

PROBLEM N°17 Balancing Pebble

Ecole polytechnique

Balancing Pebble

Stones which are taken by wind on the ice of Baikal Lake can be found after some time staying on a thin «stand».

- **Reproduce** and **explain** this «stand» phenomenon
- Estimate **the curve** of the stand depending on the important parameters.

What characterizes a "Balancing Pebble" ?

- 1) Stone stands above the lake
- 2) Ice lower just around the stone
- 3) Asymmetry possible

Context on Lake Baikal, Siberia

Temperature

Wind

Strong winds : 5 to 40 m/s

Formation of a stand ?

1st experiment : Conduction

1) Stone stands above the lake	2
2) Ice lower just around the stone	2
3) Asymmetry possible	2

Radiation ?

Not needed! Balancing pebbles found in a cave

Why does ice melt ?

Experiment : blowing hot wind

A stand Asymmetric pattern

Experiment : with turning wind !

Stone stands above the lake
 Ice lower just around the stone
 Asymmetry possible

Why does ice melt ?

Ablation rate of 2. $10^{-5} kg/s$ for sublimation >> Ablation rate of 2. $10^{-8} kg/s$ for melting through heat transfer

How does ice melt ? Modelling transfer phenomena

Newtons law of convective heating:

 $\phi_{heat} = h(u)(T_{wind} - T)$

Heat transfer equation:

$$\rho c \partial_t T = h(u)(T_{wind} - T)$$

$$T = T_i + (T_{wind} - T_i)(1 - e^{-\frac{h(u)}{\rho_c}t})$$

Same exponential laws

Convective mass transfer:

$$\phi_{sub} = h_m(u)(n_{wind} - n)$$

Convective mass transfer equation:

 $\partial_t n = h_m(u)(n_{wind} - n)$

$$n = n_i + (n_{wind} - n_i)(1 - e^{-h_m(u)t})$$

Modelling the heat transfer h(u)

$$T = T_i + (T_f - T_i)(1 - e^{-\frac{h(u)}{\rho_c}t})$$

Ž

Modelling the heat transfer h(u)

Newton's law gives :

$$T = T_i + (T_f - T_i)(1 - e^{-\frac{h(u)}{\rho c}t})$$

Thermal camera from 20°C to 35°C

Modelling the heat transfer h(u)

Newton's law gives :

$$T = T_i + (T_f - T_i)(1 - e^{-\frac{h(u)}{\rho_c}t})$$

Thermal camera from 18°C to 25°C

Modelling the heat transfer h(u)

$$T = T_i + (T_f - T_i)(1 - e^{-\frac{h(u)}{\rho_c}t})$$

Modelling the heat transfer h(u)

Modelling the heat transfer h(u)

Explaining the balancing peeble

Wind creates the stand

Estimated shape of the melting ice At t = 0+

Curve at t = 10 min

Influence of an obstacle

$$Re = \frac{\rho_{a\,ir} u\,D}{\eta_{air}} \approx 10^4$$

Influence of an obstacle

Turbulent vortex

A double stand

Turbulent vortex : 2nd order effect ?

Measuring kinetic pressure

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

Size of the vortex

Estimation of the characteristic size of the vortex

Set up side view

Set up front view

Size of the vortex

Estimation of the characteristic size of the vortex

Set up side view

Set up front view

Size of the vortex

Elevation in Pito tube (mm)

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

Conclusion

✓ **Reproduce** this «stand» phenomenon

Explain this «stand» phenomenon

Sublimation – Heat transfer Same equation Sublimation quicker on Baikal Lake

✓ Estimate **the curve** of the stand depending on the important parameters.

Ablation Parameters : Vapor pressure, Temperature Absolute wind speed

Shape parameters :

Turbulent flow Radius of curvature $\sim L$, typical size of the vortex depends on the wind speed

T = -22°C

Sublimation

In 20 days !

Size of vortex VS Reynolds Number

Heat and mass transfer

Analogous causes:

- ✓ Mass: concentration gradient
- ✓ Heat: temperature gradient

Similar formulations of basic equations:

Conduction:

✓ Mass: $\partial_t C = D_m \Delta C$

✓ Heat: $\partial_t T = D_h \Delta T$

 D_m =Mass diffusivity ; D_h = Heat diffusivity

Convection:

Mass: Sherwood number $Sh = h_m$

$$Sh = Ct. \times Sc^{\frac{1}{3}} \times Re$$

Chilton-Colburn J-analogy:

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

37

 $(q_{sat}, q_{wind} : mass of water per m^3 of air)$

Why does ice melt ?

Sublimation

Bulk aerodynamic approach :

 $\Phi_{humidity} = \rho_a C_E L_{sub} u (q_{sat}(T) - q_{wind})$ $\Phi_{humidity} \approx 25 W/m^2 \text{ for } u = 5 \text{m/s}$ with $\begin{cases} \rho_{a}: density \ of \ air \\ L_{sub}: sublimation \ latent \ heat \\ q_{sat}, q_{wind}: mass \ of \ water \ in \ 1m^{3} \\ C_{E}: \ a \ constant \end{cases}$

(Ref : The Physics of glaciers, by K.M Cuffier and W.S.B Paterson)

On Lake : possible In lab : long and difficult to reproduce

Why does ice melt ?

Heat transfer

Bulk aerodynamic approach :

$$\Phi_{heat} = \rho_a c_a C_H \boldsymbol{u} \left(\boldsymbol{T_{wind}} - \boldsymbol{T_{ice}} \right)$$
$$\Phi_{heat} \approx 50 W/m^2 \text{ for } \boldsymbol{u} = 5 \text{m/s}$$

with $\begin{cases} \rho_{a}: density \ of \ air \\ c_{a}: thermal \ capacity \\ C_{H}: a \ constant \end{cases}$

(Ref : The Physics of glaciers, by K.M Cuffier and W.S.B Paterson)

On Lake : possible **In lab :** possible by increasing $T_{wind} - T_{ice}$

Hoodoos

4th experiment : Erosion on sand

Stone stands above the lake
 Ice lower just around the stone
 Symmetry or Axisymmetry

No elevation : only melting !

Dependence of the form of contact

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

Dependence of the form of contact

If no contact : the wind can blow on ice, more and more. If contact with a solid : the ice is protected from the wind.

3rd experiment : Wind

Understanding the phenomenon Aerodynamic flow

A simple model : Potential flow

There must be something else... Turbulence !

$$\Phi_{heat} = h(u) \left(T_{wind} - T \right)$$

Should melt less at the front

$$Re = \frac{\rho_{a\,ir} u\,D}{\eta_{air}} \approx 10^4$$

Context of the picture

Lake Baikal, Siberia

Location of Lake Baikal

Picture of Lake Baikal

Structure formation : from December to April

2nd experiment : Radiation

1) Stone stands above the lake	v
2) Ice lower just around the stone	X
3) Asymmetry possible	X

Why does ice melt ?

- Most stable phase: vapor
 ⇒ sublimation
- Endothermic reaction
 ⇒ energy needed

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

Size of the vortex

Visualizing the vortex

Visualizing the vortex

ECOLE POLYTECHNIQUE – French Physicists' Tournament 2018

