
Deployment of Application Microservices
in Multi-Domain Federated Fog Environments

Francescomaria Faticanti∗,‡, Marco Savi†,∗, Francesco De Pellegrini�,
Petar Kochovski?, Vlado Stankovski? and Domenico Siracusa∗

Abstract—In this paper we consider the problem of initial resource
selection for a single-domain fog provider lacking sufficient resources
for the complete deployment of a batch of IoT applications. To overcome
resources shortage, it is possible to lease assets from other domains across
a federation of cloud-fog infrastructures to meet the requirements of those
applications: the fog provider seeks to minimise the number of external
resources to be rented in order to successfully deploy the applications’
demands exceeding own infrastructure capacity. To this aim, we introduce
a general framework for the deployment of applications across multiple
domains of cloud-fog providers while guaranteeing resources locality
constraints. The resource allocation problem is presented in the form
of an integer linear program, and we provide a heuristic method
that explores the resource assignment space in a breadth-first fashion.
Extensive numerical results demonstrate the efficiency of the proposed
approach in terms of deployment cost and feasibility with respect to
standard approaches adopted in the literature.

Index Terms—Fog Computing, Microservices, Federation, Resources
Allocation, Virtual Network Embedding, Locality Constraints.

I. INTRODUCTION

Fog computing is a novel paradigm proposed as an effective means
to offload computation at the network’s edge by leveraging concepts
and functionalities of cloud computing [1]. The main objective of this
technology is to close the gap between cloud and IoT domains, by
empowering the elaboration of data much closer to the objects where
it is produced through the adoption of well-designed applications.
Such an approach brings tangible benefits, spanning from service
latency reduction [2] to bandwidth savings [3].

Nowadays, one of the main trends in the design and development of
cloud-native applications are microservice-oriented service architec-
tures [4]. Microservice-oriented applications consist of a cascade of
loosely-coupled components/modules (that is, the microservices) that
can be containerized independently. Each microservice performs spe-
cific computations on input data and forwards the resulting output to
other microservices downstream for further processing. Microservice
design is preferred to monolithic application development because
applications adopting such an architecture deliver same intended
functionalities but attain higher degree of flexibility, reliability and
scalability [5]. In fog computing, on the other hand, available
resources are geographically spread so that a microservice-oriented
architecture appears a natural choice for fog-native applications,
because it is possible to split them into components to be executed
at the edge or in the cloud, respectively.

Even though the diffusion of fog computing is still at its infancy,
some fog-like solutions have been already commercialized [6][7].

∗Fondazione Bruno Kessler, Italy, ‡University of Trento, Italy, †University
of Milano-Bicocca, Italy, �University of Avignon, France, ?University of
Ljubljana, Slovenia. This work has received funding from the EU H2020 R&I
Programme under Grant Agreement no. 815141 (DECENTER: Decentralised
technologies for orchestrated Cloud-to-Edge intelligence).

c©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

However, the main drawback of existing platforms is that they
are bound to work within a single administrative domain. Hence,
they require exclusive ownership of resources spanning from cloud
to things. Nevertheless, given the wide geographical diffusion and
heterogeneity of fog computing resources, single-domain solutions
are likely to be unfit for the deployment of fog-native applications. In
fact, they come – by their own nature – with some hard-constraining
locality requirements, dictated by the geographical location where
some processing needs to be executed.

This work contributes to current research efforts towards the
definition of a multi-domain federated fog ecosystem, where fog
providers (i.e., owners of fog resources) can stipulate contracts
among them to rent additional resources (otherwise not accessible)
and ensure smooth execution of their own applications. Whilst the
technical feasibility of such approach – requiring the interface to a
specific resource brokerage platform – has been already proven [8][9],
a different angle is considered in this work. We take the perspective of
a fog provider and pose the following question: what resources should
I rent to ensure that a given set of applications is correctly deployed
in the federated fog while minimising external resource usage?

To answer this question, we assume that the fog provider imple-
ments a mechanism (e.g. based on matchmaking [10]) to retrieve from
the resource brokerage platform a set of potential rentable resources
owned by other providers, based, e.g., on applications’ locality needs.
Given such a set of potential rentable resources and the self-owned
resources, the objective is to find a feasible application deployment
to minimises the cost of external resource rental, while deploying
over the federated fog environment as many applications as possible
to maximise the provider’s revenues.

By exploiting integer linear programming (ILP) methods, we
formally formulate the application deployment problem: the aim is
to allocate enough federated fog resources to satisfy the applica-
tions’ requirements while self-owned resources are used as much
as possible. More formally, an application deployment is a map of
the applications’ components, namely microservices and data flows
among them, to the available fog resources. Finding such an optimal
map is a virtual network embedding (VNE) problem, which is known
to be NP-hard [11][12]. Hence, a practically viable approach is
to design algorithmic solutions consisting of tailored heuristics to
approximate an optimal solution. We thus propose a scalable heuristic
algorithm solving the application deployment problem while taking
into account locality constraints. Experimental results validate our
solution with respect to the optimal deployment and a state-of-the-
art approach in terms of deployment cost and feasibility percentage.

A. Related work and main contributions

Service placement in federated clouds has been deeply studied in
the literature [13][14], exploring dynamic and adaptive solutions for
the allocation of resources. In [15], authors proposed a distributed
and adaptive approach for service placement on a distributed and
heterogeneous cloud federation. Authors of [16] described a multi-
objective optimization for resource allocation able to address changes



𝐵,𝐷

𝐶𝑐𝑝𝑢,𝑔𝑝𝑢,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟

3
4

1

2

2

1

3 4

𝑐𝑐𝑝𝑢,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟

𝑐𝑔𝑝𝑢

𝐶𝑔𝑝𝑢

𝐶𝑐𝑝𝑢,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟
𝐶𝑐𝑝𝑢,𝑚𝑒𝑚,𝑠𝑡𝑜𝑟Cloud region

Fog 
region

Swarm of 
things

Thing 
(camera)

Main fog provider

Microservice

Data flow

Main domain
Domain

Domain

D
o

m
a

in
D

o
m

a
in

Fog provider 

Fog provider

Fog provider

Fog provider

Application

Application deployment

Application provider

Fig. 1. Application deployment in a multi-domain federated fog ecosystem.

in the applications’ behaviour. Although these problems are crucial
for the dynamic deployment of applications in federated clouds, in
that context IoT locality constraints are not considered as application
requirements. But, such kind of constraints are what distinguishes the
most a federated fog from a federated cloud environment, besides the
higher heterogeneity of available resources. Our approach considers
locality constraints in the deployment of fog applications in the
said fog federation. Furthermore, the applications considered in the
aforementioned works are monolithic whereas, as already mentioned,
the most promising paradigm for the design of fog applications is the
microservice-oriented architecture. With this assumption, the appli-
cation deployment becomes a virtual network embedding problem,
an NP-hard problem for which many heuristic solutions have been
proposed in literature [17], especially with respect to Virtual Network
Function (VNF) placement [11]. Such problems are usually solved
by greedily deploying one virtual network at the time. In our context,
due to locality constraints, it is instead recommended to consider the
whole batch of application graphs at once. We do so with a Breadth-
First Search (BFS) visit driven by the applications’ topological order,
an approach that provably reduces the cost of deployment while
ensuring higher feasibility rates with respect to existing solutions,
especially under hard locality constraints.

The remainder of the paper is structured as follows. In the next
section we introduce the reference scenario and the system model,
whereas in Sec. III we provide the formalisation of the resource
allocation problem. The proposed algorithmic solution is described
in Sec. IV, whereas its numerical performance evaluation is reported
in Sec. V. A concluding section ends the paper.

II. SYSTEM MODEL

A. Involved stakeholders and scenario

Figure 1 resumes the scenario envisioned in this work. Two main
stakeholders are involved:
Application provider: it designs a microservice-oriented application
that can be used by its customer(s) to accomplish some specific
tasks. As an example, consider an application for number-plate-
based car access control to a restricted traffic zone. The customer
(a municipality) requires an application that can access a well-
located camera, convert the number plate from the video stream

into text, store the number plate in a database and compare it with
authorized number plates. Such kind of application can be easily
designed following a microservice-oriented architecture and would
clearly benefit from video stream computation close to the camera,
e.g., to reduce bandwidth needs and improve privacy.
Fog provider: it owns a fog infrastructure that can host different
microservice-oriented applications. A fog infrastructure can either be
geographically distributed (spanning from cloud to edge) or confined
to a specific geographical area (no cloud, only edge). It (i) provides
computational, memory and storage capacity and (ii) can ensure
access to things deployed on specific areas and owned by the fog
provider, if any (e.g. video cameras or IoT sensors). We refer to a
fog infrastructure owned by a fog provider as fog domain (or domain).

As already mentioned, in our investigated scenario we take the
perspective of a fog provider – called main fog provider from now on
– that wants to deploy multiple applications over its fog infrastructure.
However, depending on the applications to be deployed, it may
happen that the fog provider’s infrastructure alone cannot meet the
applications’ requirements. This may happen for two reasons, that is:
Locality: an application requires some processing capability in a spe-
cific geographical location, e.g. it requires video streaming acquisition
and elaboration from a camera owned by another fog provider.
Peculiar resource usage: an application requires the usage of some
peculiar resources that are not owned (or do not suffice for an
appropriate application execution) by the main fog provider. For
example, an application may need a GPU for fast processing, but
no GPU is owned by such a provider.

Throughout the paper we assume that the main fog provider can
rely on a multi-domain federated fog ecosystem (and its related
infrastructure), where resources from other fog providers can be
rented to meet application requirements – including locality and
peculiar resource usage – otherwise exceeding own capacity. Figure
1 depicts this reference scenario. In the following, the model (i)
for the aforementioned multi-domain federated fog infrastructure are
presented and (ii) for the applications to be deployed.

B. Multi-domain federated fog infrastructure modelling

The considered infrastructure consists of several geographically
distributed fog or cloud regions belonging to different fog domains,
including the main fog domain. From a modelling point of view, the
only difference between cloud and fog regions is their processing,
memory and storage capabilities. Each region is composed by mul-
tiple hosts, which are the atomic unit where a microservice can be
deployed. An example of such an infrastructure is shown in Figure 1.

The multi-domain infrastructure is described by a weighted graph
GI = (VI , EI) where VI is the set of regions of the infrastructure
and EI ⊆ VI × VI . Furthermore, cost function w : VI → R+

specifies the cost for application deployment in a specific region of
the infrastructure. Nodes and links/edges composing the infrastructure
are also called physical nodes and physical links/edges. Each physical
link (u, v) ∈ EI is characterized by a couple (Du,v, Bu,v) modelling
the latency and the bandwidth capacity of the link, respectively. We
assume that hosts within a region are interconnected through high-
performance connections, where bandwidth is never a bottleneck
and latency can be considered negligible. Conversely, regions (either
belonging to different domains or within the same domain of the fed-
eration) are interconnected through best-effort network connections,
meaning that bandwidth and latency constraints must be considered.

C. Application modelling

We denoteA as the set of applications to be deployed on the infras-
tructure and each application A ∈ A is described by a weighted DAG



TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER.

Symbol Meaning
GI = (VI , EI) Infrastructure network graph: VI physical nodes

(regions), EI physical edges (network connections)
A Set of applications to be deployed on GI

GA = (VA, EA) Graph for application A ∈ A: VA virtual nodes
(modules) and EA are virtual edges (data flows)

LA ⊆ VA Subset of virtual nodes to be deployed on a specific
physical node of the infrastructure

rA : LA → VI Maps virtual node vA to a given physical node
crvA Resource requirements of virtual node vA ∈ VA,

with r ∈ {cpu, gpu,mem, stor}
λA(uA, vA) Max. throughput on edge (uA, vA) ∈ EA

dA(uA, vA) Max. tolerated delay on edge (uA, vA) ∈ EA

Sv Set of available hosts in physical node v ∈ VI
Cr

v,i Resource capacity of the i-th host in physical node
v ∈ VI , with r ∈ {cpu, gpu,mem, stor}

Du,v Latency on the physical link (u, v) ∈ EI

Bu,v Capacity of the physical link (u, v) ∈ EI

w(v) Cost of physical node v ∈ VI
P Set of computed paths p between any couple of

physical nodes
Pu,v ⊆ P Set of computed paths between v ∈ VI and u ∈ VI
sp, dp First and last node of path p ∈ P

GA = (VA, EA), where VA is the set of microservices (or modules,
or components) composing the application and EA represents the
set of microservices dependencies. Each directed edge (uA, vA) of
an application A is characterised by (i) the maximum throughput
generated on that link, λA(uA, vA) and (ii) the maximum tolerated
delay on that link, dA(uA, vA). Each node vA of an application A
has computational requirements in terms of CPU, GPU, memory and
storage, crvA , where r ∈ {cpu, gpu,mem, stor}. Furthermore, each
application has a set of locality constraints representing the regions
where some microservices must be deployed to acquire data from
specific devices belonging to that regions. We model this fact by
introducing a set LA ⊆ VA for each application A ∈ A. This set
contains all the nodes that need to acquire data from a tagged device
placed on a specific region: hence, they must be placed in that region.
Function rA specifies for each node in LA the region where it should
be deployed. Nodes and links/edges composing an application are
also called virtual nodes and virtual links/edges.

III. PROBLEM FORMULATION

In this section we provide the ILP formulation of the resource
allocation problem.
Decision variables. We introduce two types of variables:
1) A binary variable for the assignment of each application module
to a physical node:

xA,vA
v,i =

1,
if module vA of application A

is deployed on host i of node v
0, otherwise

where A ∈ A, vA ∈ VA, v ∈ VI and i ∈ Sv .
2) A binary variable for the assignment of virtual links of each
application to physical paths:

y(uA,vA)
p =

{
1, if link (uA, vA) is mapped to path p
0, otherwise

where A ∈ A, (uA, vA) ∈ EA, and p ∈ P .
Objective Function. Given a subset of nodes belonging to the main
fog provider, we want to minimise the total deployment cost for
all the application requests of that provider. We assign a weight

w for the deployment of a virtual node onto a physical node v
of the fog infrastructure. We assume that weights are larger when
such deployment is performed towards nodes belonging to other fog
domains, since their resources need to be rented. More formally, we
have a weight function defined for each physical node, w : VI → R+.
Finally, the objective function writes as follows∑

A∈A

∑
vA∈VA

∑
v∈VI

∑
i∈Sv

w(v)xA,vA
v,i . (1)

Constraints. First, we have integrality constraints on the applica-
tions’ deployment on the fog infrastructure. In fact, all modules of an
application must be deployed and each such module must be placed
only once. These conditions are expressed through the following
constraint (2) and (3), respectively.∑

vA∈VA

∑
v∈VI

∑
i∈Sv

xA,vA
v,i = |VA|, ∀A ∈ A, (2)

∑
v∈VI

∑
i∈Sv

xA,vA
v,i = 1, ∀A ∈ A, ∀vA ∈ VA. (3)

Second, we have the constraints on the resource capacity for each
host in the infrastructure:∑

A∈A

∑
vA∈VA

cresvA x
A,vA
v,i ≤ Cr

v,i (4)

where v ∈ VI , i ∈ Sv , and resource r ∈ {cpu, gpu, mem, stor}.
Third, there are constraints related to virtual and physical links

capacity. We start by introducing the structural constraints binding
variables related to nodes and virtual links:∑

p∈Pu,v

y(uA,vA)
p ≤

∑
i∈Su

xA,uA
u,i , (5)

∑
p∈Pu,v

y(uA,vA)
p ≤

∑
j∈Sv

xA,vA
v,j , (6)

∑
p∈Pu,v

y(uA,vA)
p ≥

∑
i∈Su

xA,uA
u,i +

∑
j∈Sv

xA,vA
v,j − 1, (7)

where (u, v) ∈ VI × VI , A ∈ A, and virtual link (uA, vA) ∈ EA.
Constraints (5), (6) and (7) ensure that a unique physical path is

used by a virtual link whenever the virtual nodes connected by such
link are the extreme nodes of the path.

The following are constraints on the bandwidth capacity for all
physical links (u, v) ∈ EI∑

A∈A

∑
(uA,vA)∈EA

∑
p∈P :(u,v)∈p

λA(uA, vA) y
(uA,vA)
p ≤ Bu,v, (8)

and the applications’ delay constraints, namely

y(uA,vA)
p

∑
(u,v)∈p

Du,v ≤ dA(uA, vA), (9)

where A ∈ A, (uA, vA) ∈ EA, and p ∈ P .
Finally, we have locality constraints: they impose the placement of

a subset of nodes of the applications on specific regions, since data
is acquired by devices located on those specific regions:∑

i∈SrA(vA)

xA,vA
rA(vA),i = 1, ∀A ∈ A, ∀vA ∈ LA. (10)



IV. HEURISTIC ALGORITHMS

The problem formulated in the previous section is a VNE problem
which, as already said, is a well-known NP-hard problem. Hence, it
is important to look for fast and scalable algorithms whose output
solutions have an acceptable cost.

The VNE problem has been extensively studied in the literature,
and several heuristic solution methods have been proposed [17]. In
the following, we briefly resume the main idea of the most adopted
greedy approaches, which are based on a Depth-First Search (DFS)
of the deployment space. We part from this approach and propose a
solution tailored for the specific requirements of our problem, based
instead on a Breadth-First Search method.

A. Depth-First Search Approach

The most popular heuristic methods for VNE adopt a greedy
embedding procedure. It receives as input a sorted list of application
deployment requests and returns a mapping between each request and
a subset of physical nodes/edges of the infrastructure. Our reference
DFS-based algorithm is an adaptation of the one presented in [18].

For each application in the input batch, the following three steps
are executed sequentially:
1) Topological sorting of the application graph: it is obtained by
performing a visit of the application graph; as a result, an order of
the DAG nodes is established.
2) Virtual node mapping: it defines, for each virtual node, a set of
possible placements. Once defined, selects the nodes placement.
3) Virtual link mapping: it finds a path between each couple of
physical nodes where virtual nodes are mapped in the previous step.

The DAG-based deployment order on the application’s modules
as established in the first step accounts for their dependencies.
A topological sort, indeed, ensures that for each couple of nodes
uA, vA ∈ VA, if (uA, vA) ∈ EA then uA precedes vA in the
topological order, that is uA is a predecessor of vA. Once the order is
defined by topological sort, the application’s node mapping to the in-
frastructure’s resources is done. At this stage, node mapping accounts
for the actual resources occupation, and requires to establish a certain
priority function; it defines, for each application, an admissible set
for each module of the application. If this set contains at least one
region, it selects the region v ∈ VI that maximises:

resCPU (v)

 ∑
u|(u,v)∈EI

resBW (u, v) +
∑

u|(v,u)∈EI

resBW (v, u)

 ,

(11)

where resBW (u, v) and resCPU (v) are the residual bandwidth
of the physical link (u, v) and the total residual CPU capacity in
region v, respectively [18]. If the set of admissible regions is empty
for at least one module of the application, such application cannot be
deployed. Instead, if a mapping for all the modules of the application
is found, the next step is the link mapping procedure. For each
virtual edge, the algorithm takes the two physical nodes assigned
to the virtual nodes it connects (chosen by the second step) and
considers the least-congested path that satisfies both bandwidth and
delay requirements of the virtual link. If all the virtual links can be
mapped to a set of paths of the infrastructure, the algorithm has found
a complete map of the application onto the physical infrastructure.
This operation is iterated for all the applications to be deployed.

B. Breadth-First Search Approach

The basic idea of our novel approach is to deploy the batch of
applications in a breadth-first search fashion. This means that we

Fig. 2. DFS vs. BFS approaches after the topological sorting step.

do not deploy a single application at the time, conversely, at each
step we consider all the application nodes: at each iteration we
consider for placement the first virtual node of each application,
as determined by the topological sorting of the application’s graph.
Every time a virtual node is mapped to a host, it is popped up from
the stack of the topological order of its application. The rationale of
this procedure is that applications’ locality constraints can be better
matched. Indeed, a depth-first greedy procedure can quickly saturate
all the resources of a particular region for the deployment of certain
applications without considering that some applications in the batch
may have a hard locality constraint on that region. This typically
renders the deployment of the whole batch unfeasible, as will be
better highlighted in Section V.

Given a batch of applications to be deployed on the multi-domain
infrastructure, our algorithm consists of three steps:
1) Sorting of the batch of applications: it sorts all the application on
the basis of their total bandwidth consumption.
2) Topological sorting of the application graph: it establishes a
topological sort of each application graph following the applications’
order decided in the previous step. A stack is created for each
application: the first node of the topological order is put on its top.
3) Virtual node and link mapping: it iterates over all the applications
in a breadth-first manner, exploring all of them jointly and level by
level. At each iteration, all the virtual nodes on top of the applications’
stacks are popped up and a node mapping is performed in the order
established by step 2: each module is assigned to a host of the
infrastructure. Link mapping is then performed in conjunction with
node mapping. Figure 2 illustrates the iterations of the third step of
the algorithm comparing this breadth-first approach with respect to a
depth-first visit.

More in detail, the selection of the regions to perform the virtual
node mapping (step 3) is operated by choosing for deployment a set
of admissible regions that takes into account the requirements and
the locality constraints of each application module. Once such set is
defined, the algorithm selects the regions with the lowest deployment
cost. Afterwards, to choose the most suitable region, it greedily
selects the placement option that has the smaller relative increment
of occupied nodes’ resources with respect to CPU, GPU, memory,
storage and bandwidth.

Finally, to perform link mapping, each time an application node
vA is mapped to a region R, the algorithm takes the list of all the
regions assigned to the predecessors (in the topological order of A)
of vA and selects the least-congested paths between them and R.

V. PERFORMANCE EVALUATION

In this section we validate our solution for applications deployment
on a multi-domain federated infrastructure. Our goal is twofold: (i)
prove that a Depth-First Search approach for the deployment of
applications can negatively impact on either the feasibility of the
solution (i.e., the deployment of the batch of applications can be



TABLE II
APPLICATIONS’ MICROSERVICES REQUIREMENTS [12].

Requirement Mean Value Range
CPU (ccpuvA ) 1250 MIPS [500, 2000] MIPS
Memory (cmem

vA
) 1.2 Gbytes [0.5, 2] Gbytes

Storage (cstorvA
) 3.5 Gbytes [1, 8] Gbytes

Throughput (λA) 3 Mbps [1, 5] Mbps
Delay (dA) 262.5 ms [25, 500] ms

incomplete) or on its optimality; (ii) show that our Breadth-First
Search approach leads to a good trade-off between feasibility and
optimality, especially when some locality constraints are specified.
We measure the feasibility as the percentage of instances that admit
a feasible solution (i.e., meet all the constraints), for the problem
described in Section III, among all the generated instances.

A. Simulation settings

We describe how we generate the test network topologies and the
batch of applications to be deployed. Note that in our performed
experiments we consider only CPU, memory and storage as com-
putational resources within any region and as resource requests by
applications (that is, we do not consider GPU). In fact, a GPU
requirement can be expressed in terms of MIPS (Million Instructions
Per Second) in the same way as it is done for CPU: a GPU request
can thus be translated to a CPU requirement with high MIPS.

Network topology: the multi-domain fog infrastructure is modelled
as a directed network graph with a number of fog regions K and
a number of domains D. For the main fog domain, we consider
a central cloud region that is always connected to fog regions in a
star topology. For each randomised topology realisation, links among
different fog regions (either belonging to the main fog provider or
to other external providers) are instead added according to an Erdős-
Rényi random graph model, where a link between two regions exists
with probability pr = 0.5. Eventually, each link in the resulting
topology is assigned an average bandwidth of 60 Mbps and an
average delay of 10 ms representing the average values of modern
communication links [12]. The hosts available within each region
belong to three classes, depending on the resources they are equipped
with, namely low (CPU: 5000 MIPS, memory: 2 GB, storage: 60
GB), medium (CPU: 15000 MIPS, memory: 8 GB, storage: 80 GB)
and high (CPU: 44000 MIPS, memory: 16 GB, storage: 120 GB). To
well dimension the computational resources within any region, the
aggregated demand of the batch of applications to be deployed (in
terms of CPU, memory and storage) is equally split among all the
regions excluding the main cloud. Then, the set of hosts of a certain
region is generated by iteratively and randomly choosing hosts of
different types until the aggregated demand fraction assigned to that
region is satisfied.

Application batch: a batch of applications A is generated for each
experiment; we consider |A| = {10, 15, 20, 25, 30}. The demand
of each applications’ module in terms of CPU, storage, memory
and throughput are uniform independent random variables. The
distribution values for each microservice are enlisted in Table II.
Each application is generated as a DAG ordering all the nodes and
adding an edge only between predecessors and successors.

We developed a Python-based simulator for the evaluation of the
above algorithms since well-known fog simulators do not support
scenarios with multiple domains and fog regions yet [19]. The Gurobi
solver has been used to solve the optimal placement ILP problem
(OPT). Each data point in the shown graphs is the average value
over 30 randomized instances, where the infrastructure is fixed and

a) b)

Fig. 3. Feasibility-optimality tradeoff. a) Feasibility percentage; b) Total
deployment cost for each application.

the batch of applications and host distribution change. All the results
are shown with their corresponding 95% confidence interval. We
evaluate the proposed solutions in a scenario with K = 6 regions,
D = 3 domains. The optimization problem is solved from the main
fog provider perspective: such domain contains one cloud and one
fog region, while the other fog regions are distributed among the
remaining fog providers’ domains (external providers). We consider
a unit cost for all the deployments outside the main domain (w = 1)
and zero-cost for the deployments inside the main domain (w = 0).
To highlight the importance of locality constraints, we impose that
the first module of each application must reside in the fog region of
the main domain.

B. Numerical results

In Figure 3 we evaluate the tradeoff between optimality and
feasibility of the proposed solutions. Figures 3a) and b) report on
feasibility and optimality with two variants of the state-of-the-art DFS
approach. DFS_SoA_NoCost represents the variant where deployment
cost optimization is not taken into account: this means that the
objective of this strategy is just maximising the number of deployed
applications. Conversely, DFS_SoA_Cost objective is to minimise the
deployment cost. BFS refers instead to our proposed novel strategy.
From Figure 3a), we can notice that OPT, BFS and DFS_SoA_NoCost
have high feasibility. Especially, the first two strategies have a
feasibility of 100%, meaning that they are able to deploy the complete
batch of applications in all the 30 randomized instances (note that
feasibility refers to the percentage of instances that are feasible).

Additionally, looking at the deployment cost (computed as in eq.
1) in Figure 3b), we can see that BFS offers a solution very close
to the optimal one (OPT). DFS_SoA_NoCost, on the other hand,
leads to a high deployment cost even though it has a good feasibility
percentage. Conversely, in DFS_SoA_Cost the feasibility percentage
is low as well as the deployment cost. This behaviour is reasonable
given the greedy nature of the DFS approach. Indeed, if we include
a cost optimization in such an approach, the algorithm prioritizes
all the regions with the lowest cost (that is, the regions in the main
domain) for the deployment of all the applications’ modules. In this
manner, resources with lower cost are quickly saturated precluding
the possibility to satisfy the locality constraints for the applications
that have not been deployed yet. On the other side, if we do not
consider cost optimization, all the regions are treated in the same way,
increasing the chance of having a feasible solution while increasing
the deployment cost too. From this perspective, a BFS approach
is beneficial since it does not evaluate the deployment of each
application at the time, but it considers the deployment of a part
of every application at each iteration. Thanks to this property, this
method leads to a high feasibility percentage, since it helps guarantee
locality constraints, and to a strong reduction of the deployment cost.



a) b)

Fig. 4. Bandwidth and CPU usage. a) Percentage of bandwidth usage within
the main domain and in external domains; b) CPU usage in the main domain
and in external domains.

TABLE III
EXECUTION TIME (SEC).

|A| OPT BFS DFS_SoA_NoCost DFS_SoA_Cost
10 3.58 0.03 0.02 0.02
15 26.90 0.05 0.05 0.03
20 40.30 0.07 0.07 0.03
25 60.72 0.09 0.09 0.03
30 79.10 0.13 0.12 0.04

In summary, Figure 3 confirms that our solution explores the
best tradeoff between optimality and feasibility with respect to both
variants of DFS.

Figure 4a) reports on the bandwidth usage of the proposed solu-
tions within and outside the main domain. The bandwidth consump-
tion of DFS_SoA_Cost is almost constant and low in both the main
and external domains since it tries to avoid the deployment of applica-
tions towards external domains and mostly deploy applications on the
main fog region until it becomes saturated. OPT and BFS solutions
present instead a similar trend on bandwidth usage as the size of the
application batch increases. The bandwidth consumption of the link
between the main cloud and fog region is slightly higher for OPT
than for BFS since the optimal deployment can accommodate more
applications in the main domain. With respect to external domains,
the two solutions behave the opposite confirming the slightly higher
cost of the BFS solution. Finally, DFS_SoA_NoCost presents a similar
behaviour on both main and external domains, since it maximises
relation (11) without distinguishing between main/external domains.

In Figure 4b) we report the percentage of CPU usage of all the
proposed solutions on the main domain (upper figure) and on external
domains. Reasonably, the CPU usage of OPT is slightly greater
than of BFS in the main domain since it deploys more applications
there, as confirmed by Figure 3b). DFS_SoA_Cost, given its greedy
nature, presents a high and constant percentage of CPU usage in
the main domain, meanwhile it has very low CPU consumption in
external domains. On the other hand, the DFS_SoA_NoCost has the
opposite trend, showing an increasing usage from external domains
and decreasing usage from the main domain as the number of
applications increases. Note that memory and storage usage have a
similar trend as CPU usage and thus are not reported in this section
for the sake of conciseness.

Finally, Table III reports on the average execution time of the
proposed solutions over the 30 instances. The values of OPT refer
to executions that are stopped after 5 minutes if the solver has not
completed the computation in that time range. The higher scalability
of all heuristic approaches is apparent compared to OPT. Note that
DFS_SoA_Cost has lower execution time than the other approaches
because its execution is generally stopped earlier, i.e., when the
algorithm cannot deploy one of the applications and the deployment

is considered infeasible. The time efficiency of heuristic methods is
given by their polynomial time complexity: indeed, we can see the
deployment of the batch of applications as a visit of a graph composed
by a root dummy node connected with an edge to all the subgraphs
represented by the applications, as shown in Figure 2. In this problem,
given the existence of locality constraints, a breadth-first visit results
to be more efficient in terms of both feasibility and optimality.

VI. CONCLUSIONS

We have considered the problem of deploying fog applications
onto a federated cloud-fog environment. In this context, solving the
problem of initial resource selection is crucial to reduce offloading
costs, satisfy all the applications’ requirements and accommodate
future requests. By considering a microservice paradigm for fog
applications, a virtual network embedding problem is faced, which
is known to be NP-hard. As a consequence, standard heuristic
solutions need to trade-off feasibility, cost-efficiency and scalability.
This work proposed a new deployment technique for batches of fog
applications, based on a breadth-first visit of all the applications’
graphs to deal efficiently with locality constraints. It has been shown
to provide a near-optimal performance and yet excellent feasibility
rate, outperforming standard depth-first greedy heuristics. In future
works, we shall extend the proposed framework to account for
transactions between different domains, paving the way to the design
of new exchange mechanisms for fog computing.

REFERENCES

[1] A. V. Dastjerdi and R. Buyya, “Fog Computing: Helping the Internet
of Things Realize Its Potential,” IEEE Computer, vol. 49, no. 8, pp.
112–116, 2016.

[2] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog Computing: Towards
Minimizing Delay in the Internet of Things,” in IEEE International
Conference on Edge Computing (EDGE), 2017.

[3] C. C. Byers, “Architectural Imperatives for Fog Computing: Use cases,
Requirements, and Architectural Techniques for Fog-Enabled IoT Net-
works,” IEEE Communications Mag., vol. 55, no. 8, pp. 14–20, 2017.

[4] I. Nadareishvili, R. Mitra, M. McLarty et al., “Microservice architecture:
aligning principles, practices, and culture,” O’Reilly Media Inc., 2016.

[5] Y. Gan and C. Delimitrou, “The Architectural Implications of Cloud
Microservices,” IEEE Computer Architecture Letters, vol. 17, no. 2, pp.
155–158, 2018.

[6] “AWS IoT Greengrass,” https://aws.amazon.com/greengrass/.
[7] “Azure IoT Edge,” https://azure.microsoft.com/en-us/services/iot-edge/.
[8] E. Carlini, M. Coppola, P. Dazzi et al., “BASMATI: Cloud Brokerage

Across Borders for Mobile Users and Applications,” in Springer Ad-
vances in Service-Oriented and Cloud Computing Workshop, 2018.

[9] M. Savi, D. Santoro, K. Di Meo et al., “A Blockchain-based Brokerage
Platform for Fog Computing Resource Federation,” in Conference on
Innovation in Clouds, Internet and Networks (ICIN), 2020.

[10] X. Li, H. Ma, F. Zhou, and X. Gui, “Service Operator-Aware Trust
Scheme for Resource Matchmaking across Multiple Clouds,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 5, pp.
1419–1429, 2015.

[11] X. Cheng, S. Su, Z. Zhang et al., “Virtual Network Embedding through
Topology-aware Node Ranking,” ACM SIGCOMM Computer Commu-
nication Review, vol. 41, no. 2, p. 38–47, 2011.

[12] A. Brogi, S. Forti, and A. Ibrahim, “How to Best Deploy Your Fog
Applications, Probably,” in IEEE International Conference on Fog and
Edge Computing (ICFEC), 2017.

[13] B. Rochwerger, D. Breitgand, E. Levy et al., “The Reservoir Model and
Architecture for Open Federated Cloud Computing,” IBM Journal of
Research and Development, vol. 53, no. 4, pp. 1–4, 2009.

[14] A. J. Ferrer, F. Hernandez, J. Tordsson et al., “OPTIMIS: A Holistic
Approach to Cloud Service Provisioning,” Elsevier Future Generation
Computer Systems, vol. 28, no. 1, pp. 66–77, 2012.

[15] E. Carlini, M. Coppola, P. Dazzi, M. Mordacchini et al., “Self-optimising
Decentralised Service Placement in Heterogeneous Cloud Federation,”
in IEEE International Conference on Self-adaptive and Self-organizing
Systems (SASO), 2016.



[16] R. G. Aryal and J. Altmann, “Dynamic Application Deployment in
Federations of Clouds and Edge Resources using a Multiobjective
Optimization AI Algorithm,” in IEEE International Conference on Fog
and Mobile Edge Computing (FMEC), 2018.

[17] H. Cao, H. Hu, Z. Qu et al., “Heuristic Solutions of Virtual Network
Embedding: A Survey,” China Communications, vol. 15, no. 3, pp. 186–
219, 2018.

[18] M. Yu, Y. Yi, J. Rexford et al., “Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 17–29, 2008.

[19] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh et al., “iFogSim: A Toolkit
for Modeling and Simulation of Resource Management Techniques in
the Internet of Things, Edge and Fog Computing Environments,” Wiley
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.


