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Abstract. Four new species and one new subspecies of tateid freshwater gastropods are described from 
the north of the South Island of New Zealand, Catapyrgus jami sp. nov., Opacuincola lisannea sp. nov., 
O. gretathunbergae sp. nov., O. mete kahurangi ssp. nov. and Obtusopyrgus farri sp. nov. The species are 
integratively defined based on a combination of shell morphological, anatomical and mitochondrial DNA 
data. Morphological and anatomical data were generated by morphometrics, scanning electron microscopy, 
as well as micro-computed tomography. The genetic data were basis of phylogenetic analyses and 
incorporated into the diagnoses. The new taxa occur in springs or spring-like habitats, i.e., shallow, slow-
flowing sections of small streams except for O. mete kahurangi subsp. nov., which was collected from rough 
rocks in a river, where the snails sat in small depressions. None of the species exceeded 2.75 mm in length. 
Opacuincola gretathunbergae sp. nov. and Obtusopyrgus farri sp. nov. are pigmented and true crenobionts, 
while C. jami sp. nov. and the sympatric Opacuincola lisannea sp. nov. have eyes of reduced size and lack 
epidermal pigment, hence, probably dwell in the transitional zone of epigean and groundwaters. 
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Introduction
Tateidae is an extremely diverse family of minute aquatic gastropods occurring in Australasia from 
Sulawesi over New Guinea to Australia and Tasmania as well as on Pacific islands and island groups 
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including, Lord Howe Island, New Caledonia, New Zealand, Vanuatu, Fiji and the Austral Islands. In 
South America, the family is represented by the genus Potamolithus Pilsbry, 1896 (Ponder 2019). The 
vast majority of the over 300 species lives in fresh water, only six dwell in brackish waters – one of 
them, the notorious Potamopyrgus antipodarum (Gray, 1843), which is native to New Zealand and has 
invaded Australia, Europe, North and South America as well as Japan, facultatively (Ponder 1988, 2019; 
Haase 2008; Alonso & Castro-Díez 2012). The high diversity is linked to the high degree of endemicity 
with many species, notably the very small ones, occurring in very restricted ranges sometimes not 
exceeding a single valley (e.g., Ponder 1982; Haase & Bouchet 1998; Haase 2008). In New Zealand, 
even entire lineages of genera have restricted ranges conserving historical biogeographic information 
extending back to the mid Miocene (Haase et al. 2007a).

Against this background, it is not surprising that unknown species are being discovered at a considerable 
rate, most of them in the past 30 years (Ponder 2019). This is also a consequence of the availability of 
molecular methods allowing the identification of cryptic species and genera among these small-sized 
animals (e.g., Haase 2008; Zielske & Haase 2015). We have to stress, though, that DNA comparisons are 
not a cure-all as in particular young speciation events will not be reflected in mtDNA commonly used 
to delimitate species (for examples see, e.g., Haase 2008), which is why we advocate the integration of 
several approaches in taxonomy (Dayrat 2005; Haase et al. 2007b).

In the course of our fieldwork for Verhaegen et al. (2018b) on the ecomorphology of P. antipodarum, we 
discovered as by-catch four new species and one new subspecies which we describe here. We integrated 
morphometrics, anatomical dissections, scanning electron microscopy (SEM), micro-computed 
tomography (µCT), as well as molecular phylogenetic analyses in order to define the new taxa. For the 
four new species, we also identified diagnostic molecular characters (Kühn & Haase 2020).

Material and Methods
Material
Snails were collected at five localities (Fig. 1; mapped with QGIS ver. 2.18.24 using the vector maps 
publicly available from Natural Earth (https://www.naturalearthdata.com/)) in the north of New Zealand’s 
South Island in February and March 2016. They were fixed on the spot in 70% ethanol, transferred to 
propylene glycol prior to transportation to Germany, and, upon arrival, stored in 96% ethanol at 4° C. 
Additional material, all paratypes of the following species, was provided by the National Museum of New 
Zealand Te Papa Tongarewa (NMNZ) for morphological comparison: Catapyrgus fraterculus Haase, 
2008 (NMNZ.M.174158; n = 3), C. matapango Haase, 2008 (NMNZ.M.174169; 11), C. spelaeus Climo, 
1974 (NMNZ.M.032461; 10), Obtusopyrgus alpinus Haase, 2008 (NMNZ.M.174189; 11), Opacuincola 
mete Haase, 2008 (NMNZ.M.174134; 2), Op. ngatapuna Haase, 2008 (NMNZ.M.174122; 2), Op. 
takakaensis Haase, 2008 (NMNZ.M.022245; 20) and Op. terraelapsus Haase, 2008 (NMNZ.M.158196; 
16). These taxa were selected because of their high similarity, relatedness, and geographic proximity 
to the new species. We did not use the measurements given in Haase (2008), because here GV did 
all the measurements and because the measuring methods differed compromising exact comparability 
(Schilthuizen & Haase 2010).

Microscopy
Up to 20 adult shells defined by a continuous, thickened apertural lip (e.g., Verhaegen et al. 2018a) 
were measured from photographs taken with a Zeiss SteREO Discovery ver. 20 dissecting microscope 
equipped with a Plan Apo S 0.63× objective and a Zeiss Axio Cam MR3 using the program AxioVision 
40 ver. 4.8. (Zeiss). The dimensions shell height, shell width, width of body whorl, aperture height and 
aperture width were measured parallel or perpendicular to the coiling axis. In addition, the number of 
whorls was counted to the nearest eighth (Kerney & Cameron 1979). Statistical comparisons including 

https://www.naturalearthdata.com/
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a principal component analysis (PCA) and univariate tests were conducted in PAST ver. 4.01 (Hammer 
et al. 2001).

Micro-computed tomography
The anatomy of one female and one male of each new (sub)species was studied using micro-computed 
tomography at the Imaging Centre of the University of Greifswald. Prior to scanning, shells were 
dissolved in 0.5M EDTA (pH = 7.5) for two days, post-fixed in paraformaldehyde for another two days, 
then rinsed in distilled water for 10 minutes and finally transferred to a 0.3% solution of phosphotungstic 
acid in 96% ethanol for further two days to enhance the contrast of tissues. Mounted in a plastic pipette 
tip filled with 99% ethanol and sealed with hot glue, snails were scanned with an Xradia Micro XCT-
200 µCT (Carl Zeiss X-ray Microscopy Inc.) at a voltage of 40 kV, a power of 8 W, and ten times 
magnification. The resulting image stacks were analyzed and the reproductive organs reconstructed in 
three dimensions (3D) using AMIRA ver. 6.0.1 (FEI, Visualization Science Group).

Scanning electron microscopy and dissections
Shells, radulae, opercula and penes were investigated by scanning electron microscopy. Two shells of 
each species were cleaned in ca 2.5% sodium hypochlorite. For the remaining characters, shells had to 
be dissolved in 1M hydrochloric acid. For radulae and opercula the soft bodies of up to three specimens 
were dissolved in sodium hypochlorite. If available, penes of two males were dissected free and dried 
in hexamethyldisilazane (Nation 1983) after dehydration in ethanol and transfer to 100% acetone. 

Fig. 1. Localities. A. Type locality of Opacuincola mete kahurangi subsp. nov. B. Type locality 
(photograph) of Catapyrgus jami sp. nov. and Op. lisannea sp. nov. C. Northern locality of Op. lisannea 
sp. nov. D. Type locality of Op. gretathunbergae sp. nov. E. Type locality of Obtusopyrgus farri sp. nov. 
For details see descriptions in text.
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Specimens were mounted with carbon tabs, coated with palladium/platinum with a Fisons Polaron 
SC7640 sputter coater and then photographed in a Zeiss EVO LS10 SEM, again at the Imaging Centre 
of the University of Greifswald. In the specimens dissected for SEM, we also studied the remaining 
anatomy including the genitalia. The total numbers of investigated genitalia, including in most cases 
one µCT-scanned specimen, are given in the species descriptions. Only data of mature individuals are 
reported.

Molecular analyses
DNA was extracted from three specimens per sample with the E.Z.N.A® Mollusc DNA Kit (Omega 
Bio-Tek Inc.) by crushing the entire snail and following the manufacturer’s protocol. We amplified 
two mitochondrial fragments: 658 bp of the cytochrome c oxidase subunit I gene (COI) using 
Folmer et al. (1994) primers LCO1490 and H1298, the latter modified at position 12 (A instead 
of G) by Zielske et al. (2011) and ca 500 bp of the 16S ribosomal RNA gene (16S) with primers 
16Sar-L and 16Sbr-H (Palumbi et al. 1991). Polymerase chain reactions (PCR) were performed in 
a total volume of 11 μL and consisted for COI of 1 μL of DNA solution (~20 ng), 4.10 μL of water, 
5 μL of HS MyTaqTM RedMix (Bioline), 0.40 μL of 1% BSA and 0.25 μL of each primer (from a 
10 pmol stock solution). For 16S, the mix was similar except that we added 4.60 μL of water and 
0.20 μL of each primer. The temperature profile for COI was 1 min of initial denaturation at 95°C 
followed by 40 cycles comprising 20 s denaturation at 95°C, 30 s annealing at 48°C, and 1 min 
extension at 72°C, and a final extension at 72°C for 5 min. For 16S we had a touch-down protocol 
with 1 min initial denaturation at 95°C, 10 cycles with 20 s denaturation at 95°C, 20 s annealing 
starting at 60°C and dropping by 1 degree in each cycle to 51°C, and 1 min extension at 72°C, 
followed by further 25 cycles consisting of 20 s denaturation at 95°C, 20 s of annealing at 51°C, 
and 1 min extension at 72°C, and the 5 min final extension at 72°C. PCR products were visualised 
on a 1% agarose gel and purified with an exonuclease I and shrimp alkaline phosphatase mix. 
Cycle sequencing was conducted using the BigDye™ Terminator ver. 3.1 Cycle Sequencing Kit 
(Applied Biosystems) with 50% replaced by halfBD (Sigma-Aldrich) and the PCR primers. The 
cycle sequencing products were cleaned with magnetic beads using the HighPrepTM DTR Dye 
Terminator Removal Clean Up (MagBio Genomics) and then sequenced on an ABI 3130xl Genetic 
Analyser (Applied Biosystems).

Sequences were edited in Geneious ver. 10.2.3 (https://www.geneious.com) and BioEdit 7.0.5.3 
(Hall 1999) and aligned with the data of Haase (2008) using MAFFT with the default settings 
(Katoh et al. 2019). The alignment was finally trimmed to 644 bp for COI and 482 bp for 16S. An 
exhaustive search with PartitionFinder ver. 2.1.1 (Lanfear et al. 2017) suggested a total of four 
partitions, one per COI codon position and one for 16S. The best fitting substitution models based 
on the Bayesian information criterion were TRN+I+G, HKY+I and GTR+G for 1st to 3rd codon 
positions, respectively, and TIM+I+G for 16S. Based on this scheme, we conducted a maximum 
likelihood (ML) phylogenetic analysis using Garli ver. 2.1 (Zwickl 2006) with the optimal tree 
inferred from 500 replicates. Robustness was assessed with 500 bootstrap replicates summarized in 
a 50% majority rule consensus tree calculated with PAUP* ver. 4.0b10 (Swofford 2002). The best 
fitting models for a Bayesian analysis conducted in MrBayes ver. 3.2.3 (Ronquist et al. 2012) with 
its more restricted model collection were GTR+I+G (COI, 1st codon position), HKY+I (2nd position), 
TVM+G (3rd position) and HKY+I+G (16S). MrBayes was run for 2 Mio generations with every 
100th tree sampled, a burnin of 5000 and otherwise default settings. The average standard deviation 
of split frequencies reached 0.0046, effective sample sizes exceeded 200, and the potential scale 
reduction factors reached or closely approached one for all parameters indicating convergence of 
all estimates.

http://www.geneious.com/
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Pairwise uncorrected genetic distances were computed after pairwise deletion of missing data for COI in 
MEGA X (Kumar et al. 2018). For the four new species, we identified diagnostic molecular characters 
based on the alignments of COI (Electronic Supplement 1) and 16S (Electronic Supplement 2) using 
QUIDDICH (Kühn & Haase 2020), a package written in R (R Core Team 2020). In these diagnoses, we 
compared each new species of Catapyrgus and Obtusopyrgus to their respective only other congeneric 
species sequenced or known so far, and the two new species of Opacuincola to all other congeneric 
species. Among the latter new species, one was also compared to its sister species. The other one did not 
have a single sister species in our analyses.

All new sequences were deposited at NCBI GenBank under the accession numbers MT651500–
MT651511 (16S) and MT654586–MT654595 (COI).

Fig. 2. Phylogenetic analysis. Maximum likelihood tree with bootstrap support > 50 / posterior proba-
bilities from Bayesian analysis > 0.50 for nodes. New taxa in bold. Letters A-E after new taxa refer to 
localities in Figure 1.
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Table 1 (continued on next page). Morphometrics of new taxa. A–E following the names refer to 
the localities in Figure 1. Abbreviations: AH = aperture height; AW = aperture width; BWW = body-
whorl width; CV = coefficient of variation corrected for unequal sample sizes; max = maximum; min 
= minimum; SD = standard deviation; SH = shell height; SW = shell width; W = number of whorls. 
Measurements in mm.

Species SH SW BWW AH AW SH/SW W
Catapyrgus jami B  
N = 9

Holotype 1.63 0.92 0.82 0.60 0.55 1.77 4.25
min 1.44 0.85 0.73 0.52 0.50 1.62 3.88
max 1.71 1.06 0.85 0.63 0.56 1.77 4.25
mean 1.55 0.91 0.78 0.57 0.53 1.70 4.04
median 1.52 0.89 0.77 0.57 0.52 1.70 4.00
SD 0.09 0.06 0.04 0.03 0.02 0.04 0.14
CV 6.03 6.72 5.66 5.91 4.13 2.67 3.56

Opacuincola lisannea B 
N = 20

Holotype 2.60 1.30 1.14 0.88 0.85 2.00 4.38
min 2.02 1.03 1.00 0.78 0.70 1.61 3.75
max 2.60 1.33 1.22 0.92 0.85 2.07 4.38
mean 2.24 1.23 1.09 0.84 0.80 1.83 4.13
median 0.22 1.23 1.10 0.83 0.80 1.80 4.13
SD 0.12 0.06 0.05 0.04 0.04 0.10 0.16
CV 5.58 5.32 4.82 5.02 4.88 5.40 3.92

Opacuincola lisannea C 
N = 17

min 1.87 1.06 0.93 0.68 0.71 1.68 3.75
max 2.36 1.32 1.10 0.89 0.83 1.93 4.25
mean 2.10 1.17 1.03 0.79 0.78 1.79 4.09
median 2.07 1.17 1.03 0.79 0.79 1.77 4.13
SD 0.14 0.07 0.05 0.05 0.04 0.07 0.14
CV 6.61 5.90 5.22 6.39 4.77 3.72 3.47

Opacuincola gretathunbergae D 
N = 20

Holotype 2.19 1.33 1.06 0.91 0.88 1.65 3.63
min 2.07 1.26 1.04 0.84 0.79 1.57 3.50
max 2.74 1.63 1.31 1.08 1.04 1.77 4.25
mean 2.35 1.41 1.16 0.95 0.89 1.66 3.96
median 2.36 1.40 1.17 0.93 0.88 1.65 4.00
SD 0.18 0.11 0.08 0.07 0.06 0.07 0.23
CV 7.84 7.52 6.93 7.11 6.65 4.08 5.88

Opacuincola mete kahurangi A 
N = 20

Holotype 2.13 1.85 1.32 1.21 1.09 1.15 3.13
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Results
Phylogeny
The phylogenetic analyses (Fig. 2) recovered the major clades from previous analyses (Haase 2005, 
2008; Zielske et al. 2017). Their relationships were slightly different, however, basally unsupported. All 
genera received high bootstrap support as well as posterior probabilities and all new taxa unambiguously 
fell into one of three known genera, viz. Catapyrgus, Opacuincola and Obtusopyrgus, respectively. 
According to these reconstructions, the four new species were well differentiated against respective 
congeneric species. Only the taxon found along the Fenian track was paraphyletic with respect to 
Opacuincola mete Haase, 2008. This was one reason why it was classified as a subspecies of the latter 
(see below).

Shell morphology
Overall shell morphology was compared in a PCA (Fig. 3) based on the five shell measurements (Table 1). 
The first two components already explained 98.8% of the variation (90.1% and 8.7%, respectively). 
Component one was dominated by shell size, with negative scores for small and positive scores for 
large values. Component two largely reflected shell shape, with negative loading for shell height 
and positive weight for shell width. Thus, slender shells had negative scores and broad conical ones 
positive ones. Catapyrgus jami sp. nov. largely overlapped with C. matapango and also both species of 
Obtusopyrgus were hard to separate based on shell morphology. Similarly, the clusters of the only new 
species represented by two samples, Op. lisannea sp. nov., overlapped to a high degree. All other new 
taxa formed clusters clearly separated from the respective most similar species selected for comparison. 
The comparisons involving Op. mete and Op. ngatapuna, of which only two individuals were available 
for each, would not change much considering the dimensions of these species given in Haase (2008). 
Not unexpectedly, genera could not be distinguished based on shell dimensions.

Species SH SW BWW AH AW SH/SW W
min 1.85 1.45 1.12 0.95 0.89 1.06 3.13
max 2.44 2.04 1.50 1.35 1.22 1.31 4.00
mean 2.21 1.83 1.36 1.19 1.06 1.21 3.39
median 2.24 1.85 1.38 1.21 1.07 1.20 3.31
SD 0.15 0.14 0.09 0.11 0.09 0.06 0.25
CV 7.02 7.63 6.89 9.08 8.68 4.81 7.47

Obtusopyrgus farri E 
N = 20

Holotype 2.24 1.28 1.16 0.80 0.81 1.75 4.13
min 2.00 1.19 1.07 0.75 0.74 1.63 3.63
max 2.31 1.32 1.18 0.87 0.86 1.87 4.25
mean 2.15 1.25 1.12 0.80 0.79 1.73 3.95
median 2.14 1.24 1.12 0.79 0.79 1.72 4.00
SD 0.08 0.04 0.03 0.03 0.03 0.06 0.17
CV 3.98 3.01 2.81 3.75 3.83 3.66 4.36

Table 1. (continued).
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Table 2. Diagnostic alignment positions. All characters are of type 1, i.e., they are fixed in a particular 
taxon. Positions refer to the alignments of COI and 16S rRNA in Electronic Supplements 1 and 2, 
respectively. Position 382 in bold is the only diagnostic position for Opacuincola gretathunbergae 
across all samples of the genus. Therefore, it was also compared to its sister species Op. ngatapuna. In 
Ob. farri, sequencing of COI failed.

Species Gene Position/States
COI 0 

1 
3

0 
4 
3

0 
4 
9

0 
5 
8

0 
7 
3

0 
7 
6

0 
7 
9

0 
8 
2

0 
9 
4

1 
0 
3

1 
6 
3

1 
6 
9

1 
7 
5

1 
8 
4

2 
0 
2

2 
0 
8

2 
1 
4

2 
2 
6

2 
3 
2

2 
3 
8

2 
4 
4

2 
5 
0

2 
6 
2

C. jami C C T C G A T G G G T G G A C C C G C G T G A
C. matapango T T C T A G A A A A C A A G T T T T T A C A G

COI 2 
6 
5

3 
0 
7

3 
2 
2

3 
3 
4

3 
3 
7

3 
4 
1

3 
5 
5

3 
7 
0

4 
0 
6

4 
3 
0

4 
6 
0

4 
7 
2

5 
1 
7

5 
4 
7

5 
8 
9

6 
1 
0

6 
1 
6

6 
1 
9

6 
2 
2

6 
2 
5

6 
2 
8

6 
4 
0

C. jami A C G C C T C C A A G C T C T C T A C G C T
C. matapango G T A T T C T T G G A T C T C T C G G T T C

16S 1 
1 
9

1 
5 
2

2 
2 
5

2 
2 
6

2 
2 
9

2 
3 
9

2 
4 
3

2 
4 
8

2 
4 
9

2 
9 
1

3 
0 
9

3 
1 
1

3 
1 
2

4 
4 
9

C. jami G C A T A - A A C C C T C T
C. matapango A T G C T A G G T T T C T G

COI 0 
8 
9

1 
1 
2

1 
9 
0

2 
6 
5

2 
8 
6

2 
8 
9

3 
0 
7

4 
1 
5

4 
6 
9

5 
0 
2

5 
8 
9

5 
9 
8

6 
0 
7

6 
2 
8

Op. lisannea C C G C G G C T C G C C C C
16S 1 

6 
5

3 
0 
7

3 
1 
3

3 
1 
9

3 
2 
0

3 
2 
6

Op. lisannea G G - G C A
COI 0 

0 
7

0 
3 
7

0 
7 
3

0 
8 
2

2 
0 
2

2 
8 
9

3 
8 
2

6 
2 
2

Op. gretathun-
bergae

C A G A A T G G

Op. ngatapuna T G A G G C A A
16S 1 

5 
6

3 
0 
9

3 
2 
9

Op. gretathun-
bergae

G C G

Op. ngatapuna A T A
16S 1 

0 
7

1 
7 
6

2 
1 
5

2 
4 
9

3 
2 
1

Ob. farri C G T A A
Ob. alpinus T A C G G
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Systematic descriptions
The summary statistics of the shell parameters of the new taxa are given in Table 1 and not repeated in 
the descriptions. Anatomical information is based on the specimens prepared for SEM and on the µCT 
scans, i.e., in total up to three specimens of each sex. Diagnostic molecular characters for the four new 
species are provided in Table 2.

Phylum Mollusca Linnaeus, 1758
Class Gastropoda Cuvier, 1795

Subclass Caenogastropoda Cox, 1960
Family Tateidae Thiele, 1925

Genus Catapyrgus Climo, 1974

Catapyrgus jami sp. nov.
urn:lsid:zoobank.org:act:98955097-7D04-4822-8408-30E37B79766B

Figs 4A–B, 5A, 6A, 7, 8A, 9; Tables 1–2

Diagnosis
Catapyrgus jami sp. nov. is most similar to C. matapango, however but is, genetically distinct at 59 
alignment positions. Furthermore, it differs from its congeners in the shape of the bursa copulatrix, 
which is globular rather than kidney-shaped.

Etymology
Catapyrgus jami sp. nov. is named after Jochen A. Modeß, musician and composer who until his 
retirement from the university in 2019 has significantly shaped the cultural life of the city of Greifswald 
for over 25 years. The name is based on the initials of the dedicatee.

Fig. 3. Shell morphology. Principal component analysis based on five shell measurements of Table 1.

http://zoobank.org/urn:lsid:zoobank.org:act:98955097-7D04-4822-8408-30E37B79766B
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Material examined
Holotype (Fig. 4A)

NEW ZEALAND • Kahurangi National Park, SW of Collingwood, Kaituna Track; 40°42ʹ36.3ʺ  S, 
172°33ʹ36.3ʺ E; 28 Feb. 2016; G. Verhaegen and M. Haase leg.; on leaves, stones, woody debris in 
small spring; NMNZ.M.330187.

Paratypes (Fig. 4B)
NEW ZEALAND • 9 specs; same collection data as for holotype; NMNZ.M.330188.

Description
Shell (Figs 4A–B, 5A). Short turriform, about 1.7 times as high as than wide, white-translucent with 
light brown periostracum; protoconch with fine pits comprising 0.75 whorls (Fig. 6A); entire shell with 
3.875 to 4.25 whorls without structure apart from growth lines; umbilicus narrow; aperture orthocline, 
almost circular, only slightly higher than wide. 

Operculum (Fig. 7). Yellowish to light orange, paucispiral; with non-calcareous white peg in submarginal 
nucleus.

External features. Epidermis without pigment; eyes small with bean-shaped pigment spot; tentacles 
without particular ciliation.

Fig. 4. Types. A–B. Catapyrgus jami sp. nov. C–D. Opacuincola lisannea sp. nov. (D from northern 
locality). E–F. Op. gretathunbergae sp. nov. G–H. Op. mete kahurangi subsp. nov. I–J. Obtusopyrgus 
farri sp. nov. A, C, E, G, I, holotypes, rest paratypes.
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Mantle cavity. No ctenidial filaments; osphradium ovate-elongate.

Digestive system. Radula has formula R 5-6 1 5-6/2  2, L 4-5 1 7, M1 25-29, M2 22-24 (Fig. 8A); 
stomach without caecum; intestine makes narrow, long coil in roof of mantle cavity.

Female genitalia (n = 3; Fig 9A). Ovary short, simple sac not reaching stomach; renal oviduct first 
coiling 180° clockwise, then 270° counter-clockwise; one small, distal receptaculum seminis; bursa 
copulatrix globular, behind albumen gland, bursal duct entering ventrally; ovoviviparous, brooding at 
least one embryo in pallial oviduct, pallial oviduct as brood pouch with albumen gland as well as capsule 
gland with a larger posterior and short anterior section.

Male genitalia (n = 1; Fig. 9B). Testis sac with short lobes, starting more than one whorl below apex, 
comprises ca 0.5 whorl, anteriorly just reaching stomach; vesicula seminalis coils along anterior half 
of testis; proximal and distal vasa deferentia insert closely in about middle of flat pear-shaped prostate; 
penis slender, unclear from CT-scans whether it has a lobe or not.

Fig. 5. Shells. SEM photographs of paratypes. A. Catapyrgus jami sp. nov. B–C. Opacuincola lisannea 
sp. nov. (B, topotype; C, northern locality). D–E. Op. gretathunbergae sp. nov. F–G. Op. mete kahurangi 
subsp. nov. H–I. Obtusopyrgus farri sp. nov.
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Remarks
Catapyrgus jami sp. nov. is most similar to C. matapango in terms of shell size and shape (Fig. 3). The 
latter is the only other species of the genus for which sequence data exist. The divergence of the species 
was fairly large (Fig. 2) with a COI p-distance of 0.07, and 45 and 14 diagnostic characters in COI and 
16S, respectively (Table 2). The reduced eyes suggest that this species dwells in the transition zone of 
epigean and ground waters. The new species occurred sympatrically with Op. lisannea sp. nov.

Genus Opacuincola Ponder, 1966

Opacuincola lisannea sp. nov.
urn:lsid:zoobank.org:act:FD252AD2-B0D4-4996-9F13-38F4002D5CA6

Figs 4C–D, 5B–C, 6B–C, 8B, 10, 11A; Tables 1–2

Diagnosis
The new species is a slender-conical Opacuincola most similar to the smaller Op. terraelapsus. 
Opacuincola takakaensis is larger and more conical. Compared to Op. terraelapsus, the new species has 
a larger bursa copulatrix reaching much farther behind the albumen gland than in the latter, and the huge 
penis has no subterminal swelling and has a lobe that points forward rather than to the right. Compared 
to all other congeners, Op. lisannea sp. nov. had 20 diagnostic DNA positions.

Etymology
Opacuincola lisannea sp. nov. is dedicated to Lisanne Verhaegen, the sister of the first author, on the 
occasion of her 30th birthday. She is in part responsible for the debut of the first author as a biologist 
by proofreading numerous of her applications, including the one for her PhD position, resulting in the 
discovery of this new species.

Material examined
Holotype (Fig. 4C)

NEW ZEALAND • Kahurangi National Park, SW of Collingwood, Kaituna Track; 40°42ʹ36.3ʺ  S, 
172°33ʹ36.3ʺ E; 28 Feb. 2016; G. Verhaegen and M. Haase leg.; on leaves, stones, woody debris in 
small spring; NMNZ.M.330189.

Paratypes (Figs 4D, 5B–C)
NEW ZEALAND • 19 specs; same collection data as for holotype; NMNZ.M.330190 • 14; Kahurangi 
National Park, SW of Collingwood, Kaituna Track; 40°42ʹ30.5ʺ S, 172°33ʹ50.9ʺ E; 28 Feb. 2016; 
G. Verhaegen and M. Haase leg.; on leaves, stones, woody debris in small spring; NMNZ.M.330201.

Description
Shell (Figs 4C–D, 5B–C). Slender-conical to pupiform, about 1.8 times as high as than wide, white-
translucent with light brown periostracum; protoconch with fine pits comprising ca 0.85 whorls (Fig. 6B–
C); entire shell with 3.75 to 4.375 whorls, teleoconch with fine longitudinal ridges on first 0.25 whorl, 
then without structure apart from growth lines; umbilicus narrow; aperture orthocline, almost circular, 
only slightly higher than wide. 

Operculum. Light orange, paucispiral; nucleus submarginal, without peg.

External features. Epidermis without pigment; eyes small with bean-shaped pigment spot; tentacles 
without particular ciliation.

Mantle cavity (n = 5). 9–12 ctenidial filaments; osphradium ovate-elongate, behind middle of gill.

http://zoobank.org/urn:lsid:zoobank.org:act:FD252AD2-B0D4-4996-9F13-38F4002D5CA6
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Fig. 7. Operculum of Catapyrgus jami sp. nov.

Fig. 6. Protoconch. SEM photographs of paratypes. A. Catapyrgus jami sp. nov. B–C. Opacuincola 
lisannea sp. nov. (B, topotype; C, northern locality). D. Op. gretathunbergae sp. nov. E. Op. mete 
kahurangi subsp. nov. F. Obtusopyrgus farri sp. nov.
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Digestive system. Radula has formula R 4-6 1 4-6/3-4  3-4, L 5-6 1 5, M1 23-26, M2 26-33 (Fig. 8B); 
stomach without caecum; intestine makes loop in roof of mantle cavity, which is clearer in males than 
in females due to different sizes of pallial genital glands.

Female genitalia (n = 2; Fig. 10A). Ovary short, simple sac starting 1.5 whorls below apex, comprising 
0.25 whorl and not reaching stomach; renal oviduct first coiling 180° clockwise, then 270° counter-
clockwise; one distal, large receptaculum seminis lying ventrally against bursa copulatrix; bursa 
copulatrix large, ellipsoid, underneath and reaching far behind albumen gland, bursal duct entering 
anteriorly; ovoviviparous, brooding at least one embryo in pallial oviduct, pallial oviduct as brood pouch 
with short albumen gland as well as longer capsule gland, the latter histologically uniform in CT scans.

Male genitalia (n = 5; Fig. 10B). Testis lobate sac, starting ca 0.75 whorl below apex, comprising 
ca 0.75 whorl, anteriorly just reaching stomach; vesicula seminalis coils along anterior half of testis; 
proximal vas deferens inserts close to middle of kidney-shaped prostate, distal vas deferens leaving 
anteriorly; penis large, continuously tapering, ending with broad, cylindrical filament, huge muscular 
lobe on right side pointing forward (Figs 10B, 11A).

Remarks
With respect to all other sequenced congeners, Op. lisannea sp. nov. had 14 diagnostic characters in COI 
and six in 16S, respectively (Table 2). In the phylogeny, it was a well-supported sister species to five 

Fig. 8. Radula. SEM photographs. A. Catapyrgus jami sp. nov. B. Opacuincola lisannea sp. nov. (from 
type locality). C. Op. gretathunbergae sp. nov. D. Obtusopyrgus farri sp. nov.
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other species of the genus (Fig. 2). Morphologically, the new species is most similar to Op. terraelapsus. 
The latter is smaller (shell height, ANOVA: df = 2, 50; F= 79.17; p < 0.0001; Tukey’s pairwise post-
hoc tests: p < 0.004 in all three cases), but the species cannot be distinguished in shape (shell height/
shell width, Kruskal-Wallis test: H = 4.409; p = 0.110; pairwise Mann-Whitney U-tests: p > 0.05 in 
all three cases). This is perfectly reflected in the PCA, where the species largely overlap only along 
PC2 (Fig. 3). In February 2016, we again failed to find Op. terraelapsus. It was originally collected in 

Fig. 9. Genitalia of Catapyrgus jami sp. nov. µCT scans. A. ♀. B. ♂. Abbreviations: ac = anterior 
capsule gland; ag = albumen gland; bc = bursa copulatrix; od = oviduct; ov = ovary; pc = posterior 
capsule gland; pr = prostate; pv = pallial vas deferens; rs = receptaculum seminis; te = testis; vc = ventral 
channel; vd = vas deferens; vs = vesicula seminalis. Scale bars = 50 µm.

Fig. 10. Genitalia of Opacuincola lisannea sp. nov. µCT scans. A. ♀. B. ♂. Abbreviations: ag = albumen 
gland; bc = bursa copulatrix; cg = capsule gland; od = oviduct; ov = ovary; pe = penis; pl = penial lobe; 
pr = prostate; pt = penial tip; pv = pallial vas deferens; rs = receptaculum seminis; vc = ventral channel; 
vd = vas deferens. Scale bars = 50 µm.
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a trickle somewhere at the start of the Fenian track near Karamea in 1976, blocked by a landslide in 
2002 when MH first attempted to relocate this species (see Haase 2008). Whether Op. terraelapsus has 
survived until today can only be hoped. The reduced eyes suggest that Op. lisannea sp. nov. dwells in the 
transition zone of epigean and ground waters. At the type locality of the new species, we also collected 
Catapyrgus jami sp. nov.

Opacuincola gretathunbergae sp. nov.
urn:lsid:zoobank.org:act:FCAB414F-A55A-4819-AFE1-CE2AF78D6B2F

Figs 4E–F, 5D–E, 6D, 8C, 11B, 12; Tables 1–2

Diagnosis
The new species is most similar to Op. ngatapuna in terms of shape and epidermal pigmentation. It 
differs from the latter in 11 diagnostic DNA positions, in being much larger and in penial morphology. 
The penis and penial lobe of Op. gretathunbergae sp. nov. are considerably more delicate.

Etymology
The dedicatee of this new species is the Swedish teenage climate activist Greta Thunberg. Starting with a 
single-person school strike and demonstration to save our climate she has sparked the global movement 
“Fridays for Future” supported primarily by young people and managed to finally get momentum in 
global politics toward action against climate change after warnings of scientists have been largely 
ignored for more than 30 years. We wish her and the movement the endurance necessary to keep the 
pressure up!

Material examined
Holotype (Fig. 4E)

NEW ZEALAND • Kahurangi National Park, W of Motueka, Cobb Dam Road; 41°04ʹ25.0ʺ S, 
172°45ʹ18.5ʺ E; 1 Mar. 2016; G. Verhaegen and M. Haase leg.; on leaves, stones, woody debris in trickle 
along road; NMNZ.M.330191.

Paratypes (Figs. 4F; 5D–E)
NEW ZEALAND • 21 specs; same collection data as for holotype; NMNZ.M.330192.

Description
Shell (Figs 4E–F, 5D–E). Blunt-conical to pupiform, about 1.65 times as high as than wide, white-
translucent with brown periostracum; protoconch almost smooth with fine pits comprising ca 0.75 whorl 
(Fig. 6D); entire shell with 3.5 to 4.25 whorls, teleoconch initially with fine longitudinal ridges, then 
without structure apart from growth lines; umbilicus narrow; aperture orthocline, slightly higher than 
wide. 

Operculum. Orange, paucispiral; nucleus submarginal, without peg.

External features (Figs 4E–F). Epidermis with irregular, large pigment blotches; eyes well developed 
and entirely pigmented; tentacles without particular ciliation.

Mantle cavity (n = 3). 10–12 ctenidial filaments; osphradium ovate-elongate, behind middle of gill.

Digestive system. Radula has formula R 5-6 1 5–6/3–4 3–4, L 5–6 1 6, M1 22–26, M2 31–32 (Fig. 8C); 
stomach without caecum; rectal loop pointing left in roof of mantle cavity, in males more distinct than 
in females.

http://zoobank.org/urn:lsid:zoobank.org:act:FCAB414F-A55A-4819-AFE1-CE2AF78D6B2F
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Female genitalia (n = 2; Fig. 12). Ovary small, simple sac starting > 1.5 whorls below apex, comprising 
0.25 whorl and not reaching stomach; renal oviduct first coiling 180° clockwise, then 270° counter-
clockwise; one distal, large receptaculum seminis lying against anterior area of bursa copulatrix; bursa 
copulatrix large, globular, extending behind much smaller albumen gland, bursal duct entering anteriorly; 
ovoviviparous, brooding at least three embryos in pallial oviduct, pallial oviduct as brood pouch with 
very short albumen gland and large capsule gland, the latter histologically uniform in CT scans.

Male genitalia (n = 4). Testis lobate sac, starting ca 0.75 whorl below apex, comprising up to 1 whorl, 
may reach stomach; vesicula seminalis coils along anterior half of testis; proximal vas deferens inserts 
close to middle of kidney-shaped prostate, distal vas deferens leaving anteriorly; penis long, slender, 
continuously tapering, pointed; distinct lobe on right side pointing forward (Fig. 11B).

Remarks
The sister relationship of Op. gretathunbergae sp. nov. to Op. ngatapuna was fairly well supported 
(Fig. 2). The average COI p-distance was 0.014 and there were eight type 1 characters in COI and three 
in 16S (Table 2). Morphologically, the new species is larger. Univariate tests comparing shell dimensions 
could not be conducted, though, because of the small sample size available for Op. ngatapuna. But the 
PCA (Fig. 3) and the data in Haase (2008) are clear regarding the size difference. Anatomically, only the 

Fig. 11. Penis. SEM photographs. A. Opacuincola lisannea sp. nov. (from type locality). B. Op. 
gretathunbergae sp. nov. C. Op. mete kahurangi subsp. nov. D. Obtusopyrgus farri sp. nov. Abbreviations: 
e = eye; l = penial lobe; s = snout; t = tentacle.
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male genitalia could be compared because this information is lacking for Op. ngatapuna (Haase 2008). 
The well-developed eyes indicate that the new species is a true crenobiont.

Opacuincola mete kahurangi subsp. nov.
urn:lsid:zoobank.org:act:D05FF1E3-5A77-4C4F-AA94-C8E7356F36C7

Figs 4G–H, 5F–G, 6E, 11C, 13; Table 1

Diagnosis
The new subspecies differs from the nominate form in shell morphology. It is much larger and broadly-
conical while the latter has a rather ovate shell. Both are identical in anatomy.

Etymology
Opacuincola mete kahurangi subsp. nov. is named after Kahurangi National Park, the second largest 
National Park in New Zealand in the northeast of the South Island, where the type locality is situated.

Material examined
Holotype (Fig. 4G)

NEW ZEALAND • Kahurangi National Park, NE of Karamea, Fenian Track, under bridge over Cavern 
Creek; 41°12ʹ02.5ʺ S, 172°11ʹ08.4ʺ E; 5 Mar. 2016; G. Verhaegen and M. Haase leg.; on rough rocks in 
river; NMNZ.M.330193.

Paratypes (Figs 4H, 5F–G)
NEW ZEALAND • 21 specs; same collection data as for holotype; NMNZ.M.330194.

Description
Shell (Figs 4G–H, 5F–G). Broadly-conical to globular, only about 1.2 times as high as than wide, 
translucent with brown periostracum; protoconch almost smooth, comprising ca 1 whorl (Fig. 6E); 
entire shell with 3.125 to 4 whorls, teleoconch without structure apart from growth lines; umbilicus a 
wider slit; aperture large, wider than high, about half as high as total shell height and more than half as 
wide as total width, apertural lip slightly sinuated both ad- and abapically. 

Operculum. Orange, paucispiral; nucleus submarginal, without peg.

External features. Epidermis without pigment; eyes well developed and entirely pigmented; tentacles 
without particular ciliation.

Mantle cavity (n = 4). 9–12 ctenidial filaments; osphradium ovate-elongate, behind middle of gill.

Digestive system. Radula has formula R 5-6 1 5-6/3-4  3-4, L 5 1 5-6, M1 23-28, M2 29-30; stomach 
without caecum; rectal loop pointing left in roof of mantle cavity, in males more distinct than in females.

Female genitalia (n = 3; Fig. 13A). Ovary small, simple sac starting ca 1 whorl below apex, comprising 
0.25 whorl and not reaching stomach; renal oviduct first coiling 180° clockwise, then 270° counter-
clockwise; one distal, large receptaculum seminis lying against anterior area of bursa copulatrix; bursa 
copulatrix large, globular, largely behind short albumen gland, fairly long bursal duct entering anteriorly; 
ovoviviparous, brooding at least four embryos in pallial oviduct, pallial oviduct as brood pouch with 
very short albumen gland and large capsule gland, the latter histologically uniform in CT scans.

Male genitalia (n = 3; Fig. 13B). Testis lobate sac, starting ca 1 whorl below apex, comprising up to 
0.75 whorl, not reaching stomach; vesicula seminalis coils along anterior third of testis; proximal vas 
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deferens inserts close to middle of kidney-shaped prostate, distal vas deferens leaving anteriorly; penis 
not very massive, with subterminal swelling and short terminal filament, fairly long muscular lobe on 
right side eventually bent forward (Figs 11C, 13B).

Remarks
In shell morphology, Op. m. kahurangi ssp. nov. is clearly distinct form the nominate form. Univariate 
tests could not be conducted because of the small sample size available for the latter. However, the 

Fig. 12. Female genitalia of Opacuincola gretathunbergae sp. nov. µCT scans. Abbreviations: ag = 
albumen gland; bc = bursa copulatrix; cg = capsule gland; od = oviduct; ov = ovary; rs = receptaculum 
seminis; vc = ventral channel. Scale bar = 50 µm.

Fig. 13. Genitalia of Opacuincola m. kahurangi subsp. nov. µCT scans. A. ♀. B. ♂. Abbreviations: ag = 
albumen gland; bc = bursa copulatrix; cg = capsule gland; od = oviduct; ov = ovary; pe = penis; pl = 
penial lobe; pr = prostate; pv = pallial vas deferens; rs = receptaculum seminis; te = testis; vc = ventral 
channel; vd = vas deferens; vs = vesicula seminalis. Scale bars = 100 µm.
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PCA is unambiguous (Fig. 3). Anatomically, they are practically identical and in the mitochondrial 
phylogeny not separable (Fig. 2). Both are known each from a single locality, which are ca 90 km apart 
(as the crow flies). Because of the high overall similarity, we distinguish these forms only as subspecies, 
although they can easily be told apart by their shells. However, we do not know if there exist connecting 
populations between both sites mediating gene flow in a stepping stone-like fashion. Considering 
similar cases among Tateidae form New Zealand and other places, we might be witnessing species in 
statu nascendi or already be dealing with genetically incompatible but mitochondrially undifferentiated, 
young species (e.g., Haase 2005, 2008; Zielske & Haase 2014a, 2014b). Nuclear genetic data might 
be more informative in this ambiguous situation. The new subspecies represents one of the rare cases 
where a small tateid is not restricted to springs or small streams. Due to the unresolved situation in the 
mitochondrial phylogeny (Fig. 2), it is not reasonable to list diagnostic alignment positions.

Genus Obtusopyrgus Haase, 2008

Obtusopyrgus farri sp. nov.
urn:lsid:zoobank.org:act:2D7008F8-BB41-448D-94AF-969925CECDAB

Figs 4I–J, 5H–I, 6F, 8D, 11D, 14; Tables 1–2

Diagnosis
In the new species, the central tooth of the radula has more cusps on the edge and less on the basis than 
in the only other known representative of the genus, Ob. alpinus. The bursa copulatrix is smaller and 
more elongate compared to the larger, more globular one in the latter. As a consequence, the seminal 
receptacle reaches far behind the bursa in Ob. farri sp. nov., whereas in Ob. alpinus it lies entirely 
against the bursa. These species differ at five diagnostic alignment positions of type 1.

Etymology
Obtusopyrgus farri sp. nov. is named after Gareth Farr, acclaimed New Zealand percussionist and 
composer integrating non-European music styles including Maori music into Western classical music 
resulting in the most fascinating and colorful synthesis of different musical expressions. His alter ego, 
the drag queen Lilith LaCroix, is also colorful.

Material examined
Holotype (Fig. 4I)

NEW ZEALAND • Nelson Lakes National Park, Lake Rotoiti, small stream crossing Lakeside Track 
close to lake shore; 41°49ʹ30.7ʺ S, 172°49ʹ50.1ʺ E; 13 Mar. 2016; G. Verhaegen and M. Haase leg.; on 
leaves, stones, woody debris in small stream crossing track; NMNZ.M.330195.

Paratypes (Figs 4J; 5H–I)
NEW ZEALAND • 21 specs; same collection data as for holotype; NMNZ.M.330196.

Description
Shell (Figs 4I–J, 5H–I). Blunt-ovate to pupiform, about 1.7 times as high as than wide, light brown, 
translucent with brown periostracum; protoconch almost smooth, comprising up to 1 whorl (Fig. 6F); 
entire shell with 3.625 to 4.25 whorls, teleoconch initially with very fine longitudinal ridges, then without 
structure apart from growth lines; umbilicus narrow; aperture orthocline, as high as wide. 

Operculum. Yellow to light orange, paucispiral; nucleus submarginal, without peg.

External features (Figs 4I–J). Epidermis with irregular, large pigment blotches; eyes well developed 
and entirely pigmented; tentacles without particular ciliation.
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Mantle cavity (n = 4). 8–11 ctenidial filaments; osphradium ovate-elongate, behind middle of gill.

Digestive system. Radula has formula R 5 1 5/2–3 2-3, L 5–7  1 5–7, M1 23–28, M2 25–28 (Fig. 8D); 
stomach without caecum; rectal loop pointing left in roof of mantle cavity, in males more distinct than 
in females.

Female genitalia (n = 4; Fig. 14). Ovary lobate sac starting > 1.5 whorls below apex, comprising ca 
0.3 whorl and not reaching stomach; renal oviduct first coiling 180° clockwise, then 270° counter-
clockwise; one distal, large receptaculum seminis reaching far behind bursa copulatrix; bursa copulatrix 
an elongate sac lying behind albumen gland, bursal duct entering anteriorly; ovoviviparous, brooding at 
least three embryos in pallial oviduct, pallial oviduct as brood pouch, albumen gland has about third of 
length of capsule gland, the latter histologically uniform in CT scans.

Male genitalia (n = 1). Testis lobate sac, starting ca 1 whorl below apex, comprising up to 1 whorl, 
reaching stomach; vesicula seminalis coils along anterior half of testis; proximal vas deferens inserts 
close to middle of kidney-shaped prostate, distal vas deferens leaving anteriorly; penis massive, broad, 
short, pointed tip, without appendages (Fig. 11D).

Remarks
The new species is slightly larger than Ob. alpinus (shell height: Mann-Whitney U-test: z = 2.869, p = 
0.004), but in terms of shape, they cannot be distinguished (shell height/shell width: Mann-Whitney 
U-test: z = 0.764, p = 0.445). The genetic and phylogenetic distinction of both species of Obtusopyrgus 
was only based on 16S as sequencing of COI failed (Fig. 2). There were five diagnostic characters 
(Table 2). The well-developed eyes indicate that Ob. farri sp. nov. inhabits epigean waters.

Fig. 14. Female genitalia of Obtusopyrgus farri sp. nov. µCT scans. Abbreviations: ag = albumen gland; 
bc = bursa copulatrix; cg = capsule gland; od = oviduct; ov = ovary; rs = receptaculum seminis; vc = 
ventral channel. Scale bar = 100 µm.
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Discussion
Due to the high number and proportion of endemic species, New Zealand is regarded as one of 36 
biodiversity hotspots (Myers et al. 2000; Mittermeier et al. 2004; see also Kier et al. 2009; Veron et al. 
2019) and the number of species discoveries keeps growing. A quick search in the Web of Science with 
the search terms “New Zealand species” in “Topic” and only the three selected taxonomic journals 
European Journal of Taxonomy, ZooKeys or Zootaxa in “Publication Name” revealed a total of 143 
new species published only in the years 2018 and 2019. With the four new species introduced here, the 
number of tateid gastropod species, all of them endemic to New Zealand (including P. antipodarum 
being invasive in many parts of the world, see Introduction), increased to 68. Although we do not know 
the entire ranges of the new species, they appear to fit into the pattern of narrow-range endemism typical 
for the New Zealand representatives of the family (see Introduction). Their discovery is remarkable for 
two reasons: 1) our fieldwork did not target species other than P. antipodarum (see Verhaegen et al. 
2018b); and 2) we spent hardly two weeks in 2016 in the north of the South Island. Considering this and 
the fact that all five localities were easily accessible along tracks and roads and only in the case of Op. 
m. kahurangi subsp. nov. in more than two hours walking distance from the car park, we can predict that 
still many more species await discovery.

To our best knowledge, this is the first paper applying µCT scanning in truncatelloidean gastropods 
to reconstruct their genital system. In comparison to dissections, there are some pros and cons to this 
approach. In contrast to dissections, the original organ situs remains intact and apart from the fact 
that the shell had to be dissolved in order to optimize the contrast among the tissues, the specimens 
do not have to be destroyed so that they can be preserved and included in the type series. On the 
downside, the resolution of thin structures like the vas deferens or the oviduct has often been wanting 
(e.g., Fig. 9) and although one of us (MH) has a lot of experience with histological serial sectioning and 
their reconstruction (e.g., Haase & Bouchet 1998), these structures occasionally could not be detected. 
Similarly, delicate details could not be resolved in particular in cases where an organ or parts of an organ 
bend onto itself such as the hook-shape of the penial lobe in Op. lisannea sp. nov. (Figs 10B, 11) or the 
entire penis of C. jami sp. nov. All of this might be possible in dissections depending on the skills of the 
researcher and the size of the snails. It has to be stated though, that our material has been fixed only in 
ethanol. It is thus very likely that the drawbacks of µCT-scanning can be overcome by fixation in e.g., 
formalin so that also very small species can be studied in full anatomical detail.

Incorporating DNA character data into taxonomic diagnoses has already been suggested about 20 
years ago. However, as of November 2015 Renner (2016) has found only 98 descriptions explicitly 
including DNA data, although morphologically cryptic taxa can usually only be identified based on 
other genetic data. One reason for the seeming reluctance to use DNA characters also in diagnoses was 
possibly the lack of suitable tools for their identification (Kühn & Haase 2020). With the correction 
of this deficiency (Hütter et al. 2020; Kühn & Haase 2020) cryptic taxa such as our tateid gastropods 
will hopefully be formally described at an increasing rate and not stay in taxonomic crypsis (Schlick-
Steiner et al. 2007). In contrast to Renner (2016), we do not advocate the replacement of morphological 
descriptions and diagnoses by DNA-based diagnoses, as we still usually deal with phenotypes and 
therefore cannot dispense with morphological data in taxonomy. Characters of all qualities should be 
seen as complementary in the sense of what has been dubbed integrative taxonomy (Dayrat 2005; Padial 
et al. 2010; Schlick-Steiner et al. 2010).

Our descriptions were based on relatively few individuals and some of the sequenced specimens even 
shared identical haplotypes. One might therefore question how meaningful DNA-based diagnoses are 
when data are limited. This touches on the general question of how to deal with rarity in taxonomy. 
Do we need a minimum number of specimens per population and populations per species to warrant 
taxonomic recognition? Considering that a large proportion of all species across all taxa are rare (Lim 
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et al. 2012), often because their ranges are very restricted or their habitats difficult to access as in many 
tateids, one can only conclude with these authors that rarity is an inherent property of biodiversity and the 
neglect of rare taxa would impact severely on conservation biology, ecology and evolutionary biology. 
In taxonomy, this means that the variation of characters, regardless if morphological or molecular, may 
be limited at the time of description. A diagnosis may have to be extended or amended once more 
specimens become available. But again, this holds for morphological characters as well as for molecular 
characters. Thus, a molecular character identified as diagnostic and fixed for one state (A, C, G, T, or 
gap), a type 1 character according to Kühn & Haase (2020), might erode to a type 2 or type 3 character 
or eventually no longer be diagnostic, adding new information. This is analogous to a case where two 
species initially considered to differ in size no longer do so after new populations have been discovered.

Diagnoses are relative. With that respect we found it particularly interesting that in Op. gretathunbergae 
sp. nov., well defined from its sister species Op. ngatapuna at eight positions in COI and three in 16S 
rRNA, only a single diagnostic position or type 1 remained in the comparison across all congeners 
(Table 2). This indicates a high frequency of homoplastic mutations in COI. Similar observations were 
made among tateids from New Caledonia (Zielske & Haase 2015).
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