

Screaming balloon Problem №9

Reporters:

lakov Breev

Aleksandra Maslakova

Team of Russia, Voronezh

If you put a hex nut in a balloon it is possible to make it «scream» by giving a certain rotational movement to the balloon (see video). How do the characteristics of the sound produced depend on the important parameters of the system?

Observation

Sound wave form

Decelerating nut

500

-75 dB

System dynamics

f, Hz Spectrogram

-60 dB

The frequency decreases while the nut slows down

6

-45 dB

t,s

System dynamics (1000 fps)

System dynamics

System dynamics

10

The setup

Running setup

Oscillations of the balloon surface(1000 fps)

Experimental results

The frequency of the sound is determined by the angular velocity

«Screaming»

Vertical coordinate (h)

Energy conservation law

$$\frac{mv^2}{2} = E - mgh$$

v is the hex velocity

The «screaming» is caused by the gravitational acceleration of the nut

How do characteristics of the sound depend on angular velocity of the nut?

(timbre)

The second setup

Technique of experiment

-15 dB

Estimation of balloon eigenfrequencies

[2] « The vibrations of bubbles and balloons » Kirsty A. Kuo and Hugh E.M. Hunt

Magnification of the first' harmonic and switch of frequency

Change in balloon tightness

Q-factor vs balloon tightness

Q-factor increases while the tightness growth

tightness

Magnification of higher harmonics (mathematical model)

 F_k

32

Damped linear oscillator

$$\ddot{x} + \lambda \dot{x} + \omega x^2 = F(t)$$

$$F(\omega') = \sum_{k} F_k \sin(k\omega' + \theta_k)$$

External force spectrum

Magnification of second harmonic

Magnification of the higher harmonic is also caused by resonance effects

How characteristics of sound depend on nut size?

c – speed of sound in air

Size of nut

[1]

Power emitted by the spherical emitter

Intensity of sound increases with nut size increasing

[1] Rzhevkin S. N. «Theory of sound» Pub.: MSU 1960

Size of nut

1) Sound is multifrequent. Fundamental frequency depends on angular speed of nut as

 $= 6\Omega$

- 2) We can obtain strong resonance effects: magnification of first and higher harmonics. The important parameter is Q factor of the system, which determines resonance properties and depends on tightness of surface of balloon
 - 3) Intensity of sound increases with increasing of nut size (if axis of nut's rotation oscillates negligibly).

[1] Rzhevkin S. N. «Theory of sound» Pub.: MSU 1960[2] « The vibrations of bubbles and balloons » Kirsty A. Kuo and Hugh E.M. Hunt

Thank you for your attention!