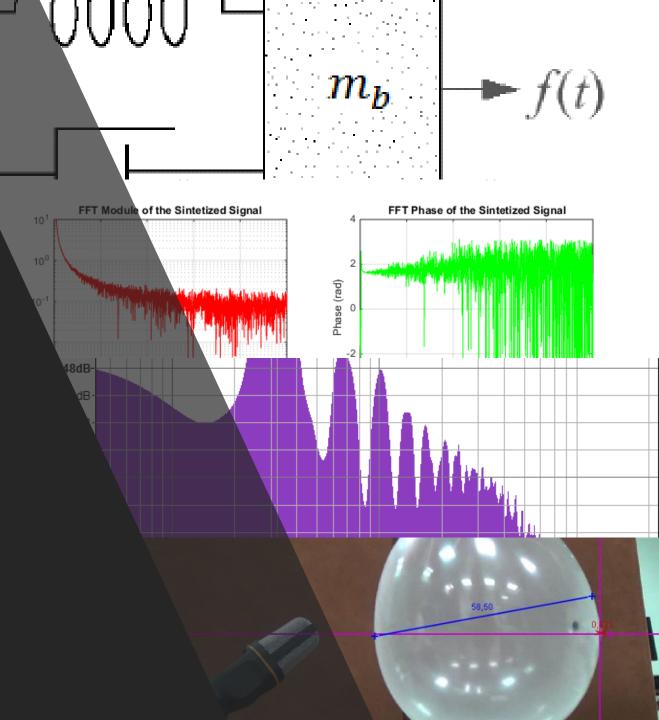
Reporter: Henrique Ferreira, Matheus Pessôa

Team Brazil: Andrius D., André Juan, Gustavo Saraiva, Henrique Ferreira, Lucas Maia, Lucas Tonetto, Matheus Pessôa, Ricardo Gitti

Problem 9 Screaming balloon



The problem

Team Brazil

Screaming balloon

Experimental Introduction

Modelling

Conclusion

 If you put a hex nut in a balloon it is possible to make it scream by giving a certain rotational movement to the balloon. How do the characteristics of the sound produced depend on the important parameters of the system?

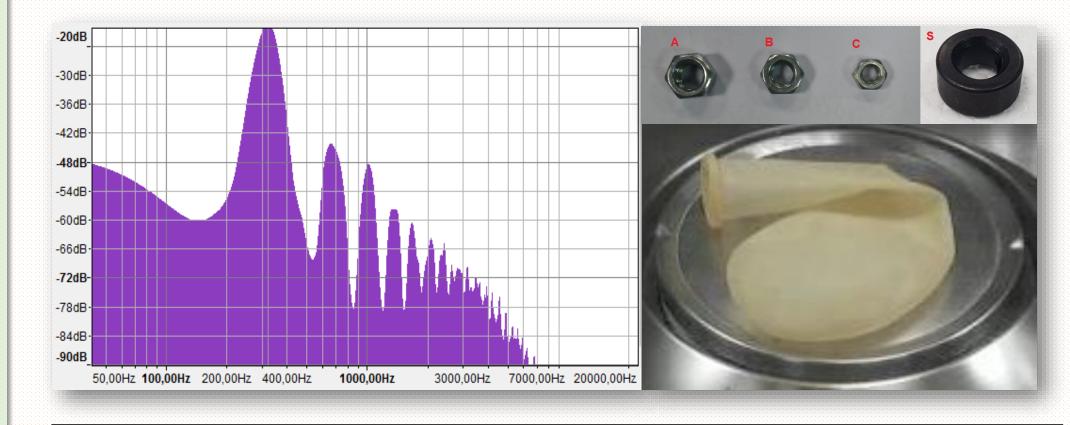
□ The system

Team Brazil

Screaming balloon

Modelling

Conclusion



Sound spectrum, hex nuts and balloons

□ Importance of the edge

 $_{\odot}$ Comparison between hex nut and nut with no edges

Screaming balloon

Modelling

Conclusion

Hex nut

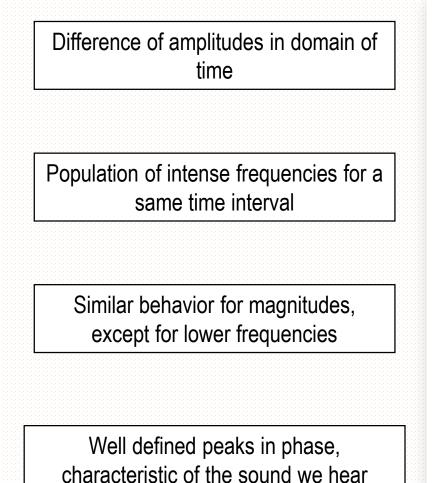
• Nut with no edges

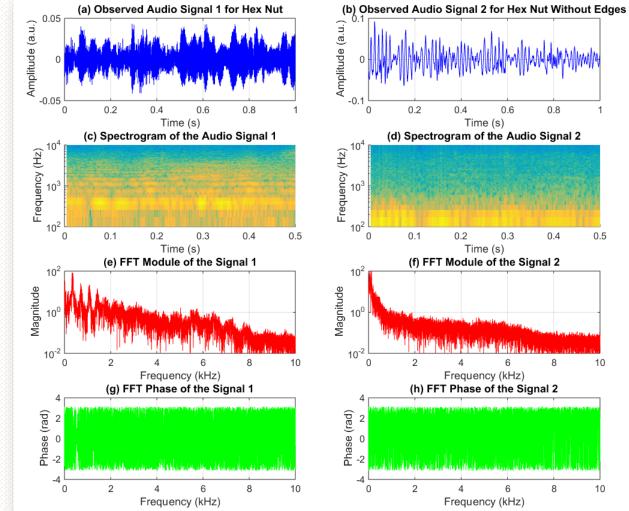
Sound spectrum for both

Team Brazil

Screaming balloon

Modelling





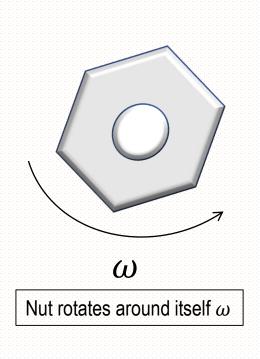
Movement of the hex nut & sound

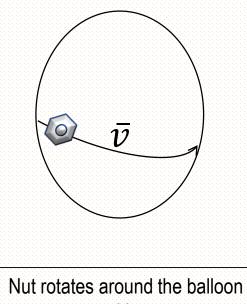
Team Brazil

Screaming balloon

Experimental Introduction Modelling Conclusion

\circ Experimental facts





with $ar{v}$

 $_{\odot}$ Edge collisions with the balloon creates the **screaming**!

Experimental procedure

С

Mean radius

 $c = 2\pi r_h$

Diagonal

Polar

Equatorial

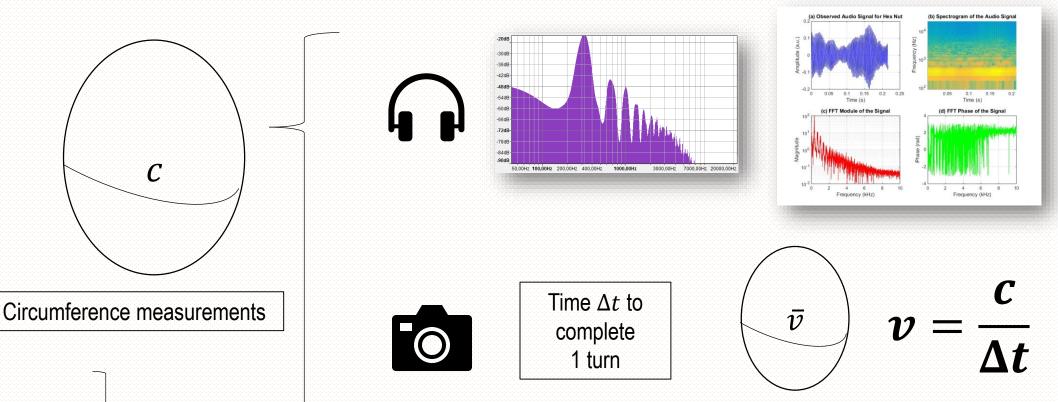
Team Brazil

Screaming balloon

Experimental Introduction

Modelling

Conclusion



• With information about the geometry of each balloon and time t we calculated the translational $\bar{v}!$

□ Varied parameters

Screaming balloon

Modelling

Mean radius
$$r_{hn} = \frac{1}{6} \sum_{i=1}^{3} (C_i + F_i)$$

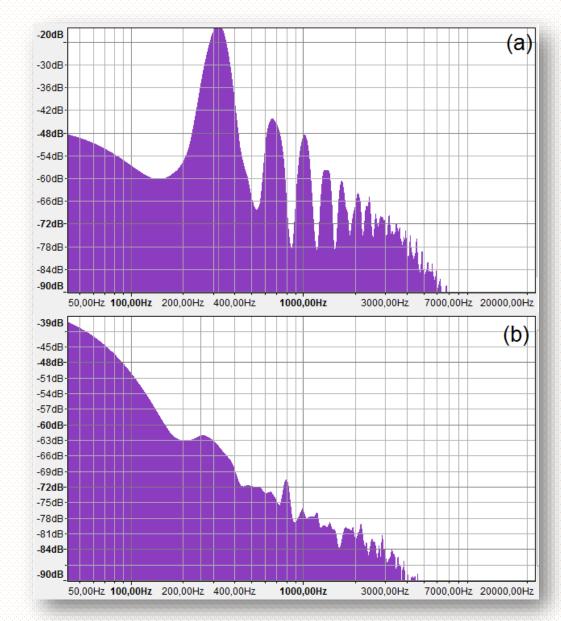
Hex Nut	Nominal Size	Mass (g)	Mean external radius (mm)
А	3/8"	6.6270 ± 0.0001	7.5 ± 0.2
В	5/16"	4.7135 ± 0.0001	6.9 ± 0.2
С	M6	2.2122 ± 0.0001	5.2 ± 0.1
<mark>S1</mark>		8.269 ± 0.0001	10.7 ± 0.02
S2		3.940 ± 0.0001	16.9 ± 0.02

Sound spectrums

Screaming balloon

Modelling

Conclusion



Hex nut *c* with edges (a)

- Well defined peaks with high frequency
- Presence of harmonics

Hex nut without edges (b)

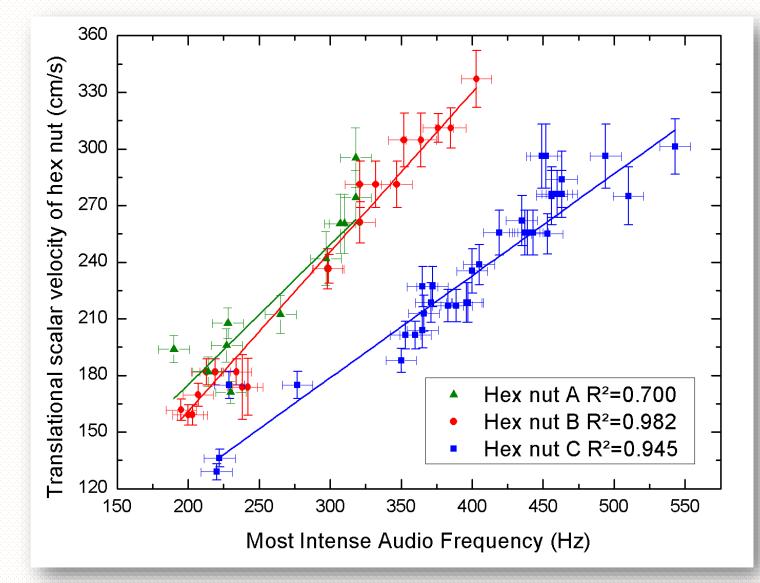
• No defined peaks of intensity!

Results for different hex nuts

Team Brazil

Screaming balloon

Modelling



Normalized translational velocities (radius)

o Considering all data for different hex nuts radius and normalizing the results

Team Brazil

Screaming balloon

Experimental Introduction

Modelling

Conclusion

Relation between nut radius & translational velocity and Mlf

 $1.11 f_{MI}$

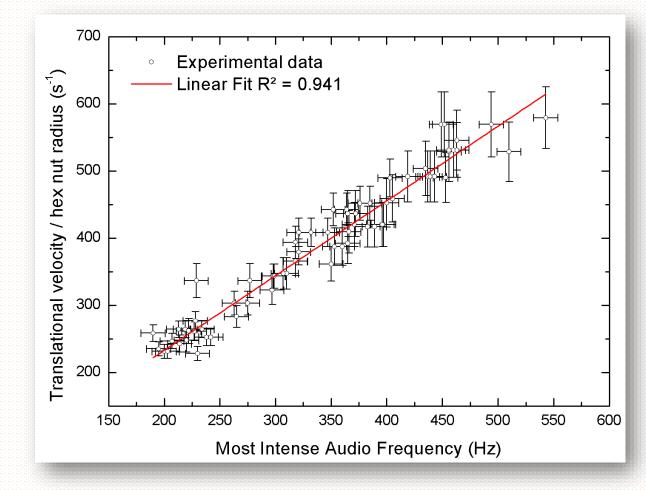
 $b = (10 \pm 9)s^{-1}$ experimental error

 $y = ax + b \rightarrow \frac{v_t}{r_{hn}} = af_{MI} + b$

 $a = (1.11 \pm 0.03) adm$

 v_t

 r_{hn}



Team

Brazil

Screaming

balloon

□ So far...

 How do the characteristic of the sound produced depend on the important parameters of the system?

Characteristics of the sound produced
 Most Intense frequency in the sound spectrum

Important parameters of the system

- Balloon radius + translational period = translational velocity
- $_{\odot}$ Hex nut = screaming / Nut with no edges = no high frequencies
- Translational velocity/ hex nut radius = most intense frequency component

Experimental Introduction

Modelling

Conclusion

o Phenomenological law that relates the sound properties with the system!

Physical model- Reconstructing the screaming

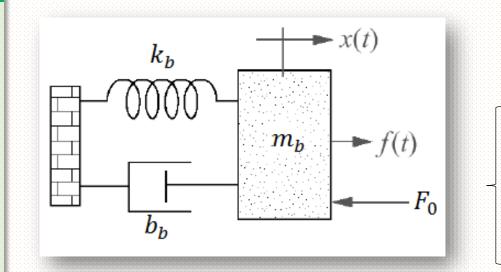
Team Brazil

Screaming balloon

Experiment Introduction

Modelling

Conclusion



Damped spring mass system $m_b \ddot{x} = -k_b x - b_b \dot{x} + F_0 + F(t)$ F(t) is the periodic force by the hex nut, $F(t) = F_0 cos(\overline{\omega}t)$ $k_b x$ is the balloon's elastic response $b_b \dot{x}$ is the damping factor $F_o = 4\pi r_b^2 P_b$ is the force due to internal pressure P_b

 $F(t) = F_0 cos(\overline{\omega}t)$ $\overline{\omega}$ is the frequency of the force F(t) acting on the system

$$x(t) = Ae^{-\frac{\gamma t}{2}}\cos(\omega t + \phi) + \frac{F_0}{m_b} \frac{(\cos \overline{\omega} t + \phi')}{\sqrt{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}}$$

Determining the model constants

Team Brazil

Screaming balloon

Experimental Introduction

Modelling

Conclusion

○ Different balloon masses
○
$$m_b \sim (1.3 \pm 0.1)g$$

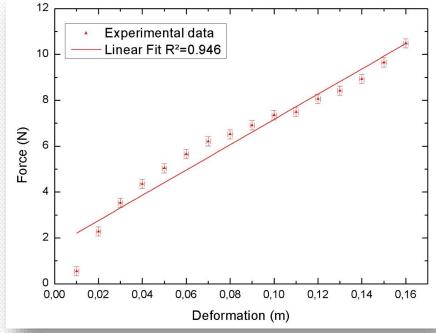
○ Balloon's elastic constant ○ $k_b = (55 \pm 1)N/m$

$$\circ F_{0} = \frac{m_{hn}vt^{2}}{r_{b}} \text{ (cpt. Force)}$$

$$\circ \omega_{0} = \sqrt{\frac{k_{b}}{m_{b}}} \text{ natural frequency}$$

of the system

$$\circ \gamma = \frac{b_{b}}{m_{b}} \text{, damping parameter}$$



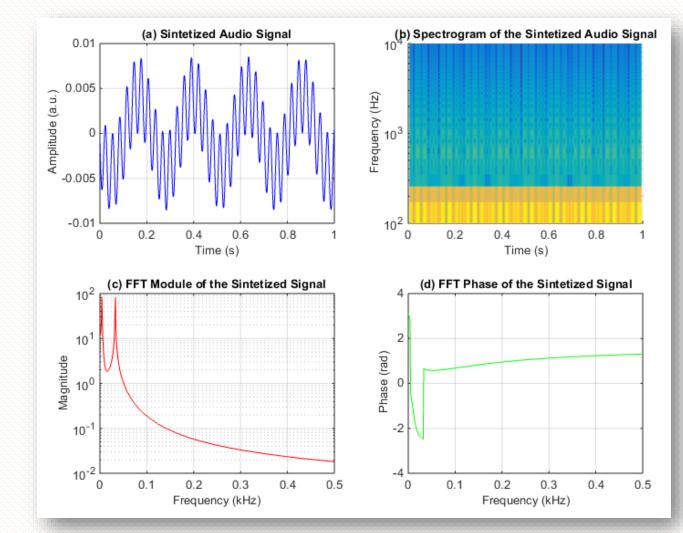
Results for 1s simulation

Using the DHO as a 1st approximation to the problem and parameters obtained experimentally to solve the ODE, we get the following behavior we get from a synthesized signal!

Screaming balloon

Experimental Introduction

Conclusion



Results are similar to the ones with the nut without edges!

DHO x Hex Nut Without Edges (same time for a complete turn)

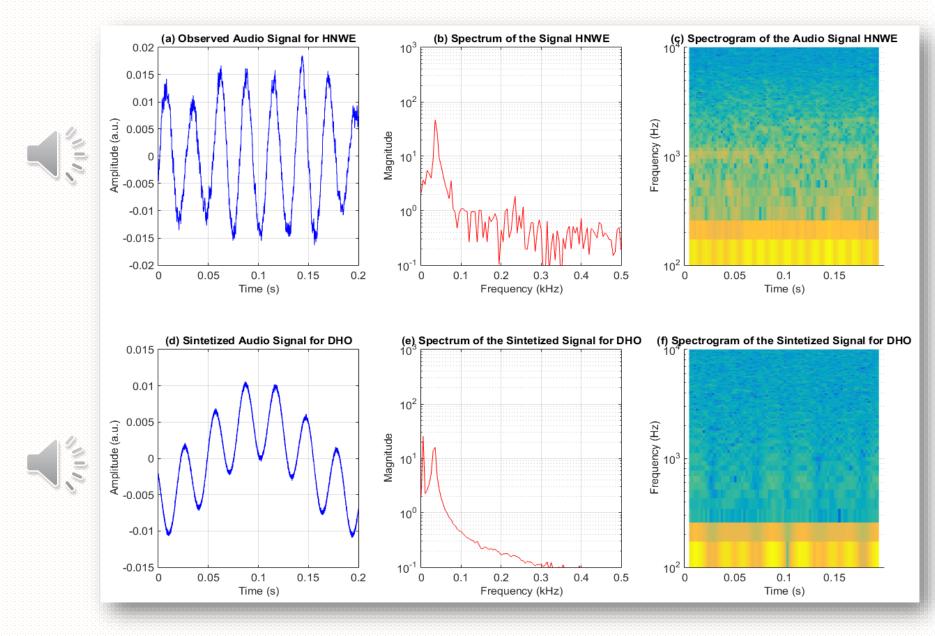
Team Brazil

Screaming balloon

> Experimental Introduction

Modelling

Conclusion



17

Team

Brazil

Amplitude modulation for the nux with edges

$$s(t) = C(1 + k_A x(t)) \cos(\omega_r t)$$

 \circ Considering a same x(t) as in the DHO, we applied an amplitude modulation for the HNWE

Screaming balloon

$\cos(\omega_r t)$ is the spin over its own axis

 $\omega_r = \frac{v_r}{r_h} = \frac{v_t r_b}{r_h^2}$ is the rotational frequency

 \circ *C* is the amplitude of the carried signal (free parameter) and w_r is the frequency of each hex nut hitting the balloon's wall!

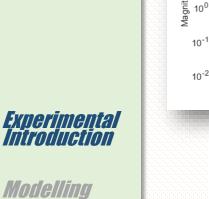
 $o_{A} = \frac{E_{\chi}}{E_{c}} = \frac{\int x^{2}(t)dt}{C^{2}}$, modulation index, was used with an assumed C = 0.04 for a satisfactory approach.

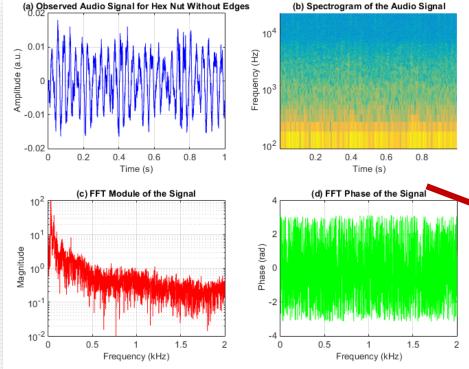
Experimental Introduction

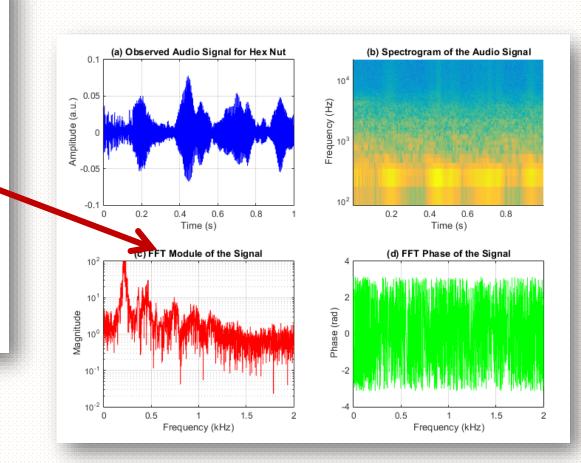
Modelling

□ Why use a AM?

Screaming balloon

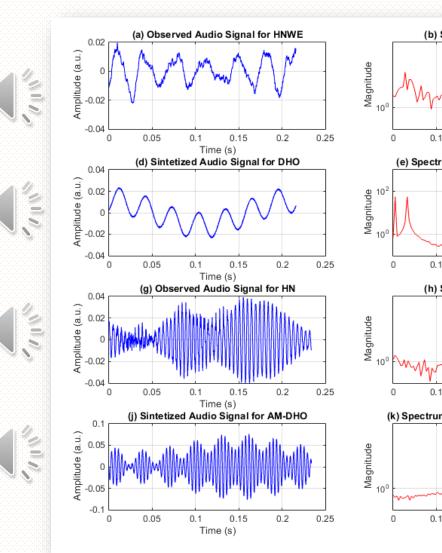


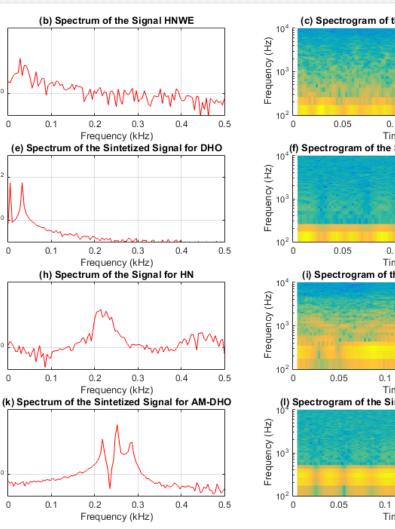


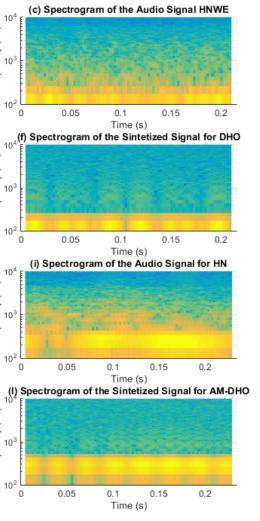


□ AM-DHO+AWGN

Screaming balloon







☐ Conclusion

Team Brazil

Screaming balloon

> Experimental Introduction Modelling

Conclusion

 We obtained a phenomenological relation to characterize the system's properties with the sound

$$\frac{v_t}{r_{hn}} = f_{MI}t$$

o Answered the problem experimentally!

• From a physical model, we could explain the problem!

 $_{\odot}$ DHO simulates the hex without edges translating in the balloon

 AM -DHO simulates the nut without edges translating in the balloon (DHO) and rotating around its own axis (6 times, one for each edge)

 $_{\odot}$ How to improve the accuracy of the model: improve data collected

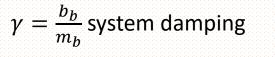
 Echoes, balloon's closed surface causing diferente interferences, bidimensional vibration for coupled oscillators, etc.

Candle Lighting Trick

□ Calculating the constants

Team Brazil

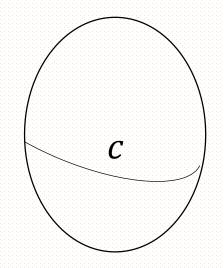
Screaming balloon



$$\omega_0 = \sqrt{\frac{k_b}{m_b}}$$
 balloon natural frequency
 $\omega_s = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}$ balloon vibrational frequency

 $\omega_t = v_t r_b$ is the nut frequency

$$\phi' = \arctan \frac{\gamma \omega_r}{\omega^2 - \omega_t^2}$$
 is the stationary solution phase



$$x(t) = Ae^{-\frac{\gamma t}{2}}\cos(\omega t + \phi) + \frac{F_0}{m_b}\frac{(\cos\overline{\omega}t + \phi')}{\sqrt{(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2}}$$

Experimental Introduction

Modelling

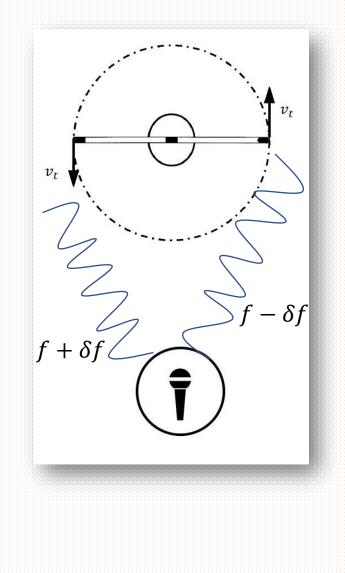
Physical model- reconstructing the screaming

Screaming balloon

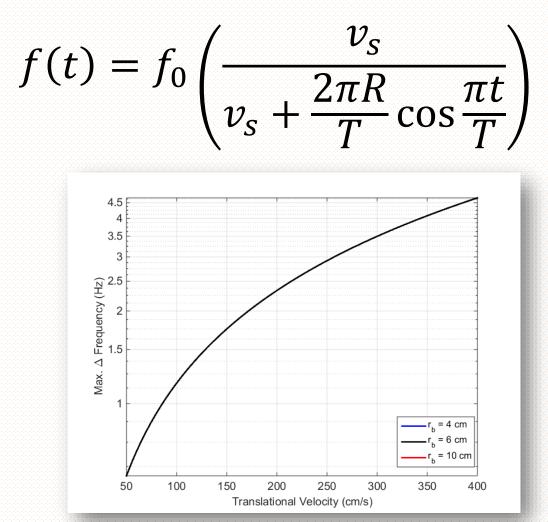
Experimental Introduction

Modelling

Conclusion



Doppler effect considered by the rotation



Marcelo M. F. Saba, Instituto Nacional de Pesquisas Espaciais, INPE, BrazilRafael Antônio da S. Rosa, Clube de Ciências Quark, Instituto Tecnológico de Aeronáutica, BrazilTHE PHYSICS TEACHER Vol. 41, February 2003 DOI: 10.1119/1.1542044

Distribution for velocities

 $_{\odot}$ Considering all evaluated data

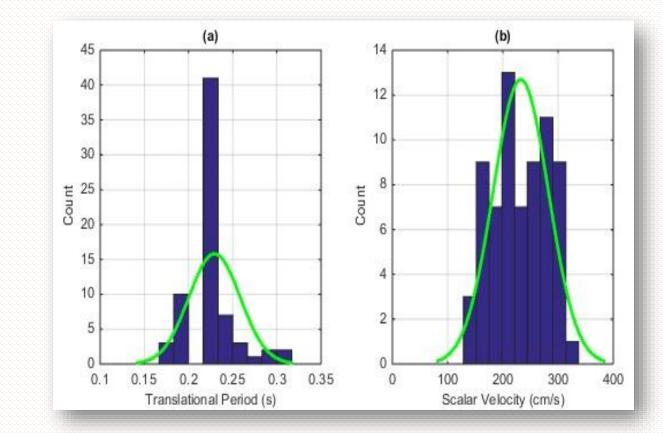
Screaming balloon

Team

Brazil

Experimental Introduction

Modelling



Team Brazil

Screaming balloon

Modelling