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PROBLEM No10
PARTICLE DETECTOR FOR DUMMIES

Team Ecole polytechnique
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The problem

Build a simple device that can detect cosmic ray particles.
Characterize the particle identification capabilities of your device.
Try to test your device in different conditions and also try to obtain
the energy spectrum of the cosmic ray particles.
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What are cosmic rays ?

Primary cosmic rays : 90 % protons, 9 % alpha particles, 1 % others

Secondary cosmic rays : 75 % muons

Muons of 4 GeV have a Lorentz coefficient γ ' 40, allowing them to reach ground before
decaying thanks to special relativity.
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What are cosmic rays ?

Fermions Bosons

Quarks

u c t g
up charm top gluon
d s b γ

down strange bottom photon

Leptons

e µ τ Z
electron muon tau Z boson
νe νµ ντ W

electron neutrino muon neutrino tau neutrino W boson
H

1st generation 2nd generation 3rd generation Higgs boson
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First device : a cloud chamber
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How does it works
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Observations
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Particle identification capabilities

Observable particles : e−, e+, µ−, µ+, p+,He2+,K,Λ,Ξ, ...

For some charged particles with energies between 1 and 100 MeV, the energy loss is given
by Bethe formula :

dE
dx

= − 4π
mec2

nq2

β2

(
1

4πε0

)2 [
ln

(
2mec2β2

I(1− β2)
− β2

)]
With : me the mass of electrons, c the speed of light, n the electron density of the material, q the charge of the
particle, ε0 the vacuum permittivity, β the boost of the particle and I the mean extraction potential of the material.
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Alpha particle and delta ray



ECOLE POLYTECHNIQUE - French Physicists’ Tournament 2018 9

Low energy electron
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Muon or high energy electron
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Gamma ray ?

Pair production : γ + n −→ e+ + e− + n
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Measuring particles’ energy

In theory, we can use a magnetic field to curve muon’s paths with Lorentz’s force.

From :

R =
p

qB

With R the radius of curvature, p the
momentum of the muon, q the charge of
muons and B the magnetic field.

We could get the momentum p of the particle, then from :

E =
√

(pc)2 + (mc2)2 With E the energy of the particle, c the speed
of light and m the mass of the particle

We could get it’s energy E.
But :
· To deflect a 1 MeV muon with a radius of 10 cm, we would need a uniform field of 4 T

on the surface of the chamber
· We need to assume the charge and mass of the particle to get it’s energy
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Second device : scintillation detector

[1.]C.Lagoute ; BUP, Réalisation d’un détecteur de muons : une approche de physique du XXème siècle au lycée, 2009
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Coincidence detection

We detect particles going downward with at least 2 % the speed of light and we can get the
energy spectrum of those particles
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Theory of energy deposition in matter
Mean energy deposition depends on
total energy [4] :

Muon stopping power

∗

[4.]Groom, Mokhov, Striganov ; A.D.N.D.T Muon stopping power and range tables 10 MeV − 100 TeV, 2001

[3.]F.Sauli ; CERN, Principles of operation of multiwire proportional and drift chambers, 1977
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Energy spectrum

With three days of measurement and 150964 detections

Our energy spectrum

The cut for low energies is due to a threshold reducing electronic noise.
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Interpretation of our spectrum

The spectrum we measure is only the
Landau distribution :

Our energy spectrum
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Muon flux anisotropy

Model : grazing incidence rays take more time to reach the surface and have more chance
to decay.

Hypothesis

· R0 : thickness of atmosphere

· E0 : energy of muons

We have :

· R(θ) = R0
cos(θ)

· P(tdecay > t) = P0 exp(− t
γτ0

)

With γ the Lorentz coefficient and τ0 the proper
lifetime of muons

We get the flux of muons φth(θ) as :

φth(θ) = φ0 exp

(
−λ

cos(θ)

)
, where : λ =

mµcR0

E0τ0
and φ0 is a parameter
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Measuring the flux anisotropy

We simply slide the one detector relative to the other :

Geometry of the scintillators

Hypothesis : for a given angle θ, muons only come from one direction.

We then get from the number of detection to the flux with time and geometric
normalization.
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Result of the measurement

Muon flux anisotropy
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Another measurement of muon’s energy

We had :

φth(θ) = φ0 exp

(
−λ

cos(θ)

)
, where : λ =

mµcR0

E0τ0

From the best curve fit we determine λ = 1.3± 0.3, so with :

· mµ = 2.10−28 kg the mass of muons

· c = 3.108 m.s−1 the speed of light

· R0 = 10− 100 km atmosphere’s thickness

· τ0 = 2.2 µs the lifetime of muons

We can deduce that E0 is between 1 GeV and 10 GeV, litterature giving a mean ground
energy of 4 GeV [5].

[5.]G.Remmen, E.McCreary ; Journal of Undergraduate Research in Physics , Measurement of the speed and
energy distribution of cosmic ray muons, 2012
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It is coherent with our spectrum

The spectrum we measure is only the
Landau distribution :

Our energy spectrum

The stopping power is the same for all
the particles :

Muon stopping power [4]
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Conclusion

Build a simple device that
can detect cosmic ray
particles

Characterize the particle
identification capabilities
of your device

Try to obtain the energy spectrum of
the cosmic ray particles

Try to test your device in different
conditions
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Scintillator and photomultiplier

Scintillator : fluorescent plastic plate,
producing photons from excitations Photomultiplier : association of a

photocathode and dynodes, producing a
measurable current from single photons.
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Coincidence detection

Principe of electronic processing

We detect particles going downward with at least 2 % the speed of light
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Energy calibration of the detector

Tentative with radioactive sources :

Cesium 137 Sodium 22

The expected value of the muon spectrum is the stopping power of the detector [2] :

2.3 MeV.g.cm−1 × 1 g.cm−1 × 1 cm = 2.3 MeV
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Geometric normalization of the flux

With basic geometry :

α = 2 arctan

(
L
h

)
, β = arctan

(
l + x

h

)
+ arctan

(
l − x

h

)
Then, the solid angle from the center of the detector is :

Ω(L, l) = 4 arcsin

(
sin

(
α(L)

2

)
sin

(
β(l)

2

))
We then have to take the solid angle from any point in the detector, it gives the following integral for C(θ) :

C(θ) = 4
∫ L

u=0

∫ l

v=0
Ω(u, v)dudv

The normalization follows, considering we are detecting the flux from only one direction at a time :

φmeasured(θ) =
Ndetections(θ)

TC(θ)
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