on GitHub and through five databases on WebFaction. In addition
there is a shell-script library to facilitate development and maintenance using these tools on the
system of multiple separately version-controlled repositories.

The front-end stack consists of Python web services to manage documentation and errata stored
in the WebFaction databases, for generating and publishing the model documentation, and for
rewriting various URLs; and JavaScript (Vue framework) web applications that support the
viewing, searching, and comparing of the published documentation, as well as serving and
displaying other relevant content.

25 https://www.tsohost.com/

31

https://www.tsohost.com/

These processes being provided by the ES-DOC software stack are described in the workflow
diagram of Figure 38 of report [1] (D10.1 - Architectural document of the ENES CDI software
stack). All elements of this generic workflow have been implemented and are fully available as
services, software packages and specification documents:

● Tools for incorporating external standards
○ Specification: CIM (https://github.com/ES-DOC/esdoc-cim-v2-schema)
○ Specification: CMIP6_CVs (https://github.com/WCRP-CMIP/CMIP6_CVs)
○ Software: pyessv (https://github.com/ES-DOC/pyessv)
○ Software: pyesdoc (https://github.com/ES-DOC/esdoc-py-client)

● Tools for creating documents and populating the ES-DOC archive

○ Software: pyesdoc (https://github.com/ES-DOC/esdoc-py-client)

● Tools for user-access of the ES-DOC archive content
○ Software: pyesdoc (https://github.com/ES-DOC/esdoc-py-client)
○ Software: ES-DOC web API (https://github.com/ES-DOC/esdoc-api)
○ Service: ES-DOC explorer (https://explore.es-doc.org)
○ Service: ES-DOC comparator (https://compare.es-doc.org)

● Integration with the CMIP6 errata service and DKRZ data citation service

○ Software: pyesdoc (https://github.com/ES-DOC/esdoc-py-client)
○ Software: ES-DOC web API (https://github.com/ES-DOC/esdoc-api)
○ Service: ES-DOC-explorer (https://explore.es-doc.org)
○ Service: further_info_url

All software in the stack is available from the ES-DOC organisation GitHub repositories at
https://github.com/ES-DOC.

Not all document types are available yet for creation (by the CMIP6 modelling groups) and
consumption (by users of the CMIP6 outputs). The missing items are the creation and archiving
of descriptions of conformance to numerical requirements; and the comparison of all document
types other than model descriptions. These will be relatively straightforward to include during
2021, as the implementation has been designed to be easily applicable to new use-cases.

As well as completing the set of CMIP6 documents, a document versioning scheme needs to be
implemented, and a framework for collecting document quality control information and
presenting it to the data users.

32

https://github.com/ES-DOC/esdoc-cim-v2-schema
https://github.com/WCRP-CMIP/CMIP6_CVs
https://github.com/ES-DOC/pyessv
https://github.com/ES-DOC/esdoc-py-client
https://github.com/ES-DOC/esdoc-py-client
https://github.com/ES-DOC/esdoc-py-client
https://github.com/ES-DOC/esdoc-api
https://explore.es-doc.org/
https://compare.es-doc.org/
https://github.com/ES-DOC/esdoc-py-client
https://github.com/ES-DOC/esdoc-api
https://explore.es-doc.org/
https://github.com/ES-DOC

The application of the ecosystem to non-CMIP6 workflows also needs to be considered. These
include the CORDEX and input4mips projects. It is likely extensions may be required for these
other settings. The work for documenting the CORDEX models has started and has not needed
any software library extensions, rather a new application of the existing tool kit.

5.3 Institutional compute service deployments at ENES CDI sites
This section describes the first release of the ENES CDI compute layer for processing and
analytics of CMIP6 and CORDEX data.

 Figure 8. Compute service component diagram

33

Beyond the different implementations of the core analytics services developed at each site,
addressing institutional and national requirements, the main goal is to move towards a sustainable
and integrated data analytics and processing layer to efficiently support end-user needs. To this
aim, three common aspects that each compute service should implement during the project
lifetime has been defined and reported below:

● an interoperable and flexible server front-end based on the OGC-WPS interface
[COMPFR#7][NFR#11][NFR#8];

● a programmatic client interface [COMPFR#6] with a Python binding;
● a security infrastructure based on the work and roadmap defined with the ESGF IdEA

WG activity [COMPFR#5].

In addition to these aspects, the component diagram, in Figure 8, highlights the strong link of
each institutional implementation with the data services to foster the “data near processing
capabilities” paradigm. The diagram has been further detailed to also cover security aspects and
ensure legitimate use of the computing resources at the host facility by external users. As
described in section 2.1 of this document, some Policy Enforcement Points have been added at
different levels to implement authentication and authorisation control.
In the next months, further steps will be taken in this direction, in close collaboration with the
activities performed in WP5/NA4, to provide an increasingly integrated compute service for the
ENES CDI.

The progress made in the different institutional deployments of the compute service are reported
below.

5.3.1 Compute Service at CMCC

The compute service designed at CMCC implements an “Analytics Hub” tailored to meet the
needs of multi-model climate analysis, which requires access to a large amount of data (i.e. from
CMIP experiments) available through the ESGF federated data archive, besides running
workflows with tens/hundreds of data analytics operators [COMPFR#4]. To serve the entire
climate community needs, multiple and distributed Analytics-Hubs can be deployed, each one
referring to a small set of variables.

34

 Figure 9. Analytics-Hub architecture.

5.3.1.1 General architecture
The detailed Analytics-Hub architecture is shown in Figure 9. As it can be seen, it consists of
multiple components: (i) an interface/GUI providing an Open (data) Science-ready environment
for Data Science applications, interactive and exploratory data analysis, visualization, etc.
[COMPFR#9]; (ii) a workflow-enabled, secure, and interoperable front-end; (iii) an analytics
framework back-end to perform data analysis at scale [NFR#3] and support metadata
management; (iv) a data collector and its local storage [COMPFR#1] to gather the relevant
datasets from ESGF and keep them synchronized with the remote repositories, as well as other
auxiliary services for publication and sharing of results and code. Additional details about the
concepts that inspired the design of the component and the architecture can be found in D10.1
[1].

5.3.1.2 AnalyticsHub GUI
JupyterHub provides a multi-user environment for executing multiple instances of the Jupyter
Notebook service, by also managing user authentication and authorization. Jupyter Notebooks
represent a web-based application to create, edit, run and share composable documents

35

containing live code, equations and plots26. It provides support for several programming
languages through specific kernels for Python, R, Julia, Ruby and Scala among others.
Additionally, it provides a file manager panel to handle notebooks and run terminals that
resemble Linux shells [2].
In the context of the CMCC AnalyticsHub, the target programming language at the level of the
Data Science environment is Python. A specific Python-based environment has been set up with
the most well-known Python modules and some other modules required by the users; some
examples include Cartopy, Matplotlib, NumPy, SciPy, Pandas, etc. Conda has been used to
handle more effectively the creation of the environment and manage the installation of Python
packages and their dependencies27. The conda environment has then been made available to users
from the JupyterHub instance as a specific kernel, by using the IPython kernel module28. The
IPython Kernel allows an easy integration of additional conda29 environments or virtualenvs30
with the set of kernels exploitable in Jupyter Notebooks. Thanks to this module, users can also
extend the default conda environment or create new environments, and use them directly from
the Jupyter Notebook interface. A customized JupyterHub spawner has also been implemented in
order to load the proper conda environment at notebook startup.
Besides the setup of the environment, an initial set of demonstration and supporting notebooks
has been created to inform users about some of the main features available in the system and how
to use them in some simple, yet real world examples [COMPFR#8].

5.3.1.3 AnalyticsHub front-end and back-end
The Ophidia framework provides server-side [COMPFR#1], in-memory, parallel data analysis
for multidimensional scientific data in multiple domains with a focus on the climate domain. It
implements an internal storage model, leveraging the so-called datacube abstraction, and a
hierarchical data organization to manage large amounts of multidimensional scientific data.
Ophidia provides more than 50 metadata and (parallel) datacube operators and about 100
array-based primitives. To target interoperability [NFR#11][COMPFR#7], the Ophidia front-end
server exposes several interfaces, such as a SOAP compliant with Web Services Interoperability
(WS-I) Basic Profile v1.231, an Open Geospatial Consortium Web Processing Service
(OGC-WPS)32, and a Grid Security Infrastructure (GSI) [6] with support for Virtual
Organisations (Virtual Organization Membership Service - VOMS [7]). The Ophidia Terminal, a
command line interface (CLI) -like application similar to a Linux terminal, along with a Python
module are provided on the client-side to run interactive or batch experiment sessions. Finally, in

26 https://jupyter.org/
27 https://docs.conda.io/projects/conda/en/latest/index.html
28 https://ipython.readthedocs.io/en/stable/install/kernel_install.html
29 https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
30 https://virtualenv.pypa.io/en/latest/
31 http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
32 http://docs.opengeospatial.org/is/14-065/14-065.html

36

https://jupyter.org/
https://docs.conda.io/projects/conda/en/latest/index.html
https://ipython.readthedocs.io/en/stable/install/kernel_install.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://virtualenv.pypa.io/en/latest/
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
http://docs.opengeospatial.org/is/14-065/14-065.html

order to address complex scientific use cases, Ophidia provides a native analytics workflow
engine for defining processing chains and workflows with hundreds of data analytics operators.
In the context of the CMCC AnalyticsHub, Ophidia represents the main component providing
complex data analytics and workflow features. It has been deployed in the environment and can
be easily exploited from the JupyterHub interface through the Ophidia Python binding -
PyOphidia33 [COMPFR#6].

5.3.1.4 AnalyticsHub data collector
The Analytics-Hub is responsible for providing computing and analytics capabilities on top of a
data collection layer which both (i) pre-stages and caches the data relevant to the analyses from
the different ESGF data nodes and (ii) keeps the local copy of data synchronised with the remote
copy available in the ESGF infrastructure.
In the current release, a first prototype of the data collection logic has been implemented, using
Sproket34 as the main tool for the download operation. It relies on JSON format for the definition
of the ESGF search criteria and can be easily configured to define the target ESGF index node
that data has been indexed on. To speed up the download process, a parallelization approach
based on Python threading has been exploited, allowing different parts of the whole process to
run concurrently. As a first step towards validating the reliability of the implemented procedure,
the precipitation variable has been downloaded, with a time frequency of three hours (3hr) and
the ssp245 and ssp585 experiments. In the future, according to users’ requirements, other
variables will be taken into consideration and included in the catalogue.

5.3.1.5 Next steps
The plan is to continue the development of the data collection layer, by strengthening the
download process and implementing the logic of synchronization with the ESGF data nodes
catalogues. Moreover, a science portal will be developed, to provide users with timely
information about the capabilities of the CMCC Analytics-Hub, as well as documentation to
allow easy access to the Jupyter environment. The conda environment will be enriched with
additional libraries based on new user requirements. JupyterHub extensions (e.g. JupyterLab)35
will also be taken into consideration in future releases to further increase the user experience.
Finally, example Python notebooks and workflows will be implemented to demonstrate the
capabilities of the integrated service.

33 https://github.com/OphidiaBigData/PyOphidia
34 https://github.com/ESGF/sproket
35 https://jupyterlab.readthedocs.io

37

https://github.com/OphidiaBigData/PyOphidia
https://github.com/ESGF/sproket
https://jupyterlab.readthedocs.io/

5.3.2 Compute Service at DKRZ

The compute service at DKRZ is centered around the access to interactive nodes with access to
the HPC system and an attached high performance data pool. The overall structure and
components are described in the previous deliverable [1]. The following updates and
improvements were performed for this release of the ENES CDI:

● A production ready JupyterHub deployment36 was made available replacing the initial
pre-production system now supporting a predefined set of resource profiles defining the
compute resource allocations for interactive sessions. These allocations vary from single
CPU or single compute nodes to large allocations of resources to support parallel
processing (e.g. using dask37) by exploiting the binding to the HPC batch system
(slurm38)

● A set of pre-defined Jupyter kernels was made available covering the basic requirements
of many users

● For advanced users the possibility was added to integrate user-specific compute kernels
into the DKRZ JupyterHub environment. This functionality was an often requested
feature by scientists wanting to use new cutting edge data science libraries and own code
bases as part of their work. This functionality e.g. was already exploited as part of
IS-ENES3 to make specific ESMValTool functionality accessible as part of Jupyter
notebooks running at DKRZ

● Users of the compute service need an easy to use data catalogue system. As part of the
evolving Pangeo community and tool ecosystem the use of Intake catalogs is becoming
more and more important. To react on this requirement, for the DKRZ CMIP data pool
(together with other data collection e.g. ERA re-analysis data) a regular automatic Intake
catalogue generation capability was deployed39. Example notebooks were developed40
illustrating this feature for IS-ENES3 compute service users.

Future work will concentrate on developing good documentation on the efficient exploitation of
the parallel processing capabilities especially in the context of xarray41 and dask usage scenarios,
which gain more and more popularity in the climate model community. Work also continues to
deploy WPS processing web services supporting basic capabilities like subsetting and regridding.
They are currently being prototyped and deployed to support data integration into the Copernicus
climate data store. First pre-production ENES CDI WPS compute services will be deployed at
DKRZ mid 2021 and made available via virtual access (with limits to the numbers of concurrent
users of these services).

36 https://jupyterhub.dkrz.de/
37 https://dask.org/
38 https://www.dkrz.de/up/systems/mistral/running-jobs/slurm-introduction
39 https://gitlab.dkrz.de/mipdata/intake-esm
40 https://portal.enes.org/data/data-metadata-service/analysis-platforms
41 http://xarray.pydata.org/en/stable/

38

https://jupyterhub.dkrz.de/
https://dask.org/
https://gitlab.dkrz.de/mipdata/intake-esm
https://portal.enes.org/data/data-metadata-service/analysis-platforms
http://xarray.pydata.org/en/stable/

5.3.3 Compute Service at CNRS-IPSL

The compute service design at IPSL still mainly relies on generic remote access to dedicated
login nodes (see [1], Figure 32).
Since the last report, IPSL storage capacity has been rationalized and reorganized for users with
dedicated project shared-spaces. A new THREDDS service has been deployed to facilitate data
sharing among project partners.
Each user can still ask for a work space with dedicated storage that will be balanced with other
requests. The IPSL mesocentre provides 50 TB shared storage for data analysis (Lustre),
temporary and final results, alongside of a 4Po of specific CMIP and CORDEX and observational
datasets (Reanalysis, Obs4MIPs, input4MIPS, etc.) with centralized access (including the whole
French climate modelling production from IPSL and CNRM).

The IPSL mesocentre improved several pre-configured Python environments that activate
mutualized and useful tools for data quality check and analysis. Those environments now include
the well-known Xarray and Dask libraries that provide user-friendly I/O and parallel tasking. The
“Dask-jobqueue”42 plugin is used to interface Dask with the usual IPSL PBS (Portable Batch
System) manager (ciclad-web.ipsl.jussieu.fr). Individual users can reserve different compute
resources through a cluster with compute nodes (2000 cores, up to 256 GB RAM/node).

Current work concentrates on:

1. providing a flexible JupyterHub environment that will interface with the HPC system.
2. containerizing the Python environments on top of a Kubernetes instance to be able to

address and scale the different end-users compute service use-cases and requirements.
3. cataloging CMIP and CORDEX data using STAC-like technology (i.e., intake-esm).

5.3.4 Compute Service at UKRI (CEDA)

The compute service at UKRI is based on the JASMIN petascale storage and cloud computing
infrastructure43 for big data challenges in environmental science. JASMIN provides the UK and
European climate and earth-system science communities with an efficient data analysis
environment. Many datasets, particularly model data, are too big to be easily shipped around:
JASMIN enables scientists to bring their processing to the data.

42 Dask-jobqueue: https://jobqueue.dask.org/en/latest/
43 JASMIN: https://jasmin.ac.uk/

39

http://ciclad-web.ipsl.jussieu.fr/
https://jobqueue.dask.org/en/latest/
https://jasmin.ac.uk/

 Figure 10. Overview of JASMIN services.

Figure 10 shows an overview of the services that are provided by JASMIN. The middle row
shows the current compute services, which are accessible via three main interfaces:

● Interactive scientific analysis nodes: a range of server specifications (including
high-memory servers) that are accessed via SSH

● Batch compute cluster (LOTUS): ~14,000 cores, including varied CPU/GPU
configurations.

● Notebook Service: Jupyter Notebook environment with access to file systems/archive on
JASMIN.

The data storage accessible to the compute services on JASMIN consists of:

● Archive access: ~13PB of curated data sets on disk.
● Home directories: 100GB per user.
● Group Workspaces: shared disk allocated on a per-project basis.
● Tape: used for backup and housing of infrequently used data.
● Object store: used for some archive and project-specific access.

A common set of software packages is available across the compute services listed above:

● Common Python and analysis packages: built using Conda.
● Additional packages: RPM-based (where Conda packages are not available).
● Compilers and libraries for parallel computation.
● Workflow management tools.

40

The JASMIN Cloud provides Cluster-as-a-Service (CaaS) which allows projects to develop their
own software solutions with access to the JASMIN Object Store. The Cloud is built on
OpenStack with Kubernetes employed to manage each deployment. The JASMIN Notebook
Service is built on a similar Kubernetes configuration, providing automated scaling.

Current work concentrates on:

1. Development of the ESGF-specific WPS framework (built on Birdhouse) to provide
CMIP (and other) data.

2. Loading of CMIP6 data into the JASMIN Object Store for access by users (via Intake
catalogues):

a. Using Xarray and Zarr44
b. Using S3-netCDF45

The JASMIN compute services are funded through the national science programme and available
to national scientists and their collaborators participating in that programme (e.g. through a
funded grant award). Within IS-ENES3, access is being made available to a broader community
both through the Trans-National Access scheme for access to servers and the Virtual Access
scheme for access through Jupyter notebooks.

5.3.5 Compute Service repositories

44 Xarray and Zarr: http://xarray.pydata.org/en/stable/generated/xarray.open_zarr.html
45 S3-netCDF: https://github.com/cedadev/S3-netcdf-python

41

ECAS
service: https://ecaslab.cmcc.it/jupyter/hub/login
doc: https://ecaslab.cmcc.it/web/home.html
repo: https://github.com/ECAS-Lab

Ophidia
doc: http://ophidia.cmcc.it/
repo: https://github.com/OphidiaBigData
PyOphidia
repo: https://github.com/OphidiaBigData/PyOphidia

Birdhouse WPS framework
doc: https://birdhouse.readthedocs.io/en/latest/
repo: https://github.com/bird-house
security proxy: https://github.com/bird-house/twitcher

http://xarray.pydata.org/en/stable/generated/xarray.open_zarr.html
https://github.com/cedadev/S3-netcdf-python
https://ecaslab.cmcc.it/jupyter/hub/login
https://ecaslab.cmcc.it/web/home.html
https://github.com/ECAS-Lab
http://ophidia.cmcc.it/
https://github.com/OphidiaBigData
https://github.com/OphidiaBigData/PyOphidia
https://birdhouse.readthedocs.io/en/latest/
https://github.com/bird-house
https://github.com/bird-house/twitcher

 Table 4. Software repositories related to the computing services.

6 Identity Management and Access Entitlement

Under the ESGF future architecture initiative, a new implementation of the identity and access
entitlement (IdEA) system has been underway since March. Significant progress has been made
with individual components but none are yet at a stage where they can be integrated with the rest
of the current ENES CDI as described in this document.

6.1 Current Status for Authentication and Authorisation with ENES CDI
This can be described as follows:

● Systems requiring authentication and authorization use the existing legacy ESGF system
based on OpenID 2.0 and short-lived user X.509 certificates for authentication and SAML
interfaces for authorisation.

● Some services, notably the Climate4Impact Portal take advantage of OAuth 2.0 for
delegation of authentication.

● In some cases, where simple authentication is required, GitHub’s OAuth 2.0 service is
used.

42

ESGF-specific WPS framework under development for C3S
prototype repos under development at: https://github.com/roocs
WPS: https://github.com/roocs/rook
Example notebooks to interact with the "rook" WPS:
https://rooki.readthedocs.io/en/latest/notebooks/index.html
underlying library: https://github.com/pydata/xarray

CliMAF
repo: https://github.com/rigoudyg/climaf
doc: https://climaf.readthedocs.io/en/master/

Third party components:
- JupyterHub: https://jupyter.org/hub
- xarray: http://xarray.pydata.org/en/stable/
- Synda: https://github.com/Prodiguer/synda
- Sproket: https://github.com/ESGF/sproket

https://github.com/roocs
https://github.com/roocs/rook
https://rooki.readthedocs.io/en/latest/notebooks/index.html
https://github.com/pydata/xarray
https://github.com/rigoudyg/climaf
https://climaf.readthedocs.io/en/master/
https://jupyter.org/hub
http://xarray.pydata.org/en/stable/
https://github.com/Prodiguer/synda
https://github.com/ESGF/sproket

6.2 Implementation status for Future Architecture Components

We review in turn each of the components described in the architecture document D10.1. The
new components for the Future Architecture [5] are all being implemented for deployment as
Docker containers. Deployment may be made in one of two ways:

1. Using an Ansible Playbook to deploy a Docker image onto a single host using Docker
Compose

2. Using a Helm Chart to deploy the Docker image into a Kubernetes cluster.

Option 1. involves a simpler more traditional deployment strategy, deploying containers on
individual hosts. For option 2., container deployment and operation is managed by the
Kubernetes orchestration system. Kubernetes manages the placement of containers on nodes in its
cluster and keeps track of container health. The deployment itself is configured using Helm
Charts46.

6.2.1 Authentication, single sign-on and user delegation

The new system adopts the OAuth 2.0 framework for user delegation and OpenID Connect for
single sign-on use cases. These also enable authentication using tokens passed in HTTP request
headers and provide a simpler alternative to X.509 client certificate-based authentication used in
the original ESGF system for command line use cases.

6.2.2 IdP Proxy and Federation Site IdP Implementations

The Identity Provider (IdP) Proxy is a special arrangement of the traditional model of Identity
Provider ⇔ Rely Party pattern for single sign-on. The Proxy provides an intermediary between
Relying Parties (in this case, ENES CDI services requiring authentication and authorisation) and
IdPs. Supported IdPs include those sites in the federation wishing to host such services and also a
number of external commercial IdPs such as Google and GitHub. Both IdP Proxy and federation
site IdP are based on customisations of the open source implementation Keycloak from RedHat.

1. IdP Proxy: implementation complete; Docker image completed; Deployed for integration
testing on JASMIN. Target deployment on AWS

2. Federation site IdP: close to completion. Docker image

6.2.3 Relying Party and Policy Enforcement Point Implementation

A Relying Party (RP) is a component that implements the interactions necessary with an IdP to
secure a given service enforcing authentication with single sign-on. A Policy Enforcement Point
(PEP) is a component that enforces authorisation access control decisions for a service. The PEP

46 https://helm.sh/

43

https://helm.sh/

refers to a Policy Decision Point (PDP) or authorisation service in order to make the access
control decisions themselves. PDPs make decisions based on user attributes, access policies
related to resources and in some cases, other factors related to the environment, for example
access restricted to certain temporal constraints. Both PEP and RP lend themselves well to a filter
architectural pattern in which they front access requests to the application to be secured and
enforce the access constraints.

 Figure 11. Data Node showing the integration of identity management and access entitlement

components.

In the existing ESGF IdEA system, RP and PEP components are implemented on a
per-application basis. In the new architecture they have been implemented as filter components

44

integrating with the popular Nginx web application server. This recognises the fact that in nearly
every case, ESGF services run over HTTP. Further, with the move to support Kubernetes, Nginx
can be configured as the Kubernetes Cluster Ingress Controller.

● Nginx auth plugin: implementation based on Python Django web framework.
Implementation complete; Docker image complete; Ansible-Docker deployment has been
deployed and tested, Kubernetes deployment still to be tested

6.2.4 Federated Authorisation

As stated above (section 6.1), the existing legacy ESGF system uses SAML interfaces for
authorisation interactions. The main actors are the PEP (See component inside Nginx Access
Control Filter in Figure 11), PDP (aka. Authorisation Service, bottom right in Figure 11) and
Attribute Service. In the new system, the per-application PEPs are replaced by a generic PEP
deployed as part of the Kubernetes Ingress Controller (Nginx) or if not using Kubernetes, via a
standalone Nginx deployment

1. PEP (implemented in Nginx auth plugin - see preceding section). Implements a SAML
AuthzDecisionQuery callout to PDP to get authorisation decisions

2. Authorisation Service (PDP). Implementations in Java and Python. Supports SAML
AuthzDecisionQuery interface. Includes callout to Attribute Service using SAML
AttributeQuery interface. Contains user-configurable authorisation policy file

3. Attribute Service: implementation in Java and Python. Supports SAML AttributeQuery
interface.

In the above, the Authorisation Service calls out to a virtual organisation Attribute Service
instance in order to query for user’s VO-level attributes required in order to make an
authorisation decision. This is effectively a pull-model for attribute management. As a future
enhancement, this model may be replaced with a push-model in which a Relying Party obtains
user attributes from the IdP Proxy during the sign in process. These can then be passed via the
PEP to the Authorisation Service so that the latter can make authorisation decisions.

6.2.5 Integration Status

Components for the new architecture have been integrated in a test configuration with the ESGF
Data Node. Work is planned to test the Index Node’s publisher API with the new access control.
With these core ESGF components integrated, work must be undertaken to integrate the
components in the ENES CDI with the new access control system. In summary, the IdEA system
is in a state of active development at the time of writing. The existing legacy system is in place

45

operationally but over the coming months as development is completed, the new system will be
fully integrated into the ENES CDI.

 Table 5. Software Repositories related to Identity and Access Entitlement Services.

46

IdP Proxy
service (integration testing):
https://auth-test.ceda.ac.uk/auth/realms/esgf/login-actions/authenticate?execution=ee6edf
b0-a79e-4cd4-839c-fead8885e62c&client_id=security-admin-console&tab_id=LTGDdN
d0cts
doc:
https://github.com/watucker/esgf.github.io/blob/idp-user-accounts/idp_user_accounts.md
and
https://github.com/watucker/esgf.github.io/blob/idp-user-accounts/idp-registration.md
repo: https://github.com/ESGF/esgf-idp-proxy-theme

ESGF Site Identity Provider
doc:
repo: https://github.com/ESGF/esgf-idp-theme-example

Nginx Auth Plugin (RP and PEP implementation)
doc:
repo: https://github.com/cedadev/django-auth-service

Authorisation Service (PDP)
doc:
repo: https://github.com/ESGF/esgf-security (Java);
https://github.com/cedadev/ndg_xacml (Python)

Attribute Service
doc:
repo: https://github.com/ESGF/esgf-security (Java) https://github.com/cedadev/ndg_saml
(Python)

Third party components:
- ESGF Docker repo: https://github.com/ESGF/esgf-docker
- Keycloak: https://www.keycloak.org/
- Nginx: http://www.nginx.com/
- Docker: https://www.docker.com/
- Kubernetes: https://kubernetes.io
- Helm: https://helm.sh/

https://auth-test.ceda.ac.uk/auth/realms/esgf/login-actions/authenticate?execution=ee6edfb0-a79e-4cd4-839c-fead8885e62c&client_id=security-admin-console&tab_id=LTGDdNd0cts
https://auth-test.ceda.ac.uk/auth/realms/esgf/login-actions/authenticate?execution=ee6edfb0-a79e-4cd4-839c-fead8885e62c&client_id=security-admin-console&tab_id=LTGDdNd0cts
https://auth-test.ceda.ac.uk/auth/realms/esgf/login-actions/authenticate?execution=ee6edfb0-a79e-4cd4-839c-fead8885e62c&client_id=security-admin-console&tab_id=LTGDdNd0cts
https://github.com/watucker/esgf.github.io/blob/idp-user-accounts/idp_user_accounts.md
https://github.com/watucker/esgf.github.io/blob/idp-user-accounts/idp-registration.md
https://github.com/ESGF/esgf-idp-proxy-theme
https://github.com/ESGF/esgf-idp-theme-example
https://github.com/cedadev/django-auth-service
https://github.com/ESGF/esgf-security
https://github.com/cedadev/ndg_xacml
https://github.com/ESGF/esgf-security
https://github.com/cedadev/ndg_saml
https://github.com/ESGF/esgf-docker
https://www.keycloak.org/
http://www.nginx.com/
https://www.docker.com/
https://kubernetes.io/
https://helm.sh/

7 Conclusions and main targets of the next release

The main achievements of the first release of the ENES CDI are the increased quality of all of the
pre-existing software components, a first step towards a fully interconnected infrastructure and
the refined view of the next steps to be pursued. Some software has been consolidated in official
release versions, while new services are being designed and developed. Adoption of
containerisation, Cloud Computing and hosting, the latter provided sometimes by commercial
parties, are also gaining attention (ie. for JASMIN, Identity Management Services,
Climate4Impact). Specification of metadata and conventions underwent major improvements,
with the associated discussion boards delivering documentation and repositories, where progress
can be browsed and traced. This resulted in producing a first collection of compliant software
tools, for validation and management of the metadata.

Important targets for the next release will address the interconnections between the different
components, their capability to scale-up accommodating larger data-streams and computations,
with better usability. These include the improved curation of the ESGF PID collection, especially
concerning consistency and publication of the PID metadata through better tooling and
automation of the attribution. Interactive services such as Climate4Impact and the Analytics-Hub
will undergo major improvements in terms of their user-facing interfaces, search and
computational capabilities, especially addressing the integration of more flexible development
environments based on notebooks (JupyterLab), These can be delivered as part of advanced
reproducible workspaces (SWIRRL), allowing execution of workflows, with automated
provenance recordings and versioning of the users’ methods and computational contexts [3].

We will also consider further updates to the architecture, which will take into account progress
made with the integration of components produced in other WPs. For instance, we will pursue the
connection of Climate4Impact to the model evaluation system based on the ESMValTool47
(M7.3), to provide access to relevant metrics in support of the selection of model data. This is in
cooperation with WP9/JRA2. Data Statistics service and Data Request schema will engage
closely with their communities to achieve, respectively, better representation of the information,
through more specific views, and increased flexibility in accommodating different high-level
requests (M10.2 [9]). Finally, the coming release will see also the improvement of the Metadata
for Climate Indices. These will be refined and further developed in the upcoming workshop
(2021). Progress will be reported in the second (D10.3) and the third release (D10.5) of the
ENES-CDI.

47 https://cmip-esmvaltool.dkrz.de/

47

https://cmip-esmvaltool.dkrz.de/

8 References

[1] S. Fiore, et al. D10.1 - Architectural document of the ENES CDI software stack,
https://zenodo.org/record/4309892#.X9CSbS2ZMn1

[2] Rule, A., et al. (2018). Ten Simple Rules for Reproducible Research in Jupyter Notebooks.
http://arxiv.org/abs/1810.08055

[3] Goble, Carole, et al. "FAIR computational workflows." Data Intelligence 2.1-2 (2020):
108-121. https://doi.org/10.1162/dint_a_00033

[4] Wilkinson, Mark D., et al. "The FAIR Guiding Principles for scientific data management and
stewardship." Scientific data 3.1 (2016): 1-9.

[5] Kershaw, Philip, Abdulla, Ghaleb, Ames, Sasha, & Evans, Ben. (2020, July 2). ESGF Future
Architecture Report (Version 1.1). Zenodo. http://doi.org/10.5281/zenodo.3928223

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture for computational
grids,” in Proceedings of the 5th ACM Conference on Computer and Communications Security,
ser. CCS ’98. New York, NY, USA: ACM, 1998, pp. 83–92.

[7] R. Alfieri, et al, “Voms, an authorization system for virtual organizations,” in Grid
Computing, First European Across Grids Conference, Santiago de Compostela, Spain, February
13-14, 2003, Revised Papers, ser. Lecture Notes in Computer Science, vol. 2970. Springer, 2004,
pp. 33–40

[8] Lin, D., Crabtree, J., Dillo, I. et al. The TRUST Principles for digital repositories. Sci Data 7,
144 (2020). https://doi.org/10.1038/s41597-020-0486-7

[9] Juckes, M. IS-ENES3 Milestone M10.2 CMIP Data Request Schema 2.0.
https://is.enes.org/documents/milestones/m10-2-cmip-data-request-schema-2.0/view

48

https://zenodo.org/record/4309892#.X9CSbS2ZMn1
http://arxiv.org/abs/1810.08055
https://doi.org/10.1162/dint_a_00033
http://doi.org/10.5281/zenodo.3928223
https://is.enes.org/documents/milestones/m10-2-cmip-data-request-schema-2.0/view

