

PROBLEM N°10 PARTICLE DETECTOR FOR DUMMIES

Team Ecole polytechnique

The problem

Build a simple device that can **detect cosmic ray particles**. Characterize the **particle identification** capabilities of your device. Try to test your device in **different conditions** and also try to obtain the **energy spectrum of the cosmic ray particles**.

What are cosmic rays?

Primary cosmic rays : 90 % protons, 9 % alpha particles, 1 % others

What are cosmic rays?

Primary cosmic rays : 90 % protons, 9 % alpha particles, 1 % others

Secondary cosmic rays : 75 % muons

Muons of 4 *GeV* have a Lorentz coefficient $\gamma \simeq 40$, allowing them to reach ground before decaying thanks to special relativity.

What are cosmic rays?

	Fermions			Bosons
Quarks	и	С	t	g
	up	charm	top	gluon
	d	S	b	γ
	down	strange	bottom	photon
Leptons	е	μ	au	Z
	electron	muon	tau	Z boson
	ν_e	$ u_{\mu}$	$\nu_{ au}$	W
	electron neutrino	muon neutrino	tau neutrino	W boson
				Н
	1 st generation	2 nd generation	3 rd generation	Higgs boson

First device : a cloud chamber

How does it works

Observations

Observable particles : $e^-, e^+, \mu^-, \mu^+, p^+, He^{2+}, K, \Lambda, \Xi, \dots$

Observable particles : $e^-, e^+, \mu^-, \mu^+, p^+, He^{2+}, K, \Lambda, \Xi, ...$

For some charged particles with energies between 1 and 100 *MeV*, the energy loss is given by Bethe formula :

$$rac{dE}{dx} = -rac{4\pi}{m_e c^2} rac{nq^2}{eta^2} \left(rac{1}{4\piarepsilon_0}
ight)^2 \left[\ln\left(rac{2m_e c^2eta^2}{I(1-eta^2)}-eta^2
ight)
ight]$$

With : m_e the mass of electrons, c the speed of light, n the electron density of the material, q the charge of the particle, ε_0 the vacuum permittivity, β the boost of the particle and I the mean extraction potential of the material.

Observable particles : $e^-, e^+, \mu^-, \mu^+, p^+, He^{2+}, K, \Lambda, \Xi, \dots$

For some charged particles with energies between 1 and 100 MeV, the energy loss is given by Bethe formula :

$$\frac{dE}{dx} = -\frac{4\pi}{m_e c^2} \frac{nq^2}{\beta^2} \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left[\ln\left(\frac{2m_e c^2\beta^2}{I(1-\beta^2)} - \beta^2\right)\right]$$

With : m_e the mass of electrons, c the speed of light, n the electron density of the material, q the charge of the particle, ε_0 the vacuum permittivity, β the boost of the particle and I the mean extraction potential of the material.

Observable particles : e^- , e^+ , μ^- , μ^+ , p^+ , He^{2+} , K, Λ , Ξ , ...

For some charged particles with energies between 1 and 100 MeV, the energy loss is given by Bethe formula :

$$\frac{dE}{dx} = -\frac{4\pi}{m_e c^2} \frac{nq^2}{\beta^2} \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left[\ln\left(\frac{2m_e c^2\beta^2}{I(1-\beta^2)} - \beta^2\right)\right]$$

With : m_e the mass of electrons, c the speed of light, n the electron density of the material, q the charge of the particle, ε_0 the vacuum permittivity, β the boost of the particle and I the mean extraction potential of the material.

Alpha particle and delta ray

Low energy electron

Muon or high energy electron

Gamma ray?

Pair production : $\gamma + n \longrightarrow e^+ + e^- + n$

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force.

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$R = \frac{p}{qB}$$

With R the radius of curvature, p the momentum of the muon, q the charge of muons and B the magnetic field.

We could get the momentum p of the particle

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

With *R* the radius of curvature, p the momentum of the muon, q the charge of muons and *B* the magnetic field.

We could get the momentum p of the particle, then from :

$$E=\sqrt{(pc)^2+(mc^2)^2}$$

With E the energy of the particle, c the speed of light and m the mass of the particle

We could get it's energy *E*.

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$R = \frac{p}{qB}$$

With *R* the radius of curvature, *p* the momentum of the muon, *q* the charge of muons and *B* the magnetic field.

We could get the momentum p of the particle, then from :

$$E = \sqrt{(pc)^2 + (mc^2)^2}$$

With E the energy of the particle, c the speed of light and m the mass of the particle

We could get it's energy *E*. But :

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

With *R* the radius of curvature, p the momentum of the muon, q the charge of muons and *B* the magnetic field.

We could get the momentum \boldsymbol{p} of the particle, then from :

$$E = \sqrt{(pc)^2 + (mc^2)^2}$$

With E the energy of the particle, c the speed of light and m the mass of the particle

We could get it's energy *E*. But :

• To deflect a 1 *MeV* muon with a radius of 10 cm, we would need a uniform field of 4 T on the surface of the chamber

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

With *R* the radius of curvature, p the momentum of the muon, q the charge of muons and *B* the magnetic field.

We could get the momentum \boldsymbol{p} of the particle, then from :

$$E=\sqrt{(pc)^2+(mc^2)^2}$$

With E the energy of the particle, c the speed of light and m the mass of the particle

We could get it's energy *E*. But :

- To deflect a 1 *MeV* muon with a radius of 10 cm, we would need a uniform field of 4 T on the surface of the chamber
- $\cdot\,$ We need to assume the charge and mass of the particle to get it's energy

[1.]C.Lagoute; BUP, Réalisation d'un détecteur de muons : une approche de physique du XXème siècle au lycée, 2009

We detect particles going downward with at least 2 % the speed of light

We detect particles going downward with at least 2 % the speed of light and we can get the energy spectrum of those particles

Theory of energy deposition in matter

Mean energy deposition depends on total energy [4] :

Muon stopping power

[4.]Groom, Mokhov, Striganov; A.D.N.D.T Muon stopping power and range tables 10 MeV - 100 TeV, 2001

Theory of energy deposition in matter

Mean energy deposition depends on total energy [4] :

For a given stopping power, the true deposited energy is statistic [3] :

[4.]Groom, Mokhov, Striganov; A.D.N.D.T Muon stopping power and range tables 10 MeV - 100 TeV, 2001
 [3.]F.Sauli; CERN, Principles of operation of multiwire proportional and drift chambers, 1977

Theory of energy deposition in matter

Mean energy deposition depends on total energy [4] :

For a given stopping power, the true deposited energy is statistic [3] :

[4.]Groom, Mokhov, Striganov; A.D.N.D.T Muon stopping power and range tables 10 MeV - 100 TeV, 2001
 [3.]F.Sauli; CERN, Principles of operation of multiwire proportional and drift chambers, 1977

Energy spectrum

With three days of measurement and 150964 detections

The cut for low energies is due to a threshold reducing electronic noise.

Interpretation of our spectrum

The spectrum we measure is only the Landau distribution :

Our energy spectrum

Interpretation of our spectrum

The spectrum we measure is only the Landau distribution :

The stopping power is the same for all the particles :

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Hypothesis

- $\cdot R_0$: thickness of atmosphere
- $\cdot E_0$: energy of muons

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Hypothesis

- $\cdot R_0$: thickness of atmosphere
- $\cdot E_0$: energy of muons

We have :

$$\begin{array}{l} \cdot \ R(\theta) = \frac{R_0}{\cos(\theta)} \\ \cdot \ P(t_{decay} > t) = P_0 \exp(-\frac{t}{\gamma \tau_0}) \end{array} \end{array}$$

With γ the Lorentz coefficient and τ_0 the proper lifetime of muons

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Hypothesis

- $\cdot R_0$: thickness of atmosphere
- $\cdot E_0$: energy of muons

We have :

$$\begin{array}{l} \cdot \ R(\theta) = \frac{R_0}{\cos(\theta)} \\ \cdot \ P(t_{decay} > t) = P_0 \exp(-\frac{t}{\gamma \tau_0}) \end{array}$$

With γ the Lorentz coefficient and τ_0 the proper lifetime of muons

We get the flux of muons $\phi_{th}(\theta)$ as :

$$\phi_{th}(\theta) = \phi_0 \exp\left(\frac{-\lambda}{\cos(\theta)}\right)$$
, where : $\lambda = \frac{m_{\mu}cR_0}{E_0\tau_0}$ and ϕ_0 is a parameter

Measuring the flux anisotropy

We simply slide the one detector relative to the other :

Geometry of the scintillators

Measuring the flux anisotropy

We simply slide the one detector relative to the other :

Geometry of the scintillators

Hypothesis : for a given angle θ , muons only come from one direction.

Measuring the flux anisotropy

We simply slide the one detector relative to the other :

Geometry of the scintillators

Hypothesis : for a given angle θ , muons only come from one direction.

We then get from the number of detection to the flux with time and geometric normalization.

Result of the measurement

Muon flux anisotropy

We had :

$$\phi_{th}(\theta) = \phi_0 \exp\left(\frac{-\lambda}{\cos(\theta)}\right), \text{ where } : \lambda = \frac{m_{\mu}cR_0}{E_0\tau_0}$$

We had :

$$\phi_{th}(\theta) = \phi_0 \exp\left(\frac{-\lambda}{\cos(\theta)}\right), \text{ where } : \lambda = \frac{m_{\mu}cR_0}{E_0\tau_0}$$

From the best curve fit we determine $\lambda = 1.3 \pm 0.3$

We had :

$$\phi_{th}(\theta) = \phi_0 \exp\left(\frac{-\lambda}{\cos(\theta)}\right), \text{ where } : \lambda = \frac{m_{\mu}cR_0}{E_0\tau_0}$$

From the best curve fit we determine $\lambda = 1.3 \pm 0.3$, so with :

- $m_{\mu}=2.10^{-28}$ kg the mass of muons
- $\cdot c = 3.10^8 m.s^{-1}$ the speed of light
- $R_0 = 10 100 \ km$ atmosphere's thickness
- $\cdot \tau_0 = 2.2 \ \mu s$ the lifetime of muons

We had :

$$\phi_{th}(\theta) = \phi_0 \exp\left(\frac{-\lambda}{\cos(\theta)}\right), \text{ where } : \lambda = \frac{m_{\mu}cR_0}{E_0\tau_0}$$

From the best curve fit we determine $\lambda = 1.3 \pm 0.3$, so with :

- $m_{\mu}=2.10^{-28}$ kg the mass of muons
- $\cdot c = 3.10^8 m.s^{-1}$ the speed of light
- $R_0 = 10 100 \ km$ atmosphere's thickness
- $\cdot \tau_0 = 2.2 \ \mu s$ the lifetime of muons

We can deduce that E_0 is between 1 GeV and 10 GeV

We had :

$$\phi_{th}(\theta) = \phi_0 \exp\left(\frac{-\lambda}{\cos(\theta)}\right), \text{ where } : \lambda = \frac{m_{\mu}cR_0}{E_0\tau_0}$$

From the best curve fit we determine $\lambda = 1.3 \pm 0.3$, so with :

- $m_{\mu}=2.10^{-28}$ kg the mass of muons
- $\cdot c = 3.10^8 m.s^{-1}$ the speed of light
- $R_0 = 10 100 \ km$ atmosphere's thickness
- $\cdot \tau_0 =$ 2.2 μs the lifetime of muons

We can deduce that E_0 is between 1 *GeV* and 10 *GeV*, litterature giving a mean ground energy of 4 *GeV* [5].

[5.]G.Remmen, E.McCreary; Journal of Undergraduate Research in Physics , **Measurement of the speed and** energy distribution of cosmic ray muons, 2012

It is coherent with our spectrum

The spectrum we measure is only the Landau distribution :

The stopping power is the same for all the particles :

Build a simple device that can **detect cosmic ray particles**

Build a simple device that can **detect cosmic ray particles**

Characterize the particle **identification capabilities** of your device

Build a simple device that can **detect cosmic ray particles**

Characterize the particle **identification capabilities** of your device

Try to obtain the **energy spectrum** of the cosmic ray particles

Build a simple device that can **detect cosmic ray particles**

Characterize the particle **identification capabilities** of your device

Try to obtain the **energy spectrum** of the cosmic ray particles

ECOLE POLYTECHNIQUE - French Physicists' Tournament 2018

Try to test your device in **different** conditions

Scintillator and photomultiplier

Scintillator : fluorescent plastic plate, producing photons from excitations

Photomultiplier : association of a photocathode and dynodes, producing a measurable current from single photons.

Coincidence detection

Amplificators Coincidence circuits

Counters

Principe of electronic processing

We detect particles going downward with at least 2 % the speed of light

Energy calibration of the detector

Tentative with radioactive sources :

The expected value of the muon spectrum is the stopping power of the detector [2] :

2.3
$$MeV.g.cm^{-1} \times 1 g.cm^{-1} \times 1 cm = 2.3 MeV$$

Geometric normalization of the flux

With basic geometry :

$$\alpha = 2 \arctan \left(\frac{L}{h} \right), \beta = \arctan \left(\frac{l+x}{h} \right) + \arctan \left(\frac{l-x}{h} \right)$$

Then, the solid angle from the center of the detector is :

$$\Omega(L,l) = 4 \arcsin\left(\sin\left(\frac{\alpha(L)}{2}\right)\sin\left(\frac{\beta(l)}{2}\right)\right)$$

We then have to take the solid angle from any point in the detector, it gives the following integral for $C(\theta)$:

$$C(\theta) = 4 \int_{u=0}^{L} \int_{v=0}^{l} \Omega(u, v) du dv$$

The normalization follows, considering we are detecting the flux from only one direction at a time :

$$\phi_{measured}(\theta) = \frac{N_{detections}(\theta)}{TC(\theta)}$$

Bibliography

- 1. C.Lagoute; BUP, Réalisation d'un détecteur de muons : une approche de physique du XXème siècle au lycée, 2009
- 2. Y.Hu, T.Wang, Y.Mei, Z.Zhang, C.Ning; A simple setup to measure muon lifetime and electron energy spectrum of muon decay and its Monte Carlo simulation
- 3. F.Sauli; CERN, Principles of operation of multiwire proportional and drift chambers, 1977
- 4. D.E.Groom, N.V.Mokhov, S.I.Striganov; Atomic Data and Nuclear Data tables **Muon stopping power and range tables** 10 *MeV* 100 *TeV*, 2001
- 5. G.Remmen, E.McCreary; Journal of Undergraduate Research in Physics , Measurement of the speed and energy distribution of cosmic ray muons, 2012
- 6. G.F.Knoll; Radiation Detection and Measurement, 2010