# PROBLEM N ${ }^{\circ} 10$ PARTICLE DETECTOR FOR DUMMIES 

Team Ecole polytechnique

## The problem

Build a simple device that can detect cosmic ray particles. Characterize the particle identification capabilities of your device. Try to test your device in different conditions and also try to obtain the energy spectrum of the cosmic ray particles.

## What are cosmic rays?

Primary cosmic rays : $90 \%$ protons, $9 \%$ alpha particles, $1 \%$ others


## What are cosmic rays?

Primary cosmic rays : $90 \%$ protons, $9 \%$ alpha particles, $1 \%$ others


Secondary cosmic rays : $75 \%$ muons
Muons of 4 GeV have a Lorentz coefficient $\gamma \simeq 40$, allowing them to reach ground before decaying thanks to special relativity.

## What are cosmic rays?

|  |  | Fermions |  | Bosons |
| :---: | :---: | :---: | :---: | :---: |
| Quarks | $\begin{gathered} u \\ \text { up } \end{gathered}$ | charm | $\begin{gathered} t \\ \text { top } \end{gathered}$ | $\begin{gathered} g \\ \text { gluon } \end{gathered}$ |
|  | $\begin{gathered} d \\ \text { down } \end{gathered}$ | $\begin{gathered} s \\ \text { strange } \end{gathered}$ | $\begin{gathered} b \\ \text { bottom } \end{gathered}$ | $\stackrel{\gamma}{\text { photon }}$ |
| Leptons | $e$ <br> electron | $\begin{gathered} \mu \\ \text { muon } \end{gathered}$ | $\begin{gathered} \tau \\ \text { tau } \end{gathered}$ | $\begin{gathered} Z \\ Z \text { boson } \end{gathered}$ |
|  | electron neutrino | muon neutrino | $\nu_{\tau}$ tau neutrino | W <br> $W$ boson |
|  | $1{ }^{\text {st }}$ generation | $2^{\text {nd }}$ generation | $3{ }^{\text {rd }}$ generation | $H$ Higgs boson |

## First device : a cloud chamber



## How does it works



## Observations



## Particle identification capabilities

Observable particles : $e^{-}, e^{+}, \mu^{-}, \mu^{+}, p^{+}, H e^{2+}, K, \Lambda, \Xi, \ldots$

## Particle identification capabilities

Observable particles : $e^{-}, e^{+}, \mu^{-}, \mu^{+}, p^{+}, H e^{2+}, K, \Lambda, \Xi, \ldots$
For some charged particles with energies between 1 and 100 MeV , the energy loss is given by Bethe formula :

$$
\frac{d E}{d x}=-\frac{4 \pi}{m_{e} c^{2}} \frac{n q^{2}}{\beta^{2}}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2}\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I\left(1-\beta^{2}\right)}-\beta^{2}\right)\right]
$$

With : $m_{e}$ the mass of electrons, $c$ the speed of light, $n$ the electron density of the material, $q$ the charge of the particle, $\varepsilon_{0}$ the vacuum permittivity, $\beta$ the boost of the particle and $I$ the mean extraction potential of the material.

## Particle identification capabilities

Observable particles : $e^{-}, e^{+}, \mu^{-}, \mu^{+}, p^{+}, H e^{2+}, K, \Lambda, \Xi, \ldots$
For some charged particles with energies between 1 and 100 MeV , the energy loss is given by Bethe formula :

$$
\frac{d E}{d x}=-\frac{4 \pi}{m_{e} c^{2}} \frac{n q^{2}}{\beta^{2}}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2}\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I\left(1-\beta^{2}\right)}-\beta^{2}\right)\right]
$$

With : $m_{e}$ the mass of electrons, $c$ the speed of light, $n$ the electron density of the material, $q$ the charge of the particle, $\varepsilon_{0}$ the vacuum permittivity, $\beta$ the boost of the particle and $I$ the mean extraction potential of the material.

## Particle identification capabilities

Observable particles : $e^{-}, e^{+}, \mu^{-}, \mu^{+}, p^{+}, H e^{2+}, K, \Lambda, \Xi, \ldots$
For some charged particles with energies between 1 and 100 MeV , the energy loss is given by Bethe formula :

$$
\frac{d E}{d x}=-\frac{4 \pi}{m_{e} c^{2}} \frac{n q^{2}}{\beta^{2}}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2}\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I\left(1-\beta^{2}\right)}-\beta^{2}\right)\right]
$$

With : $m_{e}$ the mass of electrons, $c$ the speed of light, $n$ the electron density of the material, $q$ the charge of the particle, $\varepsilon_{0}$ the vacuum permittivity, $\beta$ the boost of the particle and $I$ the mean extraction potential of the material.

## Alpha particle and delta ray



## Low energy electron



## Muon or high energy electron



## Gamma ray?

Pair production : $\gamma+n \longrightarrow e^{+}+e^{-}+n$


## Measuring particles' energy

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force.

## Measuring particles' energy

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$
R=\frac{p}{q B}
$$

We could get the momentum $p$ of the particle

With $R$ the radius of curvature, $p$ the momentum of the muon, $q$ the charge of muons and $B$ the magnetic field.

## Measuring particles' energy

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$
R=\frac{p}{q B}
$$

With $R$ the radius of curvature, $p$ the momentum of the muon, $q$ the charge of muons and $B$ the magnetic field.
We could get the momentum $p$ of the particle, then from :

$$
E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
$$

With $E$ the energy of the particle, $c$ the speed of light and $m$ the mass of the particle

We could get it's energy $E$.

## Measuring particles' energy

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$
R=\frac{p}{q B}
$$

With $R$ the radius of curvature, $p$ the momentum of the muon, $q$ the charge of muons and $B$ the magnetic field.
We could get the momentum $p$ of the particle, then from :

$$
E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
$$

With $E$ the energy of the particle, $c$ the speed of light and $m$ the mass of the particle

We could get it's energy $E$.
But :

## Measuring particles' energy

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$
R=\frac{p}{q B}
$$

With $R$ the radius of curvature, $p$ the momentum of the muon, $q$ the charge of muons and $B$ the magnetic field.
We could get the momentum $p$ of the particle, then from :

$$
E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
$$

With $E$ the energy of the particle, $c$ the speed of light and $m$ the mass of the particle

We could get it's energy $E$.
But :

- To deflect a 1 MeV muon with a radius of 10 cm , we would need a uniform field of 4 T on the surface of the chamber


## Measuring particles' energy

In theory, we can use a magnetic field to curve muon's paths with Lorentz's force. From :

$$
R=\frac{p}{q B}
$$

With $R$ the radius of curvature, $p$ the momentum of the muon, $q$ the charge of muons and $B$ the magnetic field.
We could get the momentum $p$ of the particle, then from :

$$
E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
$$

With $E$ the energy of the particle, $c$ the speed of light and $m$ the mass of the particle

We could get it's energy $E$.
But :

- To deflect a 1 MeV muon with a radius of 10 cm , we would need a uniform field of 4 T on the surface of the chamber
- We need to assume the charge and mass of the particle to get it's energy


## Second device : scintillation detector


[1.]C.Lagoute ; BUP, Réalisation d'un détecteur de muons : une approche de physique du XXème siècle au lycée, 2009

## Coincidence detection



## Coincidence detection



We detect particles going downward with at least $2 \%$ the speed of light

## Coincidence detection



We detect particles going downward with at least $2 \%$ the speed of light and we can get the energy spectrum of those particles

## Theory of energy deposition in matter

Mean energy deposition depends on total energy [4] :


Muon stopping power
[4.]Groom, Mokhov, Striganov; A.D.N.D.T Muon stopping power and range tables $10 \mathrm{MeV}-100 \mathrm{TeV}, 2001$

## Theory of energy deposition in matter

For a given stopping power, the true deposited energy is statistic [3] :


Muon stopping power


Landau distribution
[4.]Groom, Mokhov, Striganov; A.D.N.D.T Muon stopping power and range tables $10 \mathrm{MeV}-100 \mathrm{TeV}, 2001$
[3.]F.Sauli ; CERN, Principles of operation of multiwire proportional and drift chambers, 1977

## Theory of energy deposition in matter

For a given stopping power, the true deposited energy is statistic [3] :


Muon stopping power


Landau distribution
[4.]Groom, Mokhov, Striganov; A.D.N.D.T Muon stopping power and range tables $10 \mathrm{MeV}-100 \mathrm{TeV}, 2001$
[3.]F.Sauli ; CERN, Principles of operation of multiwire proportional and drift chambers, 1977

## Energy spectrum

With three days of measurement and 150964 detections


Our energy spectrum

The cut for low energies is due to a threshold reducing electronic noise.

## Interpretation of our spectrum

The spectrum we measure is only the Landau distribution :


## Interpretation of our spectrum

The spectrum we measure is only the Landau distribution :


Our energy spectrum

The stopping power is the same for all the particles :


Muon stopping power [4]

## Muon flux anisotropy

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Outer space


## Muon flux anisotropy

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Hypothesis

- $R_{0}$ : thickness of atmosphere
$E_{0}$ : energy of muons


## Muon flux anisotropy

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Hypothesis

- $R_{0}$ : thickness of atmosphere
- $E_{0}$ : energy of muons

We have :

$$
\begin{aligned}
& P(\theta)=\frac{R_{0}}{\cos (\theta)} \\
& \cdot P\left(t_{\text {decay }}>t\right)=P_{0} \exp \left(-\frac{t}{\gamma \tau_{0}}\right)
\end{aligned}
$$

With $\gamma$ the Lorentz coefficient and $\tau_{0}$ the proper lifetime of muons

## Muon flux anisotropy

Model : grazing incidence rays take more time to reach the surface and have more chance to decay.

Hypothesis

- $R_{0}$ : thickness of atmosphere
- $E_{0}$ : energy of muons

We have :

$$
\begin{aligned}
& P(\theta)=\frac{R_{0}}{\cos (\theta)} \\
& \cdot P\left(t_{\text {decay }}>t\right)=P_{0} \exp \left(-\frac{t}{\gamma \tau_{0}}\right)
\end{aligned}
$$

With $\gamma$ the Lorentz coefficient and $\tau_{0}$ the proper lifetime of muons

We get the flux of muons $\phi_{t h}(\theta)$ as :

$$
\phi_{\text {th }}(\theta)=\phi_{0} \exp \left(\frac{-\lambda}{\cos (\theta)}\right), \text { where }: \lambda=\frac{m_{\mu} c R_{0}}{E_{0} \tau_{0}} \text { and } \phi_{0} \text { is a parameter }
$$

## Measuring the flux anisotropy

We simply slide the one detector relative to the other :


Geometry of the scintillators

## Measuring the flux anisotropy

We simply slide the one detector relative to the other :


Geometry of the scintillators

Hypothesis : for a given angle $\theta$, muons only come from one direction.

## Measuring the flux anisotropy

We simply slide the one detector relative to the other :


Geometry of the scintillators

Hypothesis : for a given angle $\theta$, muons only come from one direction.
We then get from the number of detection to the flux with time and geometric normalization.

## Result of the measurement



## Another measurement of muon's energy

We had :

$$
\phi_{t h}(\theta)=\phi_{0} \exp \left(\frac{-\lambda}{\cos (\theta)}\right), \text { where }: \lambda=\frac{m_{\mu} c R_{0}}{E_{0} \tau_{0}}
$$

## Another measurement of muon's energy

We had :

$$
\phi_{\text {th }}(\theta)=\phi_{0} \exp \left(\frac{-\lambda}{\cos (\theta)}\right), \text { where }: \lambda=\frac{m_{\mu} c R_{0}}{E_{0} \tau_{0}}
$$

From the best curve fit we determine $\lambda=1.3 \pm 0.3$

## Another measurement of muon's energy

We had :

$$
\phi_{t h}(\theta)=\phi_{0} \exp \left(\frac{-\lambda}{\cos (\theta)}\right), \text { where }: \lambda=\frac{m_{\mu} c R_{0}}{E_{0} \tau_{0}}
$$

From the best curve fit we determine $\lambda=1.3 \pm 0.3$, so with :

- $m_{\mu}=2.10^{-28} \mathrm{~kg}$ the mass of muons
$c=3.10^{8} \mathrm{~m} . \mathrm{s}^{-1}$ the speed of light
- $R_{0}=10-100 \mathrm{~km}$ atmosphere's thickness
- $\tau_{0}=2.2 \mu \mathrm{~s}$ the lifetime of muons


## Another measurement of muon's energy

We had :

$$
\phi_{t h}(\theta)=\phi_{0} \exp \left(\frac{-\lambda}{\cos (\theta)}\right), \text { where }: \lambda=\frac{m_{\mu} c R_{0}}{E_{0} \tau_{0}}
$$

From the best curve fit we determine $\lambda=1.3 \pm 0.3$, so with :

- $m_{\mu}=2.10^{-28} \mathrm{~kg}$ the mass of muons
$c=3.10^{8} \mathrm{~m} . \mathrm{s}^{-1}$ the speed of light
- $R_{0}=10-100 \mathrm{~km}$ atmosphere's thickness
$\tau_{0}=2.2 \mu \mathrm{~s}$ the lifetime of muons
We can deduce that $E_{0}$ is between 1 GeV and 10 GeV


## Another measurement of muon's energy

We had :

$$
\phi_{\text {th }}(\theta)=\phi_{0} \exp \left(\frac{-\lambda}{\cos (\theta)}\right), \text { where }: \lambda=\frac{m_{\mu} c R_{0}}{E_{0} \tau_{0}}
$$

From the best curve fit we determine $\lambda=1.3 \pm 0.3$, so with :

- $m_{\mu}=2.10^{-28} \mathrm{~kg}$ the mass of muons
- $c=3.10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$ the speed of light
- $R_{0}=10-100 \mathrm{~km}$ atmosphere's thickness
- $\tau_{0}=2.2 \mu s$ the lifetime of muons

We can deduce that $E_{0}$ is between 1 GeV and 10 GeV , litterature giving a mean ground energy of 4 GeV [5].
[5.]G.Remmen, E.McCreary ; Journal of Undergraduate Research in Physics, Measurement of the speed and energy distribution of cosmic ray muons, 2012

## It is coherent with our spectrum

The spectrum we measure is only the Landau distribution :

The stopping power is the same for all the particles :


## Conclusion

## Build a simple device that can detect cosmic ray particles

## Conclusion

Build a simple device that can detect cosmic ray particles


Characterize the particle identification capabilities of your device


## Conclusion

Build a simple device that can detect cosmic ray particles


Characterize the particle identification capabilities of your device


Try to obtain the energy spectrum of the cosmic ray particles


## Conclusion

Build a simple device that can detect cosmic ray particles


Characterize the particle identification capabilities of your device


Try to obtain the energy spectrum of the cosmic ray particles

Try to test your device in different conditions



## Scintillator and photomultiplier

Scintillator : fluorescent plastic plate, producing photons from excitations


Photomultiplier : association of a photocathode and dynodes, producing a measurable current from single photons.


## Coincidence detection



Principe of electronic processing

We detect particles going downward with at least $2 \%$ the speed of light

## Energy calibration of the detector

Tentative with radioactive sources :


Cesium 137


Sodium 22

The expected value of the muon spectrum is the stopping power of the detector [2] :

$$
2.3 \mathrm{MeV} . \mathrm{g} . \mathrm{cm}^{-1} \times 1 \mathrm{~g} . \mathrm{cm}^{-1} \times 1 \mathrm{~cm}=2.3 \mathrm{MeV}
$$

## Geometric normalization of the flux



With basic geometry :

$$
\alpha=2 \arctan \left(\frac{L}{h}\right), \beta=\arctan \left(\frac{l+x}{h}\right)+\arctan \left(\frac{l-x}{h}\right)
$$

Then, the solid angle from the center of the detector is :

$$
\Omega(L, l)=4 \arcsin \left(\sin \left(\frac{\alpha(L)}{2}\right) \sin \left(\frac{\beta(l)}{2}\right)\right)
$$

We then have to take the solid angle from any point in the detector, it gives the following integral for $C(\theta)$ :

$$
C(\theta)=4 \int_{u=0}^{L} \int_{v=0}^{l} \Omega(u, v) d u d v
$$

The normalization follows, considering we are detecting the flux from only one direction at a time :

$$
\phi_{\text {measured }}(\theta)=\frac{N_{\text {detections }}(\theta)}{T C(\theta)}
$$

## Bibliography

1. C.Lagoute; BUP, Réalisation d'un détecteur de muons : une approche de physique du XXème siècle au lycée, 2009
2. Y.Hu, T.Wang, Y.Mei, Z.Zhang, C.Ning ; A simple setup to measure muon lifetime and electron energy spectrum of muon decay and its Monte Carlo simulation
3. F.Sauli ; CERN, Principles of operation of multiwire proportional and drift chambers, 1977
4. D.E.Groom, N.V.Mokhov, S.I.Striganov; Atomic Data and Nuclear Data tables Muon stopping power and range tables $10 \mathrm{MeV}-100 \mathrm{TeV}, 2001$
5. G.Remmen, E.McCreary; Journal of Undergraduate Research in Physics, Measurement of the speed and energy distribution of cosmic ray muons, 2012
6. G.F.Knoll; Radiation Detection and Measurement, 2010
